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Efficient tomography of coherent optical detectors
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We propose an efficient tomography method to address the reconstruction complexity of any general quantum
coherent-optical detectors. By extracting the linear loss from the entire detection system, we obtain the effective
positive-operator-valued measure in matrix representations with a much smaller size. We apply this method to
reconstruct a typical coherent detector: the weak-field homodyne detector. The method also highlights the effects
of linear loss on nonclassical features of coherent optical detectors.
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I. INTRODUCTION

Quantum detector plays a fundamental role in investigating
and controlling various quantum systems [1]. The complete
knowledge of the detector relies on the characterization of its
positive-operator-valued measure (POVM) that links the input
states to the classical output. A typical technique of char-
acterizing any quantum detector is called quantum detector
tomography (QDT) [2–5], which reconstructs the POVM from
the measured outcome statistics by using a set of tomograph-
ically complete states as the probe. QDT has been applied to
avalanche photodiodes (APDs) [6], time-multiplexed detec-
tors (TMDs) [3,7,8], and superconducting nanowire detectors
[9–11]. These detectors are phase insensitive, i.e., they cannot
respond to the coherence among photon-number states. Since
the matrix representations of the POVM are diagonal in the
photon-number basis, they are relatively straightforward to
reconstruct.

However, for coherent optical detectors such as weak-field
homodyne detectors [12,13], which have unique character-
istics in bridging particle and wave sensitivity, the POVM
elements will have nonzero off-diagonal entries in their
matrix representations. These detectors are phase sensitive
and can access quantum coherence among photon-number
states [14,15], which are of vital importance in applications
such as quantum state engineering [16,17], coherent optical
communication [18,19], continuous variable quantum key dis-
tribution [20,21], and fundamental investigations on quantum
mechanics [22]. The reconstruction of these POVMs is more
difficult than that of incoherent detectors since the number of
parameters to be estimated is proportional to d2, where d is
the dimension of the Hilbert space determined by the number
of photons that saturate the detector. For practical detectors
with a large dynamic range, d can range from 102 to 105, and
then d2 from 104 to 1010. Thus, the QDT of coherent optical
detectors is much more challenging.

To characterize the coherent optical detectors, a recursive
reconstruction method [23] of QDT was proposed, which
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reduced the computational complexity from quadratic to lin-
ear per recursion with respect to dimension d . Lately, an
improved reconstruction method was introduced in studying
the coherence of a weak-field homodyne APD [24]. The
method adopted the approach which dealt with the diagonal
and off-diagonal entries of the POVM elements but recon-
structed them in a run. The omission of the recursive process
in the improved method brought about higher reconstruction
efficiency and accuracy. However, both the methods do not
decrease the total size of the POVM, thus the total compu-
tation burden is still large. To avoid numerical instability in
the reconstruction of realistic detectors, suitable regularization
conditions are introduced to obtain a smooth POVM in these
methods. For coherent detectors with complex structures, the
characterization calls for a more efficient tomography method.

For the coherent optical detectors, linear loss is one of the
major effects accounting for the large number of free param-
eters in the POVM elements and then huge computation work
in the QDT of them. It was shown that the linear loss can be
decoupled from the nonlinear response in the characterization
of incoherent detectors [9]. However, whether this idea can be
applied to the characterization of coherent detectors remains
elusive due to the sophisticated effect of linear loss on the
response of coherent detectors. In this work, we propose an ef-
ficient method to decouple the linear loss from the response of
coherent detectors and reduce the reconstruction complexity
greatly, which is model independent and generally applicable
to all coherent detectors. By extracting the linear loss, we
obtain the effective POVM with a significantly smaller size.
We employ this method to characterize a typical coherent
detector: the weak-field homodyne detector. When taking into
account the linear loss, the results show an average fidelity of
over 99% with the POVMs reconstructed by the conventional
reconstruction method [24]. Moreover, our method highlights
the effects of linear loss on nonclassical features of coherent
optical detectors.

II. DESCRIPTION OF THE ALGORITHM

In the QDT theory, with a set of known probe states {ρ̂m}
(m = 1, 2, . . . , M, where M is the total number of probe
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states) incident on a quantum detector, we collect the mea-
surement outcomes of the detector [3]. The link is given by the
Born rule, which indicates that the probability for an outcome
n is

pn|m = tr(ρ̂m�̂n), (1)

where {�̂n} is the POVM of the detector with n =
0, 1, . . . , N − 1, and N is the number of outcomes for the
detector. To determine {�̂n} from Eq. (1), the set of probe
states should be tomographically complete. In practice, one
candidate is the set of coherent states |αm〉, which can be
generated by modulating the output of a laser. We expand
{�̂n} and |αm〉 in the Fock basis and truncate the expansion
at the number of photons d − 1 that saturate the detector

�̂n =
d−1∑
j,k=0

π j,k
n | j〉〈k|, (2)

and

|αm〉 = e−|αm|2/2
d−1∑
j=0

|αm| j

√
j!

ei jθm | j〉. (3)

Then we can rewrite Eq. (1) as

pn|m = e−|αm|2
d−1∑
j,k=0

|αm| j+k

√
j!k!

ei(k− j)θmπ j,k
n . (4)

We relabel the basis elements using an index parameter t
(1 � t � d2), and define j(t ) = (t − 1) mod d and k(t ) =
[t − j(t ) − 1] mod d . Equation (4) can be rearranged in a
matrix form

P = F̃�̃, (5)

where P is an M × N matrix containing the measured proba-
bilities with elements Pm,n = pn|m, F̃ is an M × d2 matrix that
contains the probe states information with elements

F̃ m,t = e−|αm|2 |αm| j(t )+k(t )

√
j(t )!k(t )!

ei[k(t )− j(t )]θm , (6)

and �̃ is a d2 × N matrix that contains the unknown POVM
with elements �̃t,n = π

j(t ),k(t )
n . Due to the experimental im-

perfections, instead of directly solving Eq. (5), we can solve a
convex quadratic optimization problem

minimize : ‖P − F̃�̃‖2 + g(�̃),

subject to : �̂n � 0,

N−1∑
n=0

�̂n = Î, (7)

where ‖A‖2 =
√

tr(A†A) is the Frobenius norm, g(�̃) is a
regularization function [3], and Î is the identity operator.
Equation (7) is a semi-definite problem and the solution can
be obtained numerically.

Due to the large size of P, F̃ , and �̃, to reduce the
reconstruction complexity, an improved reconstruction algo-
rithm [24] was developed by reconstructing the POVM up
to l leading diagonals (0 � l � d − 1). This is realized by
transforming each POVM element into a column vector with
all leading diagonals in arrangement successively. The nth

column of �̃ contains the relevant part of �̂n, i.e., the diagonal
entries of �̂n, followed by the first off-diagonal above, the first
off-diagonal below, the second off-diagonal above, and so on,
and the lth off-diagonal below. The remaining off-diagonal
entries are assumed to be zero, which is a good approximation
providing enough of diagonals were taken into account. The
rearranged matrix �̃ has a size of [d + (2d − l − 1)l] × N
and can be reconstructed in a run by using the convex opti-
mization approach in Eq. (7). This algorithm does not reduce
the dimension of the POVM, so it still holds a large computa-
tion burden for coherent detectors with complex structures.

Here, we propose a more efficient method to reconstruct
the coherent optical detectors. Our aim is to separate the linear
loss from the original POVM element of the detector. The
linear loss leads to more unknown parameters in coherent
detectors than in incoherent detectors. Since the dimension
of the POVM is inversely proportional to the efficiency of the
detector, if we can extract an efficiency parameter η from the
POVM, we can reduce the size of matrix �̂ and the number of
the parameters to be estimated by a factor of about η2. Since
the main diagonal of the matrix representation of the POVM
given in Eq. (2) involves the response to the photon number
statistics and the linear loss can be viewed as a reduction of the
input photon numbers, we can extract the efficiency parameter
η that accounts for the linear loss from the main diagonal and
obtain the effective POVM element with a smaller size.

In practice, the probe states are prepared with Ma different
amplitudes and Mp different phases for each amplitude. Then
we have M = MaMp of the states with the complex amplitudes
αu,v = |αu|eiθv , with u = 1, . . . , Ma and v = 1, . . . , Mp. We
first integrate over the probe state phase θ . Since

∫ 2π

0
ei(k− j)θ dθ = 2πδk, j, (8)

using Eq. (4), we obtain

1

2π

∫ 2π

0
pn|mdθ = e−η|αu|2

∑
s=0

(η|αu|2)
s

s!
qs. (9)

Here η is the extracted efficiency parameter and {qs} are pos-
itive real parameters, which are all between 0 and 1. The left
side of Eq. (9) is a partial integration of the measured prob-
abilities that can be obtained by numerical approximation,
while the right side involves the main diagonal of the POVM.
We decompose the main diagonal entries into an efficiency
parameter η conducted on input photon numbers and some
remainders {qs} representing the nonlinear parts. Then we
change the left integration to a summation with

1

2π

∫ 2π

0
pn|mdθ ≈ 1

mp

mp∑
v=1

pn|αu,v
. (10)

Using Eqs. (9) and (10), we can fit the unknown parameters
η and {qs} to the measured probabilities as a function of
|αu|2 (the photon number of probe states). The computational
complexity is O(d ). To avoid overparametrizing the system,
we choose the minimum number of {qs} to best fit our data in
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Eq. (9). With the estimated efficiency ηest, we insert it into

pn|αu,v
= e−ηest|αu|2

d ′−1∑
j,k=0

(
√

ηest|αu|) j+k

√
j!k!

ei(k− j)θvπ eff( j,k)
n . (11)

Here, we have

�̂eff
n =

d ′−1∑
j,k=0

π eff( j,k)
n | j〉〈k|, (12)

where d ′ is the new dimension of the Hilbert space to describe
the effective POVM.

Instead of taking the direct inversion of Eq. (11), which
may give unphysical POVM elements, we adopt the convex
optimization method

minimize : ‖P − F̃ eff�̃eff‖2,

subject to : �̂eff
n � 0,

N−1∑
n=0

�̂eff
n = Î. (13)

Here the matrix form of �̃eff is constructed in the same way
as the improved reconstruction method. By rearranging the
leading diagonal entries of the effective POVM elements in a
series connection, we use a index number r to define the corre-
sponding matrix form. According to �̃eff(r,n) = π

[( j(r),k(r)]
n and

F̃ eff(m,r) = e−ηest|αu|2
√

ηest|αu| j(r)+k(r)

√
j(r)!k(r)!

ei[k(r)− j(r)]θv , (14)

we can reconstruct the effective POVM elements efficiently
using Eq. (13). Since the linear loss was separated out from
the original POVM elements, the smoothness requirement of
the effective POVM can be removed. This also makes the
optimization procedure much simpler.

III. RECONSTRUCTION OF THE WEAK-FIELD
HOMODYNE DETECTORS

We apply the method to reconstruct a typical kind of
coherent detectors: the weak-field homodyne detector. The
configuration of such a detector and its schematic tomog-
raphy setup is shown in Fig. 1. A set of probe states is
generated from the output of a laser followed by the phase
modulation and amplitude modulation, then it is injected into
a weak-field homodyne detector, which is represented by the
dotted box. The detector combines the probe states with a
local oscillator (LO), usually a weak coherent state |αLO〉 at
a beam splitter with transmissivity T , followed by an APD or
a photon-number-resolving detector (PNRD). The POVM of
a weak-field homodyne detector is determined by the beam-
splitting ratio, the amplitude and phase of the LO, and the
detailed response of APD or PNRD. In addition, the mode
overlap between probe states and LO and different transmis-
sion loss on them may also affect the POVM.

Here, we apply our method to characterize both the weak-
field homodyne APD and PNRD. The experimental data are
taken from Ref. [13]. We first present the reconstruction
results of a weak-field homodyne APD (with a detection ef-
ficiency of 39% for APD). The APD only registers click and
no-click event. For |αLO|2 = 0.8 photons, the LO phase of

Laser

HWP
PBS ND

PM AM

LO

WHD

BS

FIG. 1. The configuration of a weak-field homodyne detector
and its schematic tomography setup. The probe states are generated
with the laser output passing through phase-modulation (PM) and
amplitude-modulation (AM) devices and are injected into the weak-
field homodyne detector (WHD). The phases of the probe states can
be set by a piezotranslator. The magnitudes of the probe states can
be controlled by a half-wave plate (HWP) followed by a polarizing
beam splitter (PBS) and neutral density (ND) filters. The schematic
of WHD is shown in the dotted box. The WHD combines the probe
states with a local oscillator (LO) at a beam splitter (BS), followed
by an intensity detector such as an APD or PNRD.

zero, a beam splitter transmissivity of 65.5%, and a mode
overlap of 0.99, we reconstruct the effective POVM element
for the no-click event of the weak-field homodyne APD,
which is depicted in Fig. 2. In the estimation of ηest, we need
to use a sufficient number of probe phases for an accurate
reconstruction, as was given in Ref. [23]. The number of
the experimental data is Ma = 110 and Mp = 40. We obtain
ηest = 0.2761 and the relative error of the reconstruction with
‖P0 − F̃ eff�̃eff

0 ‖2/‖P0‖2 = 0.6%. The dimension of the effec-
tive POVM element is truncated at d ′ = 4. As a comparison,
with the previous algorithm [23,24], the dimension of the
reconstructed POVM element is above 30. The method has
greatly reduced the computation complexity. In addition, to

0 1 2 3
0

0.15

0.3

0 1 2 3
0

0.03

0.06

0 1 2 3
0.005

0.01

0.015

0 1 2 3
0

0.2
0.4
0.6
0.8
1.0

jj

j j

0
eff

FIG. 2. Reconstructed effective POVM element for the no-click
event �̂eff

0 of a weak-field homodyne APD with |αLO|2 = 0.8 pho-
tons, LO phase of zero, transmissivity of 65.5% for the beam splitter,
detection efficiency of 39% for the APD and a mode overlap of 0.99
between the input states and LO. We truncate the dimension at d ′ = 4
and show the lth leading diagonals π

eff( j, j+l )
0 = 〈 j|�̂eff

0 | j + l〉 of the
POVM element from l = 0 to l = 3. Here we have ηest = 0.2761 and
a relative error for the reconstruction of 0.6%.
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FIG. 3. The overall lossy POVM element �̂
lossy
0 by incorporat-

ing the estimated loss into the effective POVM element for the
no-click event of a weak-field homodyne APD. We truncate the pho-
ton number at 30 and show the lth leading diagonals π

lossy( j, j+l )
0 =

〈 j|�̂lossy
0 | j + l〉 of the POVM element from l = 0 to l = 3. The

result has a fidelity of 99.67% with the one reconstructed with a
conventional reconstruction algorithm.

demonstrate the validity, we incorporate ηest into �̂eff
0 and

obtain the overall lossy POVM element �̂
lossy
0 , which is shown

in Fig. 3. We calculate the fidelity between the overall lossy
POVM element and the one reconstructed using the conven-
tional reconstruction algorithm �̂0 [24]

F = [
tr
(√

�̂0�̂
lossy
0

√
�̂0

)1/2]2

/tr(�̂0)tr
(
�̂

lossy
0

)
, (15)

which is 99.67%. This fidelity confirms the accuracy of our
reconstruction algorithm.

We also apply our method to reconstruct the POVM of a
weak-field homodyne PNRD, which is of vital value due to
its combination of photon number resolution and phase sen-
sitivity [12,25]. The weak-field homodyne PNRD has |αLO|2
of five photons, LO phase of zero, a beam splitter trans-
missivity of 65.5%, the mode overlap of 99% between the
input states and LO, and a detection efficiency of 24% for a
time-multiplexed detector with N = 9 outcomes [26,27]. Here
we have Ma = 865 and Mp = 40. To fully characterize such
a weak-field homodyne PNRD, the conventional recursive
algorithm [13] involves a dimension of d = 450. However,
with our method, the effective POVM element has a dimen-
sion d ′ of no more than 15. We reconstructed the effective
POVM element for the two-click event �̂eff

2 , which is shown
in Fig. 4. We obtain ηest = 0.1382 and the relative error of
the reconstruction is 1.3%. The overall lossy POVM element
�̂

lossy
2 is depicted in Fig. 5, which has a fidelity of 99.81%

with the reconstructed POVM element using the conventional
reconstruction algorithm [24]. The result again confirms the
accuracy of our method.

IV. EFFECTS OF LINEAR LOSS IN NONCLASSICAL
FEATURES OF COHERENT DETECTORS

By decoupling the loss from the POVM, our method not
only reduces the complexity of the reconstruction, but also
allows to investigate the effect of loss on nonclassical fea-
tures of the POVM. The ability to detect coherence from the
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jj
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2
eff

FIG. 4. Reconstructed effective POVM element for the two-click
event �̂eff

2 of a weak-field homodyne PNRD (with |αLO|2 = 5 pho-
tons, LO phase of zero, a beam splitter transmissivity of 65.5%,
mode overlap of 99%, and a detection efficiency of 24% for a
time-multiplexed detector with N = 9 outputs). We truncate the di-
mension at d ′ = 9 and show the lth leading diagonals π

eff( j, j+l )
2 =

〈 j|�̂eff
2 | j + l〉 of the POVM element from l = 0 to l = 3. Here we

have ηest = 0.1382 and a relative error for the reconstruction of 1.3%.

measurement statistics is one of the most significant fea-
tures of optical coherent detectors [24]. A method to
evaluate the coherence of a measurement was presented in
Refs. [24,28]. It was conducted by mapping the measurement
to a trace-preserving operation and calculating the coherence
of operation using two functionals (i.e., the diamond measure
and the nonstochasticity in detection measure). After we sep-
arate the linear loss from the original POVM elements of the
weak-field homodyne APD, we obtain a coherence value in-
creased from 0.5058 to 0.5402 using the two measures above
(two measures yields the same result for a weak-field homo-
dyne APD). It is known that the off-diagonal entries determine
the coherence of the POVMs. We infer from Fig. 2 that, when
we extract the linear loss, the increased off-diagonal values
indicate an increase of the coherence value of the detector.

0 25 50 75 100
0

0.1

0.2

0 25 50 75 100
-0.1

0

0.1

0 25 50 75 100

-0.04
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jj
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lossy

FIG. 5. The overall lossy POVM element �̂
lossy
2 by incorporating

the estimated loss into the effective POVM element for the two-click
event of a weak-field homodyne PNRD. We truncate the photon
number at 100 and show the lth leading diagonals π

lossy( j, j+l )
2 =

〈 j|�̂lossy
2 | j + l〉 of the POVM element from l = 0 to l = 3. The

result has a fidelity of 99.81% with the one reconstructed with a
conventional reconstruction algorithm.
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FIG. 6. Wigner function and the corresponding contour plot (in-
set) for (left) the original POVM element and (right) the effective
POVM element of the two-click weak-field homodyne PNRD. The
non-Gaussian characteristic is evident from the negative regions. The
higher negativity in the right Wigner function indicates the higher
non-Gaussianity of the effective POVM element.

The result confirms that linear loss leads to decoherence of the
optical coherent detectors. Measurement with non-Gaussian
representation in phase space plays a vital role in quantum
information processing [29,30]. The non-Gaussian feature of
the detection can be explored with the Wigner function of
its POVM. Here, We show the Wigner functions of the re-
constructed original and effective two-click POVM elements,
respectively, for the weak-field homodyne PNRD in Fig. 6.
The original POVM shows a broadened and flattened Wigner
function since the linear loss in the detector leads to the lower
sensitivity to small photon numbers. The Wigner function
of the effective POVM is closer to that of a displaced two-
photon Fock state with a displacement of 0.6. The overlap
between the Wigner function of the effective POVM ele-
ment (right) and that of a displaced two-photon Fock-state
is 0.9966 [31]. Similar to the Wigner function of a quantum
state [32], we calculate the negative volume of the Wigner
function of a measurement operator, which is defined by δ =∫∫ |W (X, P)|dXdP − ∫∫

W (X, P)dXdP. δ is an indicator of
the non-Gaussianity. The results for the original and effective

POVM elements are 0.0109 and 0.6748, respectively. This
indicates linear loss greatly decreases the non-Gaussianity of
the detector. This finding has particular influence on not only
the detection, but also the preparation [16] of nonclassical
states with coherent optical detectors.

V. CONCLUSION

Optical coherent detectors are essential to both quantum
and classical optical applications [17,19,22,33]. The explo-
rations of these applications rely on accurate knowledge of
the detectors. For coherent detectors with complex structures
and high photon-number-resolving capability, the number of
unknown parameters grows significantly, which makes the
tomography much more challenging. In this work, we propose
and demonstrate a method to reconstruct the coherent optical
detectors, which exhibits high accuracy and is applicable to
the experimental system with practical statistical fluctuations.
We manage to separate the linear loss from the original POVM
and obtain the effective POVM in a much smaller size, which,
together with the linear loss, fully characterizes the coher-
ent optical detector. For a practical detector, our method can
reduce the reconstruction complexity by two orders of mag-
nitude. In addition, the method reveals the effects of linear
loss on studying the nonclassicality of coherent detectors. Our
work provides an efficient solution to the benchmarking of the
performance of coherent optical detectors for widespread use
in quantum information applications [34,35]. We also expect
this method will facilitate the design of coherent detectors
with more complex structures.
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