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Certified random-number generation from quantum steering
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The use of simple quantum processes promises to provide numbers that no physical observer could pre-
dict, but in practice, unwanted noise and imperfect devices can compromise fundamental randomness and
protocol security. The ultimate random number generators take advantage of quantum nonlocality to certify
unpredictability—including to an adversary—even in the absence of trust in devices. We demonstrate a generator
of public or private randomness based on the quantum steering task. We use polarization-entangled photon pairs
to certify and extract randomness in a one-sided device-independent framework, with the detection loophole
closed. Our work enables nonlocality-based certified randomness generation in environmental regimes where
fully-device-independent protocols are not feasible.

DOI: 10.1103/PhysRevA.106.L050401

I. INTRODUCTION

Randomness is an essential resource in many applica-
tions from simulation to cryptography. For applications where
one cares about security, certified private randomness is
required—randomness that is guaranteed to not be predictable
to an adversary or physical observer [1,2]. Purportedly ran-
dom numbers can be tested for uniformity and the presence
of predictable patterns, but such tests can be satisfied by some
pseudorandom number generators [1,3]. As these statistical
tests can be passed by sets of numbers of deterministic origin,
one cannot rely on them to assert unpredictability. Instead, one
must certify randomness in the generation process itself [4].

Quantum phenomena display intrinsic randomness and can
thus serve as quantum random number generators (QRNG).
Standard QRNG [5–8] operates in a trusted-device scenario
that relies on assumptions about, and accurate modeling of,
physical devices. Imperfections are susceptible to exploitation
by adversaries [1,2,9–11], as they can carry side information.
Classical side information comes from sources like thermal
and electronic noise, which may be of a malicious nature
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(known to, or controlled by, an adversary), and quantum side
information arises from correlation with another quantum
system. Hardware failures in devices could also compromise
the output [4], and noise will inevitably be introduced by
experimental imperfections [3]. Hence, certification and post-
processing are necessary to acquire private randomness that
is independent of side information [4,12], which can be ac-
counted for within the strategies of an adversary.

Certified random numbers are produced from a process
that any physical observer cannot perfectly predict, under
a reasonable set of assumptions—the fewer and weaker
the assumptions, the stronger the security. To minimize
device-related assumptions as much as experimentally pos-
sible, randomness can be certified by device-independent
QRNG (DI-QRNG) protocols in a Bell test (or instrumental
[3,13]) scenario [1,4,9], offering the highest possible secu-
rity when loopholes are closed [11]. The realization of such
protocols has been achieved only recently [2,9,14,15], with
extreme security following the first strong-loophole-free Bell
tests [16–18]. Currently, work is still progressing towards
reaching the rates desired for commercial applications with
loopholes closed [10,19,20]. DI-QRNG is technically de-
manding, as very high detection efficiencies and low noise
are necessary to certify randomness with closed loopholes,
which poses a challenge to achieving high rates. There-
fore, many partially-device-independent protocols, exploiting
the trade-off between security and ease of implementation,
have been developed [4,11,21–23], including measurement-
device-independent [24,25] and source-independent [12,26–
29] protocols.

Here we demonstrate an experimental implementation of a
QRNG protocol, based on the quantum steering task [30,31]
with polarization-entangled photon pairs, with the detection
loophole closed, and extract certified random numbers with
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a high security against individual attacks of a quantum ad-
versary. Quantum steering has been proposed as a method
to realize one-sided device-independent (1SDI) QRNG [21]
and 1SDI quantum key distribution (QKD) [32] (followed by
the experimental realizations of 1SDI QKD in a continuous
variable scenario [33,34]), which both certify randomness.
Among the family of partially DI protocols, steering-based
ones offer improved security over trusted-device and other
partially DI protocols by assuming trust in only one measure-
ment device (Bob). Due to steering having trust assumptions
different from a Bell inequality, states needed for DI-QRNG
are steerable, but not all steerable states violate a Bell in-
equality. Steering provides greater noise tolerance and is more
robust to loss, allowing randomness to be certified at lower
efficiencies than DI-QRNG [21], although the latter has not
yet been investigated in a photonic experiment [35].

II. QUANTUM STEERING

First, we introduce the quantum steering scenario. Con-
sider two parties named Alice and Bob, who receive a bipartite
state ρAB from some untrusted source. One-sided device inde-
pendence comes from one party (Bob, say) being trusted and
the other, Alice, being untrusted. Her measurement device is
treated as a black box with classical inputs x ∈ {1, . . . ,M}
for M measurement settings, and classical outcomes a ∈
{0, 1, Ø}, where Ø is the null outcome to account for exper-
imental losses. A trusted Bob is not malicious and has full
knowledge of the inner workings of his measurement device.
Bob accepts quantum mechanics to be valid and can perform
quantum state tomography to construct an assemblage—a
set of unnormalized quantum states conditional on Alice’s
settings and outcomes [31]. Properties of the assemblage de-
termine whether quantum steering pertains. Specifically, in
the assemblage picture, quantum steering can be tested via
a semidefinite program (SDP) [31,36] (see Supplemental Ma-
terials [37]), an approach that proves useful in randomness
certification. It is also possible to construct steering protocols
where the need to trust Bob is greatly reduced by using quan-
tum instructions [38], although trust in quantum mechanics is
still required.

III. RANDOMNESS CERTIFICATION

To certify the local randomness of Alice’s outcomes, an
adversarial situation is considered where in a given trial,
an eavesdropper (Eve) attempts to predict Alice’s outcome
(Fig. 1). We assume that Eve is restricted to individual attacks,
where trials are independent and identically distributed with
respect to her strategy [21], and Eve cannot make collective
attacks or coherent attacks. It is therefore assumed that the
untrusted devices lack quantum memory, or the memory’s
coherence time is not sufficient to perform multitrial attacks.

If Eve’s guessing probability Pg(x∗)—where x∗ is Alice’s
setting in a trial—is less than unity, she cannot perfectly pre-
dict the outcome of Alice, and some randomness is certified
as quantified by the min-entropy

Hmin = − log2[Pg(x∗)]. (1)

FIG. 1. Adversarial scenario for randomness certification. The
eavesdropper, Eve, is assumed to control the source. It is assumed
that, while in principle the source distributes bipartite states to Alice
and Bob, she may in fact distribute a tripartite state such that ρAB =
TrEρABE. She may perform a measurement Me on her subsystem,
acquiring the outcome e which is her guess for Alice’s outcome, and
both e and Me are unknown to Bob. Alice selects a setting x and
acquires outcome a from the measurement Ma|x . Bob performs quan-
tum state tomography and obtains an assemblage σa|x of conditional
states.

The upper bound on the certified randomness is found by
optimizing Eve’s guessing strategy to maximize Pg(x∗). The
source of bipartite states, being untrusted, may be in Eve’s
possession, so we assume the states ρAB are correlated with
another quantum system held by Eve, as in Fig. 1. Since Eve’s
outcome is unknown, Bob’s observed assemblage theoreti-
cally is of the form

σa|x =
∑

e

σ e
a|x =

∑

e

TrAE[(Ma|x ⊗ 1B ⊗ Me)ρABE]. (2)

Eve’s strategy is accounted for in Bob’s assemblage, and so
the optimization is done with respect to {σ e

a|x} by solving a
semidefinite program (SDP) [21,36]:

max
{σ e

a|x}a,x,e

Pg(x∗) =
∑

e

Tr
(
σ e

a=e|x∗
)
,

s.t.
∑

e

σ e
a|x = σa|x ∀a, x,

∑

a

σ e
a|x =

∑

a

σ e
a|x′ ∀e, x �= x′,

σ e
a|x � 0 ∀a, x, e. (3)

The first constraint ensures compatibility with Bob’s assem-
blage. The second enforces the nonsignaling condition, that
is, to disallow measurement settings at one party to influence
outcomes at another. The third is a positive semidefinite con-
straint to ensure {σ e

a|x} consists of valid quantum states [21].
As in the Bell scenario (see Ref. [39] for loopholes in Bell

tests), certain assumptions open loopholes which would allow
for nonlocality to be falsely verified while permitting a local
causal explanation [40]. The detection loophole appears under
the fair sampling assumption that the statistics of the detected
sample accurately represent the total sample. However, loss
in the untrusted device may constitute a cheating strategy,
therefore a certain heralding efficiency (the probability of one
party detecting given that the other party detects) is demanded
of Alice to close this loophole. There is no such requirement
upon Bob, unlike the Bell scenario.
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FIG. 2. Experimental setup: (a) The source of bipartite states. A continuous wave 775 nm pump from a Ti:sapphire laser is focused in
two locations inside a periodically poled KTiOPO4 (PPKTP) crystal, creating telecom photons in pairs by type-II spontaneous parametric
down-conversion (SPDC). The process occurs within a Mach-Zehnder interferometer comprised of beam displacers (BDs) and a series of
cut half waveplates (HWPs) to produce entangled states 1√

2
(|00〉 + e−iφ |11〉) by interfering the two SDPC events [41]. The angles of the

HWPs relative to their optical axis are annotated. The photon pairs are coupled into single-mode fiber (SMF) and sent to the measurement
devices of the two parties. Fiber polarization controllers (FPCs) are used to correct unwanted in-fiber transformations of the qubits, and to
implement local unitary rotations to prepare each of the four canonical Bell states. (b) Alice’s and Bob’s measurement devices. Both Alice
and Bob have the same physical setup; the combination of a quarter waveplate (QWP), HWP, and polarizing beam splitter (PBS) is used to
measure the polarization state of the photons in different settings. Both output modes of the PBS are coupled into SMF and finally detected by
superconducting nanowire single-photon detectors (SNSPDs) [42]. Detection events are recorded by trusted devices of the user (time taggers,
classical computers).

IV. QRNG PROTOCOL

Our certified quantum random number generator is a two-
stage protocol: entropy accumulation followed by randomness
extraction. Our protocol involves the parties Eve (source), Al-
ice, Bob, and another (necessarily trusted) party—sometimes
called Victor the verifier—being the user on Bob’s side who
has access to the data recording and processing devices. In
the first stage we acquire two sets of experimental data: that
needed for the certification step, and another set which pro-
vides many weakly random bits. To do this, many trials of
the protocol are performed. Each is structured as in Fig. 1,
where a source distributes a state, Alice and Bob perform
measurements, and the outcomes are recorded. From the ex-
perimental certification data, an assemblage is determined and
used with the SDP of Eq. (3) to obtain the min-entropy Hmin

that quantifies the randomness certified in the weakly random
string. The protocol passes (i.e., is able to generate certified
randomness) if Hmin is nonzero and the number of extractable
bits is m � 1. Conditional on passing, we or Victor (the user)
apply a randomness extractor, which is an algorithm that pro-
duces random numbers from the raw string. These random bits
are certified, which means that an adversary cannot predict
them provided they are kept private after generation and the
other assumptions of our protocol hold.

V. EXPERIMENTAL IMPLEMENTATION

The experimental realization of the protocol—which
uses photonic polarization qubits—is shown in Fig. 2.
Our source prepares bipartite entangled states of
telecommunications-wavelength photons created by SPDC.
A quantum state fidelity of F = 0.9933 ± 0.0005 with

|�−〉 = (|01〉 − |10〉)/
√

2 was recorded for one data set;
other data sets corresponded to generated states with
comparable singlet-state fidelities. The photon pairs are
coupled into optical fiber and sent to the measurement
devices of the two parties [Fig. 2(b)].

In the implementation of the protocol, a certification data
acquisition (later used to find Hmin) is performed, followed
by generation data acquisition; these steps make up the accu-
mulation stage. Bob’s device allows him to measure in three
complementary bases and use the data to perform quantum
state tomography to determine his local states for each of
the M = 2 settings (X, Z) and outcomes a ∈ {0, 1, Ø} of
Alice. The closest physical assemblage for Bob’s data is ob-
tained with a maximum likelihood reconstruction to ensure
the nonsignaling condition [see Eq. (3) conditions] is sat-
isfied even in the presence of statistical noise arising from
finite Poissonian data. The semidefinite program Eq. (3) is
solved to certify the amount of randomness present in the
weakly random data. In Fig. 3(a), we compare our certifica-
tion results with the theoretical bounds for 1SDI [21] and DI
randomness certification methods. The corresponding steer-
ing inequality violations [37] are shown in Fig. 3(b). We
obtained the highest min-entropy of Hmin = 0.042 ± 0.003,
at a heralding efficiency of ηAlice = 0.543 ± 0.001. Our re-
sults demonstrate randomness certification below the lowest
heralding efficiency bounds of DI protocols at 2/3 [17],
showing the advantage of the one-sided scheme to add ex-
perimental robustness.

During generation data acquisition trials, detection is time
tagged to record the exact time of a detection event and the
detector channel. In a run of the protocol there are about 100
iterations in the generation data acquisition, and we consume
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FIG. 3. Randomness certification: (a) Certified min-entropy Hmin against the heralding efficiency η of Alice for multiple runs of the
protocol. The black line is the theoretical 1SDI bound for a maximally entangled two-qubit Bell state, with a heralding efficiency threshold
of 0.5. The purple line is for the Werner state 0.99|�−〉〈�−| + 0.011/4. The dashed line is the lowest theoretical device-independent
threshold of 2

3 . (b) Steering parameter β vs heralding efficiency of Alice for the three data sets, showing a violation of the steering inequality
β := Tr

∑
a,x Fa|xσa|x � 0 [37].

8 bits of randomness per iteration that are obtained from a
trusted-device QRNG beacon [5,37,43]. The raw time-tag data
is postprocessed; thanks to our trust in Bob, we can postselect
the successful trials as coincidence events, where the parties
detect a pair of photons within a 3 ns window. We convert
Alice’s outcomes into a string of bits by assigning detection
channels to binary values, and we exclude the null outcomes
(which does not compromise the security as long as the cer-
tification step, which takes into account null events, has been
passed). We note that we do not need to assume that Alice’s
measurements are performed accurately or even at all, as long
as her “measurement” strategy is the same during certification
and generation trials. Alice and Eve should be unaware of the
type of trial ahead of time, otherwise they may adapt their
strategy accordingly to cheat in generation trials. To prevent
this, Bob can decide and inform Alice afterwards which trials
contribute to certification. The trials can also be chosen ahead
of time with trusted coordination, such as spot-checking in
DI-QRNG [20].

In the randomness extraction stage, weakly random data is
postprocessed by a classical algorithm to acquire certified ran-
dom bits. We use an implementation of Trevisan’s extractor
[3,44]. This algorithm is a quantum-proof strong randomness
extractor, meaning that it is secure against both classical and
quantum side information, and that the seed randomness is
not consumed and can be reused [45]. Our extractor program
is modified from the code of Ref. [3], which is based on the
construction devised in Ref. [45]. In the case that the proto-
col passes the certification test, the extractor takes as input
the uniform seed, min-entropy, error parameter ε, and weak
source of randomness, and outputs a string of certified random
bits. Note that the extractor is independent of the general
scheme of our protocol, so any suitable quantum-proof strong
extractor may be used.

From our data sets we extracted certified random bits us-
ing seed bits obtained from the trusted-device QRNG beacon
[5,43]. From the largest data set (Hmin = 0.030, η = 0.535)

we could have, in principle, extracted 111,035 certified ran-
dom bits uniform to within 2−64, with 8,126,464 seed bits.
From the other two data sets in principle we could extract
7018 (Hmin = 0.042) and 8073 (Hmin = 0.030, η = 0.537)
certified random bits uniform to within 2−64, with 4,456,448
and 4,718,592 seed bits, respectively. This extractor has low
entropy loss versus error and performs well for low min-
entropies. However, it requires a large seed, so the full com-
putation was not performed for ε = 2−64. Using Trevisan’s
extractor with large data sets also becomes computationally
demanding [15,20,45] and impractical for low-latency RNG.
A solution is to perform extraction with smaller sets of weakly
random data to produce the output sequence in blocks [19]
with greatly reduced runtime and seed requirement due to the
strong extractor property [46]. By processing 20 kb at a time,
we extracted 6489 certified random bits uniform to within
10−6 generated in 754-bit blocks, with 180,224 seed bits,
from the Hmin = 0.042 data set, and 7131 certified random
bits uniform to within 10−6 generated in 514-bit blocks, with
147,456 seed bits, from the Hmin = 0.030 (η = 0.537) data
set. From the Hmin = 0.030 (η = 0.535) data set we extracted
a total of 94981 certified random bits uniform to within 10−6

generated in 514-bit blocks, using 147,456 seed bits.
For each data acquisition run we consumed 800 random

bits, and thus achieved randomness expansion. This high-
lights another advantage of the steering scheme, in which
the per-trial violation [2] can be significant, even though the
generation of entangled pairs from the source is random and
has low probability (∼0.1%) per pulse. This is because Bob is
a trusted party, and thus a valid trial is defined whenever he re-
ceives a detection, regardless of the efficiency of his detection.
This contrasts with DI-QRNG with SPDC, where, due to the
large vacuum component in the two-mode state, the per-trial
violation is low. Such an advantage is especially beneficial in
a protocol implementation that closes the freedom of choice
loophole. There, additional randomness is also consumed in
each trial in order to choose a measurement instruction sent to
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untrusted parties. Significantly higher per-trial violation of a
steering test leads to a much lower randomness consumption,
making randomness expansion easier to achieve than with a
Bell test [20,37].

VI. CONCLUSIONS

We demonstrated a steering-based one-sided device-
independent random number generator which produces cer-
tified random bits with the detection loophole closed. We
extract the random bits using a quantum-proof strong ex-
tractor, thereby demonstrating a full implementation of a
steering-based QRNG protocol. With heralding efficiencies
for Alice above the steering threshold and below the threshold
for device-independent methods, we performed randomness
certification in an experimental regime where no randomness
can be certified by DI-QRNG.

Certified QRNGs with levels of device independence
will bring improved security to public randomness sources
and private randomness for cryptographic applications. Here
we have demonstrated a certified QRNG that, by closing
the locality loophole and strengthening freedom of choice,

can be extended to a strong-loophole-free one-sided device-
independent QRNG, and a viable randomness beacon. Further
security improvements can be achieved by adopting a secu-
rity analysis similar to the one in Ref. [32], which allows
for certification against coherent attacks. With this security
framework, the heralding efficiency threshold for Alice will
increase, but the protocol will retain its other advantages over
DI approaches, including higher per-trial inequality violation,
lower randomness consumption, and ability to use Bob’s de-
tection events to herald successful entanglement distribution
trials. In the preparation of this work, we became aware of a
related experiment on the generation of steering-based certi-
fied randomness with entangled squeezed vacuum states and
homodyne measurement [47].
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