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We study a system of N nonrelativistic particles which form a near-threshold resonance. Assuming no subset
of these particles can form a bound state, the resonance can only decay through an “explosion” into N particles.
We find that the decay width of the resonance scales as E“~>/? in the limit when the energy E of the resonance
goes to zero, where A is the ground-state energy of a system of N particles in a spherical harmonic trap with
unit frequency. The formula remains valid when some pairs of final particles have zero-energy s-wave resonance,
but the Efimov effect is not present. In the limit of large N, we show that the final particles follow a Maxwell-
Boltzmann distribution if they are bosons and a semicirclelike law if they are fermions. We expect our general
result to be applicable to various systems that exist in nature. In particular, we argue that metastable *He droplets
exist with the lifetime varying over many orders of magnitude ranging from a fraction of a nanosecond to values

greatly exceeding the age of the Universe.
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Introduction.—The existence of “Borromean” states—
bound states of three particles, of which no pair is capable
of forming a bound state—and their generalization to more
than three particles (the “Brunnian” states) are of great interest
in nuclear and atomic physics [1]. In particular, much effort
has been dedicated to the search for universal properties of
these systems. The limit of zero-range interaction, where the
Efimov effect is at play, has received the most attention; it has
been shown that three- and four-particle Efimov states have
universal properties [2,3]. For more than four particles, our
knowledge is much more limited (see Ref. [4] for a review
and further references).

In this Letter we are concerned not with many-particle
bound states, but with many-particle resonances [5]. We
address here a sharp question concerning the width of mul-
tiparticle resonances in the near-threshold regime: what is
the behavior of the width of a resonance when its energy
crosses zero, i.e., when the resonance is just about to become
a bound state (for example, when a parameter characterizing
the interaction is varied)? Our result shows that the asymptotic
behavior of the decay width is universal,

I(E)~ EA™2 (1)

where A is the ground-state energy of a system of N “sur-
rogate” particles in a spherical harmonic potential with unit
oscillator frequency for all particles, provided that A > %
The “surrogate” particles have the same properties as the
particles that make up the resonance (mass, spin, statistics).
The interaction between the surrogate particles is turned off,
unless a pair of the original particles have infinite s-wave
scattering length, in which case the corresponding surrogate
particles have zero-range, infinite scattering length (i.e., uni-
tarity) interaction [6]. The significance of A is that it is the
conformal dimension [7] of the lowest-dimensional operator

that creates the resonance from the vacuum.
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Our result can be applied to various physical contexts
where multiparticle resonances appear. For bosons interacting
through a potential of the Lennard-Jones type, in a certain
range of the de Boer parameter, bound clusters exist but only
when the number of particles exceeds a critical value [8,9].
Metastable droplets then should appear at particle numbers
slightly smaller than the critical value. Another example is
droplets of *He atoms. It is known that *He atoms form a
bound droplet only when there is a sufficient number of them.
The minimal number of atoms in a bound >He droplet, Ny, has
been estimated to be between 20 and 40 [10-14]. Metastable
*He droplets can then appear when the number of atoms
N is slightly smaller than Ny, e.g., for N = Ny — 1. We are
not aware of any previous estimate of the lifetimes of such
metastable nanodroplets of *He. Quantum droplets may exist
in weakly coupled bosonic mixtures [15]. In relativistic quan-
tum field theory, a scalar quantum field theory that supports
Q-balls [16,17] also allows for metastable Q-balls [18].

Previously known results.—Before presenting arguments
leading to Eq. (1), let us check that it is consistent with all
previously known results. For a two-body resonance with
angular momentum ¢, the energy of the surrogate system
in the spherical harmonic trap with unit frequency is 3 + ¢,
and Eq. (1) then reproduces the known result I' ~ E‘*1/2
for £ > 1. For three bosons with no resonant interaction, the
ground-state energy of the surrogate system is 2, giving rise
to the behavior I' ~ E? previously found in Ref. [19]. When
two of the three particles have infinite scattering length, the
resonance interaction reduces the ground-state energy of the
surrogate system by 1. Now Eq. (1) yields I'/E ~ E°, but
as we will see, a more careful analysis reveals that there is
a logarithmic modification which makes I'/E decrease loga-
rithmically as E — 0, as first found in Ref. [20].

New results.—We can now read out the behavior of I" for
some cases which have not been solved before. The most
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nontrivial predictions involve spin—% fermions at unitarity. For
a resonance formed from two spin-up and one spin-down
fermions of the same mass, with infinite s-wave scattering
length between two fermions of different spins (an approxi-
mation for neutrons), the ground state in a harmonic trap has
energy A =4.27272 for £ =1 and A = 4.66622 for £ =0
[21,22]. The width of a near-threshold resonance then behaves
as

El'773, =1,
I(E) ~ {E2.166 =0. 2

In the case of neutrons, this behavior should hold for the
trineutron resonance if such a resonance exists with energy
between E, = h*/mya* ~ 0.1 MeV and E,, = h*/m,rz ~ 5
MeV, where m, is the neutron mass, a and ry are the scat-
tering length and the effective range of the nn scattering,
respectively. If the energy of the resonance is less than E,,
the behavior of I' is dictated by the ground-state energy ?1f

three free particles in the harmonic potential, which is 5

for =1 and & for £=0. We find ' ~ E* and " ~ E*
for these two cases. A near-threshold three-neutron resonance
does not seem to exist in the real world [23,24], but in model
calculations it appears when a sufficiently strong three-body
attraction is added to the forces between neutrons [25]. These
behaviors are similar to the “un-nuclear” behavior of nuclear
reactions with the emission of a few neutrons [26].

For a four-neutron resonance (which appears if sufficiently
strong four-body attraction is added [27]) with energy in the
regime E, < E <« E,, the behavior of the width is controlled
by the energy of the ground state of four unitary fermions in
a spherical harmonic trap, which was numerically determined
tobe A &~ 5.0 [28-34],s0 ' ~ E>3. At energies much lower
than E, the behavior becomes E11/2.

Weakly coupled bosonic droplets.—To gain intuition on the
problem, let us first consider metastable droplets of bosons
with small negative scattering length and effective three-body
repulsion [9,35,36]. The Hamiltonian of the model reads

- far(E e )
H[w]—fdx< o Eyr s Zw). o)

(Here we set i = m = 1.) When G/g* > 1, the droplets con-
tain a large number of bosons (which are the nonrelativistic
version of (Q-balls) and can be found by minimizing the
functional H[y] at a fixed number of particles. Solving the
problem numerically, we find that H has a local minimum
with positive energy for Ny < N < Ny where

Gl/2 Gl/2

The parametric dependence of Ny on g and G has been previ-
ously predicted in Ref. [9]. One can visualize the metastable
droplet as the local minimum of the function that gives the
energy as a function of the size of the droplet (Fig. 1).

The decay of a metastable droplet is described by an in-
stanton, i.e., a solution to the equation of motion in Euclidean
time. The instanton can be found mostly analytically for N
near Ny or Ny. For N = Nj, there is a flat direction in the
functional space of the droplet density profiles. For N > Nj,
moving along this direction towards larger droplet size R

—_—

. . . | . .
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FIG. 1. The droplet’s energy as a function of its size R for three
values of N. The upper curve corresponds to N = Nj, the middle
curve to N = N;(1 + €) where 0 < € < 1, and the lowest curve to
N = Ny(1 —¢€).

one encounters a potential barrier, as shown in Fig. 1. For
small N — N;, the width AR of the barrier shrinks as AR ~
(N — N))'/? and vanishes at N = N;. In this regime one can
calculate the tunneling amplitude using the WKB approxima-
tion for the effective action in the collective coordinate R with
the potential U(R) ~ N[AR(R — Req)* — (R — Req)*] which
has a metastable minimum at R = R.q and a point of exit from
the “tunnel” at R = Req + AR as shown in Fig. 1. The imag-
inary action for classically forbidden tunneling is given by
Sy~ fé‘:ﬁARdR«/NU(R) ~ N(AR)’/?, resulting in the expo-

nentially suppressed decay rate I' ~ w+/S; exp(—2S;), where
w ~ +/ AR is the frequency of the harmonic motion near the
local minimum of U (R), or

= CZg<N;71 )7/8 exp |:—61N1 (N;IINI )5/4], &)}

where ¢; ~ 1.58 and ¢, =~ 0.570 [37].

At the other end of the window of metastability, near N =
Ny, the system has to tunnel in Euclidean time to a droplet
of a very large size before it can expand classically in real
time. The energy of a cloud of N bosons with size R is E ~
N/ (mR?), so coming out from under the barrier, the cloud of
particles has size

Riax ~ N 6

max mE ’ ( )

which diverges as E — 0. In contrast, the size of the system
at the beginning of the tunneling process, R, remains finite
as E — 0 (see Fig. 1). Most of the tunneling thus occurs
in the regime where the interparticle interaction can be ne-
glected. Since the potential energy behaves like 1/R?, the
WKB exponent is proportional to In(Rpax/Rmin)- To find the
exact numerical coefficient, we need to solve the Euclidean
equations of motion. Writing ¥ = fe', in Euclidean time

Tt = it and ¢ = —i0, the Euclidean action becomes
2 v 2
Sg = /drdx(—fza,<p — f?(v(p)2 + %) (7)

One can check that the following configuration is a so-
lution to the Euclidean field equations with £ — 0: f =
(2 )"34/N exp(—¢) and ¢ = r?/(41) + (3/4) In 7. This so-
lution corresponds to a “Hubble expansion,” V¢ =r/(271).
The solution applies in the intermediate regime when the size
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of the droplet T!/? is larger than the original size, but much
smaller than the droplet size when it exits from under the
barrier. Evaluating the Euclidean action of the solution, we
find

Sg = N In R‘“a". (8)
2 Rmin
The decay rate is ' ~ e 2% ~ RV Since Ryax ~ E~1/2,
we find that I' ~ E3V/2_ At large N, where the semiclassical
instanton calculation applies, the resonance is narrow, i.e.,
' <KE.

Field theory approach.—The above approach is not appli-
cable when the number of particles in the droplet is small
or when they are fermions. In these cases one can still find
the behavior of the width of the resonance when its energy
is small using a low-energy effective field theory. Let ¥ be
the field describing the resonance, and ¥, are the particles
that constitute this resonance (which may belong to different
species a). The effective field theory describing the system is

2

v
L=V 4 (ia, + —)¢+L[¢u] + ol + W
2m\p

+g(0"W + W'0), 9)

where L[y,] is the Lagrangian of nonrelativistic conformal
field theory (NRCFT) [7] of the i particles (the simplest
version of a NRCFT is a free field theory), O is an (composite)
operator with conformal dimension A in the theory described
by L[y,], and g and p( are some parameters. The simplest
example of O is O = ¢V in the case where 1 is a boson field,
where A = %N . The coupling can be considered pointlike if
the excitation energy of the droplet is larger than the typical
energy of the final particles, which is the case when the res-
onance is near threshold. The field theory is assumed to have
an2 ultraviolet cutoff at the momentum scale A (energy scale
A7),
The self-energy of W obtained by integrating out ¥ is

X(w, q) = —ig’ (00"), 4. (10)

Galilean invariance implies that ¥ is a function of £ = w —
q2 /(2my). The correlator of O, in general, contains ultraviolet
divergences which are regularized by the cutoff A. These
ultraviolet divergences contribute to the real (but not the imag-
inary) part of X.

We expand X in powers of E, keeping only the first two
terms in the real part and the leading term in the imaginary
part. When A > % the first two terms in the real part have
power-law divergences, and the result reads

Y = —&laoA** 7 + a1 A**TTE + ibgEAT?0(E)],  (11)

where ag, a;, and by are some numbers. The existence of
a low-energy resonance means that p = o + g2ag A% is
fine-tuned to an unnaturally small value; the a; term leads to a
wave-function renormalization for ¥: Z7! = 1 4 g2a; A** 7.
The propagator of W is now

(W) ~ [Z7'E + u 4+ igboEXPOE) . (12)

When p is small, the propagator’s pole is located at E, =
ReE, + iImE,, where Re E, = —Zu and

ImE, = —g*byZ(Re E, )75/, (13)

which goes to zero faster than Re E for A > % For example,
for three bosons in an s-wave resonance, A = g and ImE ~
(Re E)?, as found in Ref. [19] using a different method.
Consider now the case A = 7/2. This case corresponds
to two particles in s-wave resonance and a third particle of
a different type that does not interact resonantly with any of
the first two. The resonant pair is described by a “dimer” field
with dimension 2 [7], and the third particle is described by
a free field of dimension % so the total dimension of O is

2+ % = % In this case,

2

(o, q) = —[aoA2 +aiE In III\E_I +ira\E O(E)}, (14)
and redoing the analysis one sees that the ratio between the
imaginary and real parts of the position of the pole decreases
logarithmically with the energy. This was previously found in
Ref. [20].

We now rederive Eq. (1) using a different method, which
allows us to gain additional intuition for the behavior and also
gives us additional information about the decay. In particular,
for aresonance of N > 1 particles we will find the momentum
distribution of the final particles.

Decay as tunneling through a centrifugal barrier—The
suppression of the decay rate as E — 0 can be interpreted as
the result of tunneling under a barrier. Instead of the position
of N particles one can introduce the center-of-mass coordi-
nate, one hyperradius, and N — 2 hyperangles. Factoring out
the center-of-mass motion, the Schrédinger equation with no
interaction can then be written as

Py 3N—43y Aoy
W -0, 15
TR RTR (15

where Aq is the Laplacian operator in hyperangles. For
bosons the lowest eigenvalue of —Agq is 0, which corre-
sponds to the solution ¥ ~ R™3N*35. The decay rate can
be obtained by evaluating the probability flux at R = Rpx:
RN=4y* 3y ~ R™ON=3_ For Rpa ~ E~'/2, this implies
I ~ ECN=9/238].

For fermions or particles interacting via an s-wave reso-
nance in general, the picture of the decay as tunneling under
a 1/R? barrier is still valid [37]. From the mapping between
the dimension of the primary operator and the energy in a har-
monic trap, the coefficient of the 1/R? potential is determined
to be (A — 2)(A — 3)/2. It has been computed in the context
of three-body scattering in Refs. [39,40]. The same discussion
as in the bosonic case then gives the decay rate scaling as
E~75/2 in agreement with the field theory approach. One can
also make use of the SO(2,1) symmetry of NRCFT to arrive
at the same conclusion.

Momentum distribution of final particles.—We now ask the
following question: What is the momentum distribution of the
final decay products of a metastable droplet of N particles,
where N > 1?

For bosons, this distribution can be derived from the
following argument: The amplitude of the decay of one res-
onance into N bosons W — N should be independent of
the momenta of final particles when the latter are small. This
implies that the distribution of final particles over momentum
is the same as that in a microcanonical ensemble of N bosons
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where the energy is fixed to the energy of the resonance,
E, and the momentum is fixed to 0. In the limit of a large
number of particles, the ensemble is equivalent to the canon-
ical ensemble; hence, the final particles should follow the
Maxwell-Boltzmann distribution,

dN 2
(-2, (16)
dp 2mTeg

with the effective temperature determined by the total en-
ergy, i.e., Ter = %E /N. The same result follows from the
Gaussian shape of the droplet’s wave function with width
Rmax = +/3N/AE at the end of the tunneling described by the
Euclidean action in Eq. (7).

Now consider a resonance consisting of N fermions. For
simplicity, let us consider spinless fermions. The vertex de-
scribing the decay of the resonance is now

Lie = gV + Y0y, v vayddy---. (17

The probability distribution function of the particles over their
momenta is then

Pi(py) Pi(py) Pi(py) 2
PP1sPrs s D) ™~ PZ'('P.l) PZ.(.I"z) Pz‘(.P.N)
Py(p1)  Pn(p2) Pv(py)

p2
EEAEE

where Pi(p) = 1, P»(p) = px, P3(p) = p,, ... are monomials
of p, each corresponding to a factor in the vertex (17). In
the limit of large N we can replace the § functions by the
exponential factor exp[—f8)_, p2/2m]. Tt can be seen that
the probability distribution function (18) is the square of the
wave function of a ground state of N fermions in a har-
monic potential with a suitable frequency. The distribution of
final particles over momentum can be obtained through the
Thomas-Fermi approximation of particles in a harmonic trap.
The result is (the formula also works for spin-% fermions)

dN
25~ (o - (19)

where p% = 16mE/(3N).

Lifetime of metastable *He droplets.—According to Monte
Carlo calculations, a cluster of N *He atoms becomes bound
at some N = N, between 20 and 40 [10-14]. Thus, there must
be arange of N, Ny < N < Ny, where the droplet has positive
energy and is metastable. For N slightly smaller than Ny, the
energy of the droplet is small, so its lifetime must be large.
For example, for N = 20 the energy per atom in the droplet
was estimated to be about 0.2 K [10-12], much smaller than
the binding energy per particle of infinite *He liquid (2.4 K).
For N just below N, the energy of the droplet is even smaller,
typically less than 1 K for the whole droplet.

To estimate the lifetime of a metastable *He droplet, we
note that the energy of noninteracting N spin-% particles in a
harmonic trap of unit frequency is

A =60+ 3(N —20) (20)

for 20 < N < 40. Taking Ny to be the smallest number
quoted in the literature, Ny = 29, we consider the metastable
droplet with Ny —1 =28 atoms, A =96. This leads to
a huge power in the dependence of the width on the
energy: I' ~ (E/Ey)””.

Ey can be estimated to be the kinetic energy of a free
Fermi gas of N particles, confined by a harmonic potential
with frequency chosen so that the rms size of that cloud of
particles is equal to the rms size of the metastable droplet.
In the Thomas-Fermi approximation, the kinetic energy of a
cloud of N particles in a harmonic potential is related to its
rms size (r?)!/? by

38/3 N5/3
Ey= . Q1)
32 m(r?)

For N =28 and (r?)!/2 ~ 8 A [10], we find Ey ~ 40 K.
For E ~ 1 K, the suppression factor (E/Ey)**> becomes
107130, Even with the large uncertainty in the estimate, it
is obvious a *He droplet containing one or a few parti-
cles less than the smallest stable droplet should live longer
than the age of the Universe. These droplets, though having
positive energy (relative to the free atoms), are essentially
stable.

As the number of atoms in the droplet decreases, the
lifetime becomes shorter and, at some value, must become
comparable to i/K ~ 107! s. By varying the number of par-
ticles, the lifetime of the *He droplet can vary from a fraction
of a nanosecond to values much larger than the age of the
Universe. Unfortunately at this moment we have no method
that can tell us reliably the lifetime of a *He droplet with
a given N, nor can we say for which numbers of atoms the
lifetime of the droplet may be in the experimentally interesting
range.

Conclusion.—In this Letter we have shown that the
near-threshold N-body resonances have certain universal
properties. The lifetime of the resonance scales with energy
with a universal exponent. The momentum distribution of the
final decay products is also universal.

We have shown that, in nature, metastable He droplets
exist in a range of sizes. It would be useful to quantitatively
determine that range and the lifetime of droplets with size
therein. While the energetics of small *He droplets can be
determined using various numerical methods, the study of
the lifetime will likely require the development of new ap-
proaches. We hope that metastable droplets of ultracold atoms
that decay into individual atoms can also be created and stud-
ied in the laboratory.
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