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Polariton entering a continuum: Giant diffuse polaritonic resonance
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Polaritons arise due to a light-matter interaction and have been amply investigated for atoms and molecules
in a quantum field. By increasing the coupling between the atom/molecule and the cavity, the upper polariton
penetrates into the continuum (i.e., ionization continuum of atoms or molecules or dissociation continuum of
molecules) within the standard two-level approach. We investigate what happens to the polaritons in reality. We
first show that the upper polariton cannot enter the continuum if the atomic or molecular system itself does not
support metastable states, often called resonances, and instead becomes a giant diffuse bound polariton which
can be extended in space to any size one wishes. Then, we show how external perturbations can enable such a
diffuse polariton to penetrate into the continuum and turn it into a metastable polariton, i.e., into a polaritonic
resonance. In order to achieve these results the coupling of the bound states to the continuum induced by the
quantum light has to be taken into account. We discuss how such giant diffuse bound polaritons as well as
polaritonic resonances including their finite lifetime can be calculated and present explicit numerical examples.
The results provide a complete picture of what happens to the upper polariton in the vicinity of the continuum
and may be utilized to enhance ionization or dissociation inside the cavity.
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Introduction and motivation. The spectra of atoms and
molecules change dramatically in confined geometries such
as nanoscale cavities. Perhaps the most striking example is
the ability to vary the rate of spontaneous emission (see, e.g.,
Ref. [1] and references therein). Another result of general
interest is the formation of atomic and molecular polaritons
which are hybrid photon-matter quantum states. An extensive
amount of literature (both theoretical or experimental) focuses
on studying the energy splitting between polaritons [2–19].

Commonly, theoretical studies of energy splitting between
polaritons employ the two-level-system (TLS) approxima-
tion [20–25]. When the Rabi frequency (field intensity times
dipole transition between the two bound states coupled by the
cavity) is larger than the energy gap between the upper po-
lariton (UP) and the continuum threshold, the question arises
what happens in reality with this polariton. Answering this
basic question is the subject of our present Letter.

In general, one would expect that the UP penetrates into
the continuum and becomes a metastable polariton of finite
lifetime if the TLS model will be extended to include also the
continuum of the system. However, as we will show here, the
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polariton cannot enter the continuum (i.e., the ionization of an
atom or dissociation of a molecule cannot occur) as expected
if the atomic/molecular system itself does not support any
metastable states, often called resonances. This impossibility
to penetrate the continuum will be shown to give birth to the
creation of a giant diffuse bound polariton.

As we will theoretically demonstrate here, there are well-
defined cases which are neither accidental nor rare where the
formed giant diffuse bound polaritons can be as large as one
wishes. Once these objects are sizable, they become sensitive
to external perturbations, and as we will show below, such
perturbations will turn them into metastable polaritons, i.e.,
into giant diffuse polaritonic resonances.

Formation of a giant diffuse bound polariton. Let us first
illustrate the effect of the continuum on the polaritons for a
simple model of a one-dimensional (1D) potential that sup-
ports only two bound states. For reasons that will be clarified
later, we have selected a potential whose continuum density of
states ρ(E ) changes monotonically with the energy. In other
words, ρ(E ) does not contain any structures (signatures of res-
onances), and describes thus the so-called “white” continuum
as for the Morse-type potentials [26]. Specifically, we have
employed the Rosen-Morse potential [27,28] supporting just
two bound states with energies E0 < E1 < 0, which is defined
as

VRM(x) = −V0/ cosh2(ax), (1)
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FIG. 1. The energies of the polaritons plotted as a function of the
system-cavity coupling parameter εcav [see the Hamiltonian (3)]. Our
calculations employ the Rosen-Morse potential [27,28] as defined
in the text. The energies of the TLS polaritons are presented in
red color, and their counterparts computed including the continuum
states are depicted in black color. As a reference, the threshold energy
is marked by a dashed blue color. Atomic units are used throughout.

where, in atomic units, V0 = 10 and a = √
V0/6. The two

bound states have energies E0 = 1.41 and E1 = 0.07, in
hartree units. The frequency of the cavity was chosen to be
ωcav = E1 − E0. The associated coupling parameter is de-
noted by εcav.

Although the theoretical background and the details of the
numerical calculations are presented below and in the Supple-
mental Material [29], respectively, we show the results found
for the polaritons already now as they clearly demonstrate one
of our main findings. Figure 1 depicts the energies of the upper
and lower polaritons as a function of the coupling strength of
the cavity. We show both the outcome of the two-level-system
(TLS) approximation, and of the full treatment including the
atomic/molecular continuum. As expected, the TLS upper
polariton (briefly TLS-UP) freely crosses the dissociation
threshold and penetrates into the continuum. In contrast, the
exact UP remains a bound state and approaches asymptot-
ically the threshold energy to become an extremely diffuse
(i.e., spatially delocalized) polariton. Such a state remotely
reminds of an extremely diffuse Rydberg state [30,31]. As
we will demonstrate explicitly below, the just mentioned giant
diffuse bound state is extremely sensitive to any small external
perturbation due to its interactions with the environment (e.g.,
with other atoms or molecules, or with the cavity itself) and,
therefore, eventually does penetrate into the continuum to
become a finite lifetime resonance polariton. Again, we re-
mind in this context an analogy with a highly excited Rydberg
electron which is detached by a slight perturbation [30,31].

Theoretical description. Let us open our theoretical discus-
sion by emphasizing that the problem of a matter-radiation
interaction (and polaritons in particular) can be studied using
different mutually equivalent gauges. Specifically, the mo-
mentum (MG), length (LG), and acceleration (AG) gauges
come into consideration; these are outlined in the Supple-
mental Material [29] where also their exact mathematical
equivalence is highlighted. Here, we provide just a concise
discussion. The standard length gauge (LG) representation of

the relevant Hamiltonian reads as follows [32]:

ĤLG
SC = ĤS + h̄ωcav

(
â†â + 1

2

)

+
(
εLG

cav

)2

h̄ωcav
d̂2

LG + εLG
cav d̂LG i(â − â†). (2)

Here, ĤS = p̂2

2m + VS(x̂) is our model Hamiltonian of the
atomic/molecular system, d̂LG ∼ x̂ represents the electric
dipole operator, and εLG

cav stands for the pertinent LG cou-
pling constant (see the Supplemental Material for more
details [29]). The dipole approximation is used here as usual
(see also Refs. [34,35]), but we stress that long before the
size of our considered polariton is comparable to the cavity
size, this polariton becomes extremely sensitive to any small
perturbation and stops growing, and penetrates the continuum
to become a metastable state.

The Hamiltonian ĤLG
SC of Eq. (2) does not lend it-

self well for our subsequent considerations involving the
atomic/molecular continuum. Indeed, the electric dipole op-
erator d̂LG grows linearly with distance from the considered
atom or molecule, i.e., it does not vanish outside the cavity
inside which our studied material system is placed. Yet there is
also the dipole self-energy term containing d̂2

LG which grows
quadratically with x̂. An existence of the atomic/molecular
continuum is thus camouflaged in the LG representation. In
addition, the just presented LG picture seems to contradict an
intuitive expectation that the coupling of our atom or molecule
to the radiation field should be localized only inside the cavity.
For the just mentioned reason, we have decided to switch in all
our calculations from the length gauge into the so-called ac-
celeration gauge (AG) description, in which the electric dipole
operator is replaced by an equivalent term d̂AG = ∂VS(x)/∂x.
The resulting Hamiltonian valid in the regime of the coupling
εcav used here reads

ĤAG
SC = ĤS + h̄ωcav

(
â†â + 1

2

) + εcav d̂AGi(â − â†). (3)

Note that an existence of the atomic/molecular continuum
becomes manifest in AG, as opposed to LG. Also the matter-
radiation AG coupling is manifestly confined only to a small
region of nonvanishing ∂VS(x)/∂x. More details regarding the
AG representation and the relationship between the εLG

cav given
in Eq. (2) and εcav given in Eq. (3) are provided in Ref. [33]
and in the Supplemental Material [29].

The corresponding AG dipole transitions between the
bound states and the “white” continuum of VS(x) are also
plotted in the Supplemental Material (see Fig. S1) [29]. It
is seen that the magnitude of the dipole transition moments
between the bound states and the continuum is comparable to
those between the two bound states.

Let us point out that all the considerations and calculations
presented here are such that the matter-cavity interaction is
facilitated via exchanging a single photon only. We have con-
firmed the validity of the single-photon picture by carrying out
computations going beyond the single-photon approximation
(accounting for an exchange of two or more photons did
not affect the obtained results). In passing, we note also that
the single-cavity mode approximation, used implicitly in our
treatment, is justified when dealing with phenomena which
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are energetically below the excitation energies of all the other
cavity modes.

As clearly seen in Fig. 1, the energies of the exact po-
laritons are lower than their TLS counterparts. Indeed, this
interesting observation is general as is proven in the Supple-
mental Material [29]. Moreover, Fig. 1 demonstrates that the
exact polaritons remain as bound states, as also indicated by
the numerical results of recent pioneering work on the impact
of including the continuum in the calculations of polaritons in
electron-hole models [34,35]. This essential result is analyzed
and explained below. In particular, we answer the fundamental
and tantalizing question concerning the penetration of a po-
lariton into the continuum and demonstrate the general finding
by explicit examples. In our opinion, our theory also explains
the numerical result found in Refs. [34,35], namely, that the
polariton does not enter the continuum there.

The exact polaritons avoid penetration into the white
continuum. Let us explain now why the exact polaritons of
Fig. 1 do not enter the white continuum (e.g., dissociation
of a molecule inside a cavity cannot occur). The eigenvalue
problem of the AG Hamiltonian (3) in the single-photon
approximation simplifies and decouples into two mutually
independent one-dimensional eigenproblems. Following the
theoretical analysis developed in Ref. [36] and adapting it to
our present situation, one obtains, as shown explicitly in the
Supplemental Material [29], the two eigenvalue equations(

− h̄2

2 m
∂xx + V 0,1

SC (x) − E

)
χ0,1(x) = 0, (4)

where

V 0
SC(x) = VS(x) − εcav ∂VS/∂x + h̄ωcav/2,

V 1
SC(x) = VS(x) + εcav ∂VS/∂x + h̄ωcav/2.

In the cavity, the potential VS(x) of the system is modified
by the term εcav ∂VS/∂x. What are the conditions at which this
modification of the potential does not enable penetration of
the polaritons into the continuum? This question is equivalent
to asking for the conditions that the modified potential does
not support resonance states [as is the case for the original
potential VS(x)]. From the condition derived in Ref. [36]
to support resonances for two coupled potentials, we can
deduce the condition for which resonances do not appear
in the present situation in a cavity, more specifically, the
condition for the barrier described in Ref. [36] and for that
in our paper to not introduce new types of resonances. This
condition is indeed fulfilled in the first example we have
discussed here of a Rosen-Morse potential in a cavity, at least
in the weak-coupling regime which is tacitly assumed in the
present Letter. Our finding also explains the results presented
in Ref. [35], since the above term, εcav ∂VS/∂x, for a hydrogen
atom is εcav x/r3 (x is the polarization direction of the cavity
mode) which does not lead to the creation of a barrier that
might form resonances. Reference [36] states that resonances
are not supported by the modified potential as long as it does
not possess a barrier whose maximum value reaches above the
dissociation threshold of the original VS(x). In other words,
resonances appear only if there exists a value of x such that

VS(x) ± εcav ∂VS/∂x > 0 (5)

is fulfilled.

Resonances induced by our polariton entering the white
continuum may be formed only if the coupling strength εcav
is large enough. For our model Rosen-Morse potential, the
above inequalities (5) are satisfied for εcav � 0.5 a.u. (see
the Supplemental Material for details [29]). Inspection of
Fig. 1 indeed shows that our upper polariton cannot enter
the white continuum since the required coupling strength εcav
would have to be increased to an unrealistic magnitude. Note,
however, that our theoretical analysis presented here concerns
only the weak-coupling regime, so it is therefore in principle
possible that the upper polariton may enter the continuum at
such large values of εcav where the weak-coupling approxima-
tion does not apply. Moreover, the just provided explanation
does not concern such situations when the continuum of ĤS

is not “white” (i.e., it contains resonances). This issue will be
discussed further below.

Importantly, there exist prominent examples of physically
relevant potentials which do not support any metastable states,
e.g., the ubiquitous Morse potential describing molecular vi-
brations. Hence, as we have just shown above, for Morse-type
potentials the upper polariton cannot enter the continuum
for physically realistic values of εcav. This finding seems to
contradict the claim for dissociation of W(CO)6 in a cavity as
recently measured and attributed to a Morse potential [37,38].
The observed penetration of the upper polariton into the
continuum results from the fact that the actual vibrational
potential of W(CO)6 is only approximately of Morse type.
Indeed, we show below that by adding tiny bumps or barriers
to the relevant atomic/molecular potential VS(x) (which itself
supports only the white continuum) one generates resonances.
These interact with the giant diffuse bound polariton of the
Morse potential and enable its penetration into the contin-
uum, forming a giant diffuse polaritonic resonance which is
extremely spatially delocalized.

Penetration of the giant diffuse polariton into the “non-
white” continuum. As the upper polariton approaches the
dissociation threshold, its wave function becomes extremely
spatially delocalized (it corresponds to a large de Broglie
wavelength). Such a weakly bound and spatially delocalized
polaritonic bound state is extremely sensitive to any small
perturbations included in the Hamiltonian. Such perturbations
may correspond, e.g., to the effects of the environment. Es-
sentially, any long-distance interaction of our system with
the environment (i.e., with the neighboring atoms/molecules)
introduces tiny bumps and barriers into the potential, and these
tiny effects enable the upper polariton to penetrate into the
continuum and form the polaritonic resonance. Another kind
of small perturbations may arise, e.g., due to intramolecular
interactions with other vibrational modes.

We note in passing that a strong impact of tiny bumps
and barriers on the properties of resonances has already
been demonstrated elsewhere, in a somewhat different context
(see Fig. 3 of Ref. [39]). Another insightful example is pro-
vided by Ref. [26] where a simple step potential is studied.
It is shown that, even in the case when the height of the step
is smaller by many orders of magnitude than the width of the
step, broad shape-type resonances are born (see Fig. 4.1 in
Ref. [26]).

To demonstrate explicitly our claim of penetration of the
giant diffuse polariton into the “nonwhite” continuum, we
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FIG. 2. The energies of the TLS polaritons and the numerically
exact eigenvalues of ĤS + perturbation. Here, ĤS corresponds to
Fig. 1, and the perturbation consists of two tiny potential barriers
which generate shape-type resonances of the atomic/molecular sys-
tem. The exact UP remains still lower in energy than the TLS UP,
much as in Fig. 1. On the other hand, contrary to Fig. 1, the exact
UP penetrates into the continuum, giving rise to a giant polaritonic
resonance, manifested here by a series of avoided crossings. Atomic
units are used throughout.

modify the Rosen-Morse potential by adding two small bar-
riers which have a negligible effect on the two bound states.
The modified Rosen-Morse potential is given explicitly by

Vmodified−RM(x) = VRM(x) + 0.1[e−(x+5)2/2 + e−(x−5)2/2]. (6)

Atomic units are again tacitly adopted here.
As we show, these two barriers do introduce resonance

structures into the continuum, in consistency with our discus-
sion pursued above. For the explicit details of the calculation,
see the Supplemental Material [29].

In Fig. 2, we plot the resulting eigenvalue spectrum of
ĤS + perturbation as a function of εcav. Contrary to Fig. 1, the
UP indeed does cross the dissociation threshold and penetrates
into the continuum. The giant polaritonic resonance is thus
born, as indicated by the series of avoided crossings appearing
in Fig. 2.

This result is confirmed also by another independent calcu-
lation, where the polaritonic resonance is computed explicitly
by means of the complex scaling method [26] (see Fig. 3).
The resonance state is represented here by a single eigen-
state of the complex scaled non-hermitian Hamiltonian of our
atomic/molecular system in a cavity, and its pertinent energy
eigenvalue is complex. The real part of this eigenvalue corre-
sponds to energy of the considered polaritonic resonance, and
the imaginary part to its width.

Summary. In this Letter, we have examined the impact of
the continuum of an atomic/molecular system on the upper
and lower polaritons due to the interaction of the material
system with the cavity modes. For potentials which do not
support resonances (such as Morse-like potentials), one finds,
in contrast to the expectations based on the two-level-system
(TLS) approximation, that the upper bound polariton (UP)
does not penetrate into the continuum and does not become
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FIG. 3. The UP resonance calculated by means of the complex
scaling method [26] for εcav = 0.15 for the same potential ĤS +
perturbation as in the calculation shown in Fig. 2. In this method, the
bound states stay on the real energy axis, the continuum states rotate
into the complex energy plane and align along a straight line in this
plane depending on the scaling, and the resonances are uncovered as
isolated points in this plane. The value of energy along the real axis
provides the energetic position of the resonance and the imaginary
part is half the width of the resonance. The plot shows the bound
LP, the rotated continuum states, and the uncovered UP resonance as
black dots. The red lines are drawn to guide the eye. Atomic units are
used throughout.

a finite lifetime resonance state if the interaction with the
continuum is taken into account. This statement holds more
generally for any number of bound-state approximations. It
is shown here that the continuum of the system, neglected
in the TLS model, always (not only for potentials that do
not support resonances) lowers the energies of the upper and
lower polaritons in comparison to their TLS values.

For potentials that intrinsically do not support resonances,
the UP approaches asymptotically the threshold energy for
ionization/dissociation, and becomes a giant diffuse bound
state. In such cases, ionization and/or dissociation takes place
only due to weak perturbations (e.g., due to the interaction of
the giant diffuse upper polariton with the neighboring atoms
or molecules) which introduce resonances into the “white”
continuum of the atomic/molecular Hamiltonian. This mech-
anism leads to the formation of giant polaritonic resonances
enabling ionization or dissociation induced by the cavity.
Such a giant polaritonic resonance (both its energy and its
width) has been calculated explicitly (see Fig. 3). Therefore
our present work gives a complete picture of what happens
to the upper polariton in a cavity as it penetrates into the
continuum and becomes a metastable polaritonic resonance
of a finite lifetime. We hope that these findings will stimulate
experiments and further theoretical studies.
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