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Dynamics of multiphoton scattering in a two-level mixer

A. V. Vasenin ,1,2,* A. Yu. Dmitriev ,2,† S. V. Kadyrmetov ,2 A. N. Bolgar ,2 and O. V. Astafiev 1,2,3

1Skolkovo Institute of Science and Technology, Nobel Street 3, 143026 Moscow, Russia
2Laboratory of Artificial Quantum Systems, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

3Physics Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

(Received 24 June 2022; accepted 28 September 2022; published 21 October 2022)

A superconducting qubit in a waveguide behaves as a pointlike nonlinear element. If irradiated with nearly
resonant microwave pulses, the qubit undergoes quantum evolution and generates coherent fields at sideband
frequencies due to elastic scattering. This effect is called quantum wave mixing (QWM), and the number of
emerged side components depends on the number of interacting photons. By driving a superconducting qubit
with short pulses with alternating carrier frequencies, we control the maximal number of photons simultaneously
interacting with a two-level system by varying the number and duration of applied pulses. Increasing the number
of pulses results in consecutive growth of the order of nonlinearity, which manifests in additional coherent side
peaks appearing in the spectrum of scattered radiation while the whole spectrum maintains its asymmetry.
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The scattering of electromagnetic waves on a single
atom in an open space is a cornerstone problem in quan-
tum optics [1–3]. A two-level system driven by resonant
monochromatic tone is a great playground to create and study
nontrivial light with sophisticated properties. In addition to the
predicted [4,5] and later observed [6–8] intensity-dependent
Rayleigh scattering and three-peaked inelastic spectrum,
the scattered field exhibits direction- and power-dependent
bunching [9] and antibunching [10–13], squeezing [14–17],
sub-Poissonian photon statistics [18] and spectral correla-
tions [19,20], and quantum amplification of probe signal [21].
Therefore, various aspects of resonance fluorescence are well
studied, finding its applications in microwave photonics and
quantum information processing platforms based on propa-
gating fields. However, altering the drive to a pair of tones
(so-called bichromatic drive) complicates the stationary and
dynamic characterization of the field emitted by a dressed
two-level system.

The pioneering experiments with atomic vapors [22], quan-
tum dots [23], and superconducting qubits [24] revealed that
an inelastic fluorescence spectrum under the bichromatic drive
becomes qualitatively different from the well-known Mollow
triplet for the monochromatic drive. In the case of sym-
metrically detuned drives (that is, located at ω± = ωd ± δω,
where ωd is central frequency of drives, typically equal to
qubit frequency ωq, and δω is arbitrary chosen detuning) with
equal Rabi amplitudes �− = �+ = �, the spectrum consists
of many peaks. For any integer n there is a peak at ω±n =
ωd ± nδω, and these frequencies do not depend on the � of
each drive but their intensities do. This effect was explained
with the direct Bloch equation solutions [25,26], and in some
works with the use of the dressed atom picture [27,28]. The
elaborated theory gives correct peak positions and heights.
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However, the elastic components predicted [27,29] to ap-
pear at ω±(2p+1) for all integers p were hardly observed in
traditional quantum optics, partially because coherent field
measurements are rather cumbersome in optics of visible
range [30] when compared with, for example, photocount-
ing measurements. The only observation of elastic scattering
known to us was made with a high-finesse Fabry-Perot cav-
ity [23]. However, the method was not phase-sensitive and
intensities of elastic components for different parameters were
not analyzed. In contrast, the elastic field components are
straightforwardly observed in microwave scattering by a sin-
gle superconducting qubit in a waveguide [8,31,32]. Their
emergence is analogous to the coherent optical wave mixing
in nonlinear media, although the medium consists of the only
two-level system. Thereby, the observed mixing is called the
quantum wave mixing (QWM) [33–35], and it is efficient in
the regime δω � �1 and �± � �1. Moreover, it was pro-
posed [34] and theoretically confirmed [36] that QWM could
reveal photon statistics of nonclassical light in one of the
modes. It could become a handy tool for microwave quantum
optics: The absence of reliable photon detectors of sufficiently
wide bandwidth and high efficiency is significant restriction
for microwave waveguide photonics.

In the current work, we measure a complete picture of the
QWM spectrum due to elastic scattering of microwave pulses
when the qubit undergoes coherent dynamics. To achieve that,
the qubit is driven by a series of N non-overlapping pulses
with alternating frequencies ω− and ω+, with N from 2 to
6. In the elastic spectrum, we observe solely 2N − 1 com-
ponents which depend on the maximal number of interacting
photons. Particularly, we extend the result of Ref. [33], where
two pulses (N = 2) represented maximum three photon in-
teraction and, therefore, a quantized spectrum consisted of
three peaks only. We also measure the maps of complex am-
plitudes depending on the durations of blue- and redshifted
pulses and fit them with analytical calculations, finding ex-
cellent agreement with the measurements. In addition, we
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numerically find the evolution and characterize the depen-
dence of the side peaks for the specific case of three partially
overlapping pulses. Our results demonstrate a high degree of
control of nonlinear light scattering on a single atom in the
time domain. They will serve as a basis for the development of
nonlinear quantum electronics with superconducting systems
and for studying its transient properties under strong drive.

For the time-domain multiphoton QWM experiment, we
utilize a single transmon qubit [37] as an artificial atom.
The qubit consists of a shunting capacitor with the charging
energy of EC/h = 309 MHz and an asymmetric SQUID [38]
with the total Josephson energy of EJ�/h = (EJ1 + EJ2)/h =
17.0 GHz and the junction asymmetry d = 0.5, giving the
upper sweet spot resonance transition at ωq/2π = 6.1 GHz.
The qubit is coupled to the central conductor of an on-
chip coplanar waveguide with the effective capacitance Cc =
9.6 fF, which results in the waveguide-induced decay constant
�1/2π = 1.64 MHz in the upper sweet spot. The radiative
decay to the free space is typically negligible; hence �1

approximately constitutes the total radiative decay rate. The
explicit expression for �1 is presented in [39]. The chip with
the qubit is placed in a dilution refrigerator at temperature of
10 mK . In order to provide thermal equilibrium and allow a
heterodyne detection of a scattered signal, coaxial wiring with
attenuators, isolators, and HEMT amplifiers is assembled. The
optical and electron images of the device are depicted in
Fig. 1. In the spectroscopic measurements, we probe the qubit
transition at low power and observe the Lorentzian dip. The
transmitted power is reduced by up to 99% in the exact reso-
nance. We also characterize internal losses and dephasing with
the internal Q factor Qi ≈ 24 000 determined with a circle-fit
algorithm [40] (also see Supplemental Material [41]).

We prepare the input pulses with a typical heterodyne up-
conversion setup with rf sources, AWGs (arbitrary waveform
generators), and IQ mixers. We ensure δω � �1. Two se-
quences of short pulses with carrier frequencies ω± propagate
simultaneously near the qubit. Figure 1 displays an example of
a sequence with 6 pulses. The typical pulse duration 5–10 ns
guarantees that the qubit keeps coherence while interacting
with each light pulse. We also introduce the gap of 2–4 ns
in between pulses with different carriers, ensuring no overlap
due to some parasitic reflections or rise and fall effects from
AWG. This is crucial since mixing of overlapping pulses on
a single two-level system gives an entirely different picture
of side peaks [33]. The repetition period of 10 µs or more for
each sequence allows the qubit to decay freely in between the
pulse sequences ensuring the initial ground state before the
next pulse sequence with good precision.

We down-convert the scattered light and digitize both
quadratures at an intermediate frequency of 100 MHz to char-
acterize the output field. We use high-frequency ADC with an
embedded FPGA programmed to average the identical traces
recorded when the trigger is sent from AWG. Since we are
interested in elastic components, the averaging time is much
larger than the period of the sequence. A convenient choice,
the time divisible by the period of beats with frequency 2δω,
allows acquiring all temporal variations of the signal. After
recording the complex average field, we make Fourier trans-
formation (FFT) to get the complex spectrum of the signal
analyzed below.

FIG. 1. (a) The sequence of N Rabi pulses scattered on a qubit
in the process of QWM. With each additional pulse, a multipho-
ton process with a pair of photons is emerged. This is illustrated
as transitions between dressed levels shifted by δω from original
ones. Therefore the number of elastic peaks is increased with N .
(b) The micrograph of the transmon qubit. In the inset, there is the
SEM image of the dc squid. (c)–(g) The typical scattering spectra
measured for N from 2 to 6, respectively. The processes with 2N
scattered photons are highlighted in color.

The lower panels of Fig. 1 present a qualitative picture
of QWM together with the measured spectra. The leftmost
spectrum is obtained for two pulses. The first pulse is at ω−
and the second is at ω+. Only one side component emerges at
ω+3 [33]. Adding a third pulse at ω− results in appearance of
two additional components at ω−3 = 2ω− − ω+ and ω−5 =
2ω− − ω+3 = 3ω− − 2ω+. The peak at ω−5 corresponds to
the mixing of six photons (the highest order of mixing for
three pulses). It appears when one photon is taken from the
first pulse, a pair of photons from a second one, one more pair
from the third one, and an extra photon is emitted at ω−5. The
fourth pulse at ω+ would add two more peaks at ω+5 and ω+7

in a similar scenario. To summarize, N applied pulses enable
processes up to 2N-wave mixing.

To demonstrate that the observed spectral properties are
controllable and may alter by time order of driving pulses,
we apply three pulses: Two with ω+ and 8 ns long and one
with ω− 12 ns long; see Fig. 2. The position of ω+ pulses is
fixed, while ω− pulse is moving. We start with the ω− pulse
being in front of two pulses at ω+, and finish when the pulse at
ω− is after two pulses at ω+. We observe a consistent picture
of several regimes: (i) three peaks are observed when the
negatively detuned pulse is either the first or the last and does
not overlap with any of ω+ pulses; (ii) many peaks (7 or more)
are observed when pulses with ω+ and ω− overlap; and (iii)
five peaks when the pulses are applied one by one as depicted
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FIG. 2. Upper panel: Sketch of sequence of three pulses: Blue
ones are with ω+ carrier frequency, and the green is with ω−. Middle
panel: The absolute voltage of side components is averaged over
many periods of beats and plotted as a function of center position
of the middle pulse t center

2 . The regions with specific number of
components are separated by dashed vertical lines. Bottom panel:
The peak amplitudes from the colored graph above are rescaled and
plotted along with the numerical simulation results.

at the top panel of Fig 2. Therefore, the temporal configuration
of driving pulses controls the qualitative properties of QWM
coherent spectrum.

Next, we characterize quantitative properties of side peaks.
For that, we measure how durations �t−, �t+ and amplitudes
�−, �+ of pulses affect the intensities of QWM components,
implying that similar pulses with the same carrier frequencies
rotate qubit states by equal angles. As described earlier, we
make complex FFT of down-converted field allowing us to ex-
tract amplitude and phase of any coherent component. We also
rotate complex traces so that the whole emitted field concen-
trates in one quadrature and takes either positive or negative
values. We plot color maps of these quadratures versus two
arguments �−�t−, �+�t+ for each number of pulses N . As a

result, we obtain several expressive maps demonstrating the
rich dynamics of fields; see Fig. 3. We interpret the maps
by explicitly calculating the evolution of the qubit under a
sequence of pulses. Analytical expressions are given for each
spectral component.

To interpret the observed elastic spectra in terms of multi-
photon scattering, we use the framework developed in [33].
Briefly, we consider two modes of the field c−, c+ with
frequencies ω+, ω− interacting with qubit operators σ−

±p ≡
σ−e∓ipδωt , σ+

±p ≡ σ+e±ipδωt which include the phase acquired
from the coherent drive.

The Hamiltonian in the interaction picture reads

H± = ig(c†
±σ−

±1 − c±σ+
±1). (1)

To get the field components, we first calculate the follow-
ing matrix element which is the expectation value of the
operator σ−

p :

M (N )
p = 〈φ0|�†

Nσ−
p �N |φ0〉 , (2)

where the initial state is |φ0〉 = |0, γ−, γ+〉, meaning that
the scattered field mode is initially in the ground state,
and the driving fields are always in coherent states |γ−〉 and
|γ+〉. The interaction with modes happens only when a corre-
sponding pulse reaches the qubit. The evolution operator �N

for N applied pulses is defined as

�N =
N∏

i=1

U(−1)i (�ti ), (3)

and evolution operators for every single applied pulse with
the duration �ti may approximately be expressed in the case
of γ−, γ+ � 1 as

U±1 ≈ cos
θ±
2

+ c†
±σ−

±1 − c±σ+
±1

γ±
sin

θ±
2

. (4)

Here we introduced rotation angles θ± = �±�ti and used
�± = 2gγ±. For convenience, we also define the following
operators:

a† = αc−σ+
−1/γ−, b† = βc+σ+

+1/γ+, (5)

where α = tan θ−/2, β = tan θ+/2.
With these expressions, for the case N =2, one obtains

M (2)
p =

(
cos

θ+
2

cos
θ−
2

)2

〈φ0|
(

− σ−
p b†︸ ︷︷ ︸
eiδt

− σ−
p a†︸ ︷︷ ︸
e−iδt

+ ab†σ−
p a†︸ ︷︷ ︸

eiδt

+ ab†σ−
p b†︸ ︷︷ ︸

e3iδt

)
|φ0〉 , (6)

where under brackets denote the total phase multiplier ac-
quired from operators a, b, a†, b†, not counting the phase of
σ−

p for a moment. If we now calculate the time-average field
at an arbitrary frequency ωp,

V (2)
p = −i

h̄�1

μ

1

T

∫ T

0
M (2)

p dt, (7)

the last term of Eq. (6) will give a nonzero component for
p=3, since the phase multiplier from σ−

+3 = σ−e−3iδt can-

cels out the phase picked from operators of driving modes.
Therefore we see that the phases underlined in Eq.(6) de-
fine the frequencies of nonzero elastic components observed
when measuring the field spectrum with a low bandwidth. It
explains the leftmost spectrum in Fig. 1 which consists of
only three components. We also derive how their amplitude
depends on rotation angles:

V (2)
3 ∝ 1

2
sin2 θ+

2
sin θ−. (8)
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(a) (b)

(c)

FIG. 3. The heterodyne-measured complex-valued field of all observed side peaks for sequences of N non-overlapping pulses plotted as
functions of θ+ = �+�t+ and θ− = �−�t−. The temporal order of pulses is written in parentheses in the title for each group of measurements.
The �−�t− (�+�t+) varies along the horizontal (vertical) axis for all ω− (ω+) pulses simultaneously. In the experiment, amplitudes �+ and
�− were changed, δω = 25 kHz. The unit of the color bar axes is the unit of Im〈σ−〉 and applies to the theoretical plots. Z axis for each
experimental plot is rescaled by a common multiplier to fit the theory.

It is now straightforward to generalize the calculation for
N > 2 pulses. For three pulses, the analog of Eq. (6) also
expresses M3

p as a sum of terms, and among them there is
only the operator term ba†σ−

p a†ba† with acquired phase e−5iδt ,
contributing to the peak at ω−5. This peak is highlighted on the
second panel from the left in Fig. 1. For the field, we obtain

V (3)
−5 ∝ 1

2
sin θ− sin2 θ−

2
sin2 θ+

2
. (9)

The spectrum of emitted field recorded for different θ− and
θ+ allows us to reconstruct how every observable harmonic
depends on rotation angles. We then compare these results
with the corresponding analytical dependencies, similar to
Eqs. (8) and (9). Both measured and calculated intensities
are presented in Fig. 3 for 2 � N � 4. Supplemental Ma-
terial [41] contains measured results for N = 5, 6. For all
measured components, the theory excellently fits experimen-
tal maps, even for very high orders. However, we notice a
small disagreement for the emission at the frequency of the
last pulse (either ω+ or ω−) at large effective angles. The
origin of this discrepancy could be in our data processing
procedure. To restore dependencies for ω+ and ω−, we replace
the initial pulses with zero in the digitized traces, thus losing a

small part of the emission. Besides, some part of the last pulse
might get distorted due to presence of a slight impedance
mismatch in the signal line. It may cause a significant effect if
the rotation angle is large.

Analyzing the patterns in Fig. 3, we outline several specific
features of the observed dependencies. First, we note that at
θ− = θ+ = π , all components are zero for all values of N .
In this case, each pulse is a π pulse; hence the qubit reaches
either ground or excited state, does not contain any phase
from the pulses, and emits incoherently. Second, when the
first pulse is negatively detuned, for all values of N , ω(4p−1)

components are zero at θ+ = π , and the maps are antisym-
metrical along the line θ+ = π . Similarly, the maps for ω(4p−3)

components are antisymmetric relative to θ− = π . It implies
that at θ− = π (θ+ = π ), there are many values of θ+ (θ−),
for which emission contains the only component at ω(4p−3)

(ω(4p−1)). Similar nontrivial spectral distribution was recently
predicted to appear in QWM of a squeezed vacuum with a
coherent field [36]. However, here the origin of missing peaks
is due to a pulsed drive.

Our analytical results allow the exact identification of mul-
tiphoton contributions into every single mode. As N increases,
the higher-order photon processes contribute more signifi-
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FIG. 4. The net field obtained as a sum of all measured coherent
components, as if it could be emitted for the drives with δω = 0, that
is, for a monochromatic drive. From (a) to (d) the map is plotted for
N = 2, 3, 4, 5 pulses; horizontal axis is θ− and vertical is θ+. The
cross sections are harmonic Rabi oscillations.

cantly to the emission at the frequencies of initial drives and
the neighboring frequencies. For example, for N = 3, the field
at ω− contains the only term corresponding to a single-photon
process (single-photon absorption and emission, or in analogy
with higher orders, “two-wave mixing”), two terms related to
the third-order processes (four-wave mixing), and one term
connected with the fifth-order process (six-wave mixing). The
exact expressions are presented in the Supplemental Mate-
rial [41] . Therefore, the interference of terms with different
orders forms the overall pattern for every component. How-
ever, there is always a single term in the evolution responsible
for the emission at the leftmost and rightmost peak frequen-
cies.

The observed pictures could be considered as a spectral de-
composition of coherent pulses being scattered by a qubit. To
illustrate the physical meaning of this decomposition, we can
consider the limit δω → 0. Our interleaved pulses then turn to
the continuous monochromatic wave exactly resonant with the

qubit. The side peaks now all have the same frequency, and we
can simply sum up all the contributions presented in Fig. 3 for
each sequence resulting in simple Rabi dynamics; see Fig. 4.
The number of Rabi periods along each axis corresponds to
the number of pulses of each kind in a pulse sequence.

Another observation relates to the conversion of frequency
components. For example, as can be seen in Fig. 3(a), as a
result of mixing two pulses with parameters θ− = π and θ+ =
π/2, the whole coherent field becomes converted into the ω+3

mode. Note that there is also incoherently emitted radiation
due to inelastic scattering. Correspondingly, for N > 2 pulses,
the distribution of coherent field among side spectral compo-
nents is more complicated. Nonetheless, there are also rotation
angles where there is only one or two nonzero components.

In summary, we study QWM of light pulses on a single
qubit that reveals the intrinsic connection between qubit dy-
namics and multiphoton processes of elastic scattering. The
study of these effects will increase understanding of nonlinear
quantum optics with quantum objects playing the role of a
scatterer. Recent theoretical efforts show that the wave mixing
of classical and quantum fields on a qubit in a waveguide is a
good tool for measuring the photon statistics of the quantum
signal. However, a qubit itself is also a reliable source of
nonclassical radiation when driven continuously or by short
pulses. Nontrivial coherent spectra might indicate generation
of light with more sophisticated statistics than just squeezing
or antibunching. Thus, a promising area opens up for further
research of microwave optics and photonics.
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