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Physical theories constrained with local quantum structure and satisfying the no-signaling principle can allow
beyond-quantum global states. In a standard Bell experiment, correlations obtained from any such beyond-
quantum bipartite state can always be reproduced by quantum states and measurements, suggesting the local
quantum structure and no-signaling to be the axioms to isolate quantum correlations. In this Letter, however, we
show that if the Bell experiment is generalized to allow local quantum inputs, then beyond-quantum correlations
can be generated by every beyond-quantum state. This gives us a way to certify the beyond quantumness of
locally quantum no-signaling theories and in turn suggests the requirement of additional information principles
along with the local quantum structure and no-signaling principle to isolate quantum correlations. More impor-
tantly, our work establishes that the additional principle(s) must be sensitive to the quantum signature of local
inputs. We also generalize our results to multipartite locally quantum no-signaling theories and further analyze
some interesting implications.
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Introduction. Correlations among distant events estab-
lished through the violation of Bell-type inequalities confirm
the nonlocal behavior of the physical world [1–4]. Nonsepa-
rable multipartite quantum states yielding such correlations,
in Schrödinger’s words, are “characteristic trait of quantum
mechanics, the one that enforces its entire departure from clas-
sical lines of thought” [5]. The advent of quantum information
science identifies the power of such nonlocal correlations in
numerous device-independent protocols—cryptographic key
distribution [6–8], randomness certification [9] and amplifica-
tion [10], and dimension witness [11–13] are a few canonical
examples. Cirel’son’s result [14], however, establishes that the
nonlocal strength of quantum correlations is limited compared
to the general no-signaling (NS) ones [15] as depicted in the
celebrated Clauser-Horne-Shimony-Holt (CHSH) inequality
violation [16].

To comprehend the limited nonlocal behavior of quantum
theory and to obtain a better understanding of the theory it-
self, researchers have proposed several approaches to compare
and contrast quantum theory with other conceivable phys-
ical theories constructed within more general mathematical
frameworks [17–27]. Here, we consider a class of theories
wherein local measurements are described quantum mechan-
ically, but they allow a global structure more generic than
quantum theory [28–35]. Gleason-Busch’s celebrated result
in quantum foundations proves that any map from generalized
measurements to probability distributions can be written as
the trace rule with the appropriate quantum state [36,37] (see
also Ref. [38]). This theorem, when appraised to the case of
local observables acting on multipartite systems, hence called

the unentangled Gleason’s theorem, endorses the joint NS
probability distributions to be obtained from some Hermitian
operator called the positive over all pure tensors (POPT) state
[28–31]. Although the set of POPT states is strictly larger
than the set of quantum states (density operators), in a recent
work, Barnum et al. have shown that the set of bipartite
correlations attainable from the POPT states is precisely the
set of quantum correlations [32]. Consequently, their result
provokes a far-reaching conclusion “if nonlocal correlations
beyond quantum mechanics are obtained in any experiment
then quantum theory would be invalidated even locally.”

In this Letter, we analyze the correlations of multipartite
POPT states obtained from local measurements performed
on their constituent parts by considering a generalized Bell
scenario as introduced in Ref. [39]. While in the standard
Bell scenario spatially separated parties receive some classical
inputs and accordingly generate some classical outputs by
performing local measurements on their respective parts of
some composite system, recently Buscemi has generalized the
scenario where the parties receive quantum inputs instead of
classical variables [39]. In this generalized scenario he has
shown that all entangled states exhibit nonlocality, despite
some of them allowing a local-hidden-variable (LHV) model
in the classical input scenario [40–42]. Considering this gener-
alized scenario, here we show that not all correlations obtained
from bipartite POPT states are quantum simulable. In fact,
every beyond-quantum POPT state produces some beyond-
quantum correlation in some quantum-input game. On the
other hand, to illustrate the limitations of the standard Bell
scenario, we show that there are POPT states which produce
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classical-input–classical-output correlations that are not only
quantum simulable, rather simulable classically. Our result
shows that the strong claim made by the authors in Ref. [32]
will no longer be correct in this generalized Bell scenario
which, as we will show, is allowed within the framework of
local quantum theory. From a foundational perspective our
study welcomes new information principles incorporating this
generalized Bell-type scenario to isolate quantum correlations
from beyond-quantum ones. We also analyze the implication
of this generalized scenario for multipartite correlations and
answer an open question raised in Ref. [33].

Gleason’s theorem. We investigate the class of locally
quantum theories studied in a series of works in the recent
past [28–35]. In accordance with these works, we say that
Alice is locally quantum if her physical system is described
by a Hilbert space HA with dimension dA and her measure-
ments MA are given by a collection of effects corresponding
to positive-operator-valued measurement (POVM) [43] opera-
tors {πa

A}a acting on HA and satisfying the constraint
∑

a πa
A =

IA, where ∀ a, πa
A ∈ E (HA) ⊂ L(HA), with E (HA) and L(HA)

respectively denoting the set of all positive operators and
bounded linear operators acting on HA, and IA is the identity
operator on HA. The probability p(a|MA) that Alice obtains an
outcome a for measurement MA ≡ {πa

A}a is given by a gener-
alized probability measure μ : E (HA) �→ [0, 1], satisfying the
properties (i) ∀ πa

A ∈ E (HA), 0 � μ(πa
A ) � 1, (ii) μ(IA) = 1,

and (iii) μ(
∑

i π
i
A) = ∑

i μ(π i
A) for any sequence π1

A, π2
A, . . .

with
∑

i π
i
A � IA. Each probability measure μ corresponds

to a “state” in the local quantum theory. We can make the
association with the familiar quantum theory in which states
are described by density operators by invoking the Gleason-
Busch theorem according to which any such generalized
probability measure is given by a linear functional of the form
μ(πa

A ) = Tr(ρAπa
A ), for some density operator ρA ∈ D(HA);

D(HA) denotes the set of positive operators with unit trace on
HA.

Interesting situations arise when the theorem is general-
ized to the case of local observables acting on multipartite
systems. Each party is assumed to be locally quantum as de-
scribed above, with the ith party performing the measurement
MAi ≡ {πa

Ai
}a. The “state” is now given by a probability mea-

sure μ : ×n
i=1E (HAi ) �→ [0, 1]. According to the unentangled

Gleason’s theorem [28–31], any such functional μ satisfying
the no-signaling condition is of the form μ(πa1

A1
, . . . , π

an
An

) =
Tr[W (πa1

A1
⊗ · · · ⊗ π

an
An

)], where W is a Hermitian, unit trace
operator. Thus, the states of multipartite locally quantum the-
ory are in one-to-one correspondence with the operators W .
W , being positive over all pure tensors, is called a POPT
state. However, positivity of W over entangled effects is not
assured and such a nonpositive W can act as an entanglement
witness operator [44]. The set of POPT states W (

⊗
i HAi )

includes D(
⊗

i HAi ) as a proper subset and a W will
be called a “beyond-quantum state” (BQS) whenever W ∈
W (

⊗
i HAi ) \ D(

⊗
i HAi ). With an aim to study the correla-

tions obtained from BQSs we briefly recall the standard Bell
scenario.

Standard Bell scenario. A multipartite Bell scenario can
be described as the following prover-verifier task. n distant
verifiers A1, A2, . . . , An have their own source of classical
indices si ∈ Si. With the aim to verify some global property

of a composite state prepared by a powerful but untrust-
worthy prover, they send their respective indices as inputs
to spatially separated subsystems of the composite systems.
Classical outputs ai ∈ Oi are generated from the different
subsystems of the composite system and accordingly some
payoff P : ×n

i=1(Si × Oi ) �→ R is calculated. An implicit
rule is that no communication is allowed among different
subsystems once the game starts. Upon playing the game
sufficiently many times, the input-output correlation P ≡
{p(a1 · · · an|s1 · · · sn)}ai∈Oi

si∈Si
is obtained. The collection of all

NS correlations forms a convex polytope NS . A corre-
lation is called classical if and only if it is of the form
pL(a1 · · · an|s1 · · · sn) = ∫

�
p(λ)

∏
i p(ai|si, λ)dλ, where λ ∈

� is some classical variable shared among the parties. A col-
lection of such correlations also forms a convex polytope L.
On the other hand, a correlation is called quantum if it is ob-
tained from some quantum state through local measurements,
i.e., pQ(a1 · · · an|s1 · · · sn) = Tr[ρ(

⊗
i π

ai
si

)] for some πai
si

∈
E (HAi ) and ρ ∈ D(

⊗
i HAi ). The set of all quantum correla-

tions Q forms a convex set but not a polytope. The framework
of locally quantum theories allows us to define the correlation
set obtained from the POPT states. Following the terminology
of Ref. [33] we call such a correlation a “Gleason correlation”
and denote the set as GL. The following set of inclusion
relations has been established: L � Q ⊆ GL � NS . While
the first proper inclusion follows from the seminal work of
Bell [1], the last one is due to Cirel’son and Popescu-Rohrlich
[14,15]. On the other hand, the equality Q = GL for bipartite
correlations is established in Ref. [32]. More precisely, the
authors in Ref. [32] have shown that for every POPT WAB and
for every local measurement MA = {πa

A}a and MB = {πb
B}b,

there exists a quantum state ρAB ∈ D(HA ⊗ HB) and mea-
surements M̃A = {π̃a

A}a, M̃B = {π̃b
B}b such that Tr[WAB(πa

A ⊗
πb

B)] = Tr[ρAB(π̃a
A ⊗ π̃b

B)]. In this classical input-output sce-
nario we are now in a position to prove our first result that
in some sense can be considered stronger than the result of
Barnum et al.

Proposition 1. There exist beyond-quantum bipartite states
yielding correlations that are classically simulable.

Proof. (Sketch) The family of operators Wp :=
p�[|φ+〉 〈φ+|] + (1 − p)I/4 is a BQS for 1/3 < p � 1;
|φ+〉 := (|00〉 + |11〉)/

√
2 and � denotes partial trans-

position. If we consider projective measurements only
then a LHV description is possible whenever p � 1/2,
whereas for generic POVMs one can have such a description
for p � 5/12. The LHV models are motivated from the
well-known constructions of Werner [40] and Barrett [41].
The explicit construction we defer to the Supplemental
Material [45]. �

The result of Barnum et al. [32] and our Proposition 1
depicts the limitation of the classical-input–classical-output
Bell scenario to reveal the full correlation strength of BQSs.
At this point a more general Bell scenario turns out to be
advantageous.

Semiquantum Bell scenario. The scenario was introduced
by Buscemi to establish the nonlocal behavior of all
entangled quantum states [39], which has subsequently
generated a plethora of research interests [46–51]. In
this scenario, each of the verifiers, assumed to be locally
quantum, has a random source of pure quantum states
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FIG. 1. A powerful but untrustworthy prover distributes a bipar-
tite state ZAB between two distant verifiers (Alice and Bob). The
verifiers do not have any entanglement between them, but possess
their own trusted local quantum preparation device. Such limited
resourceful verifiers can verify the beyond quantumness of the
state ZAB provided to them (Theorem 1). The seminal Hahn-Banach
separation theorem plays a crucial role in making this verifica-
tion possible—the correlations produced from the bipartite quantum
states form a convex-compact proper subset within the set of cor-
relations produced from all bipartite states compatible with a local
quantum description and NS principle.

{{pi(si ), ψ
si
Ao

i
}|si ∈ Si} (see Fig. 1). They wish to verify

whether the state of a global system WA1···An , prepared by a
powerful but untrustworthy prover, is BQS or not. To this aim
they provide their respective quantum states to the different
parts of the distributed global state. The prover returns
some classical index ai ∈ Oi by performing local quantum
measurements MAiAo

i
= {πai

AiAo
i
}ai on the respective distributed

parts of the global state and the states received from the
verifiers. Accordingly, some payoff β : ×n

i=1(Si × Oi ) �→ R
is given, which specifies a semiquantum game Gsq.
From the global state WA1···An , the prover can generate
a correlation PWA1 ···An

:= {p(a1, . . . , an|ψ s1 , . . . , ψ sn )}
and the expected payoff is calculated as
IGsq (WA1···An ) := ∑

s1,a1,...,sn,an
β(s1, a1, . . . , sn, an) ×

p(a1, . . . , an|ψ s1 , . . . , ψ sn ). As the standard scenario, we can
define the set of correlations Xsq with X ∈ {L,Q,GL,NS}
and X ⊆ Xsq in general. When the quantum sources consist
of orthogonal quantum states, the scenario boils down to a
standard Bell scenario and no distinction is possible between
a bipartite entangled state and a BQS [32].

Composing POPT states. In the semiquantum Bell sce-
nario, the prover performs local measurements {πai

AiAo
i
}ai on

the ith subsystem. The composite multipartite state is given
by a functional μA1Ao

1···AnAo
n

which, invoking the unentangled
Gleason’s theorem, corresponds to a POPT state ZA1Ao

1···AnAo
n
.

The form of ZA1Ao
1···AnAo

n
must be consistent with the states held

by the verifiers and the prover. If the states held by the verifiers
are pure and unentangled, then one can show that ZA1Ao

1···AnAo
n
=

⊗iψ
si
Ao

i
⊗ WA1···An . We leave the details to the Supplemental

Material [45]. Interestingly, our next result shows that within
a local quantum description the unentangled verifiers (hence
weakly resourceful) can test the property “entangled versus
BQS” supplied by the more resourceful prover.

Theorem 1. For every beyond-quantum state WAB ∈
W (HA ⊗ HB) there exists a semiquantum game Gsq such that
IGsq (WAB) < 0, while IGsq (ρAB) � 0, ∀ ρAB ∈ D(HA ⊗ HB).

Proof. At the core of our proof lies the classic Hahn-
Banach separation theorem of convex analysis and the fact
that for every beyond-quantum state WAB ∈ W (HA ⊗ HB)
there exists an entangled state χAB ∈ D(HA ⊗ HB) such that
Tr[WABχAB] < 0, whereas Tr[σABχAB] � 0, ∀ σAB ∈ D(HA ⊗
HB) [52–54]. Also note that there exist (nonunique) choices of
pure states ψ s

A ∈ D(HA) and ψ t
B ∈ D(HB), and some real co-

efficients {βs,t } such that χAB = ∑
s,t βs,tψ

s
A

T ⊗ ψ t
B

T, where T
represents the transposition with respect to the computational
basis. This leads us to the required game Gχ

sq where the veri-
fiers Alice and Bob yield quantum inputs ψ s

Ao and φt
Bo , and ask

the prover to return outputs ∈{0, 1} from the distributed parts
of the global state. The average payoff is calculated as I :=∑

s,t βs,t p(11|ψ s
Aoψ t

Bo ). The measurement {P+
uuo, Iuuo − P+

uuo} is
performed on the distributed parts of the global state, where
P+

uuo := |φ+〉uuo 〈φ+| with |φ+〉uuo := 1√
du

∑du−1
i=0 |ii〉 and P+

uuo

corresponds to the outcome 1, u ∈ {A, B}. We therefore have

IGχ
sq

(WAB) =
∑
s,t

βs,t Tr [P+
AAo ⊗ P+

BBo (ψ s
Ao ⊗ WAB ⊗ ψ t

Bo )]

=
∑
s,t

βs,t Tr [(RA ⊗ RB)WAB],

where RA and RB are the effective POVMs acting on the parts
of Alice’s and Bob’s shares of the BQS, respectively, and are
given by Ru := Truo[P+

uuo (Iu ⊗ ψ s
uo )] = 1

du
ψ s

u
T. Therefore, we

have

IGχ
sq

(WAB) = 1

dBdA

∑
s,t

βs,t Tr
[(

ψ s
A

T ⊗ ψ t
B

T)
WAB

]

= 1

dBdA
Tr

[(∑
s,t

βs,tψ
s
A

T ⊗ ψ t
B

T

)
WAB

]

= 1

dBdA
Tr [χABWAB] < 0.

On the other hand, given an arbitrary quantum state ρAB,
let the measurements MAAo ≡ {πa

AAo})a and NBBo = {πb
BBo}b be

performed, where a, b ∈ {0, 1}. The average payoff turns out
to be

IGχ
sq

(ρAB) =
∑
s,t

βs,t Tr
[
π1

AAo ⊗ π1
BBo

(
ψ s

Ao ⊗ ρAB ⊗ ψ t
Bo

)]

=
∑
s,t

βs,t Tr
[
RAoBo

(
ψ s

Ao ⊗ ψ t
Bo

)]
,

where RAoBo := TrAB[(π1
AAo ⊗ π1

BBo )(IAoBo ⊗ ρAB)] is a positive
operator. Using the linearity of trace we get

IGχ
sq

(ρAB) = Tr

[
RAoBo

(∑
s,t

βs,tψ
s
Ao ⊗ ψ t

Bo

)]

= Tr
[
RAoBoχT

AoBo

]
� 0.
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The last inequality follows due to the fact that χT
AoBo is a valid

density operator, and this completes the proof. �
Theorem 1 establishes that Qsq � GLsq in the bipartite sce-

nario. Note that, following an argument similar to Ref. [47],
it can be shown that in the semiquantum scenario, even if
classical communications between different distributed parts
are allowed to the prover along with the quantum entangled
state ρAB, still the local statistics obtained from BQS cannot
be simulated. Our result poses some interesting questions. The
proper set inclusion relation Q � NS established in Ref. [15]
has motivated several novel approaches to isolate quan-
tum correlations from beyond-quantum ones [55–67]. Along
similar lines, the proper set inclusion relation Qsq � GLsq

welcomes new principle(s) to isolate the quantum correlations
from beyond-quantum ones in this generalized scenario. Im-
portantly, our Theorem 1 suggests that such principles must
be sensitive to the quantum signature of local inputs [49,50].

The semiquantum scenario also has important implications
while studying correlations in multipartite (involving more
than two parties) scenarios. Acín et al. have already pointed
out that the result of Barnum et al. does not generalize to
the multipartite scenario even in the classical-input–classical-
output paradigm [33]. They have provided examples of
multipartite BQSs producing beyond-quantum correlations
within the standard Bell scenario. They have also pointed out
that a BQS of the form

WA1···AN =
∑

k

pk
(
�k

A1
⊗ · · · ⊗ �k

AN

)[
ρk

A1···An

]
, (1)

will not generate any classical-input–classical-output cor-
relation that lies outside the set of correlations generated
by quantum states. Here, {pk} is a probability distribution,
ρk

A1···An
∈ D(

⊗
i HAi ), and �k

i are positive but not completely
positive trace preserving maps on L(HAi ) [54]. The authors in
Ref. [33] have left the question open to identify the additional
requirements to close the gap in their result. Our next result
provides a solution to close this gap.

Theorem 2. For every BQS WA1···AN ∈ W (
⊗N

i=1 HAi ) there
exists a semiquantum game Gsq such that IGsq (WA1···AN ) < 0,

whereas IGsq (ρA1···AN ) � 0, ∀ρA1···AN ∈ D(
⊗N

i=1 HAi ).
The proof is a straightforward generalization of the proof

of Theorem 1 (see Supplemental Material [45]). While The-
orems 1 and 2 are just existence theorems, it is not hard to
see that given an arbitrary BQS there is an efficient algorithm
to construct a semiquantum game (the procedure is discussed
in the Supplemental Material [45]). It is important to note
that nonorthogonal quantum inputs are necessary to reveal the
beyond-quantum signature of correlation for any BQS of the
form of Eq. (1). This implicitly follows from the results of
Barnum et al. [32] and Acín et el. [33]. It is worth mentioning
that this semiquantum scenario is different from local tomog-
raphy as it establishes the beyond-quantum nature of POPT
states in a measurement device-independent manner where the
measurement devices used to produce the classical outcomes
need not be trusted [46].

Discussion. One of the earnest research endeavors in quan-
tum theory is to understand the limited nonlocal behavior
of quantum correlations. Apart from the foundational ap-
peal, this question also has practical relevance as nonlocal
correlations have been established as useful resources for
several tasks. In the bipartite scenario the result of Barnum
et al. [32] provides an answer to this question by assuming
the description of local systems to be quantum. Our work,
however, points out the limitation of the scenario consid-
ered in Ref. [32]. The authors there have not considered
the most general bipartite scenario allowed within the un-
entangled Gleason-Busch framework, which assumes local
quantum measurement and the no-signaling principle. Within
this framework, the types of inputs allowed are not restricted
to classical indices, rather they can be quantum states. Our
Theorem 1 shows that all bipartite beyond-quantum states
compatible with the unentangled Gleason-Busch theorem
can yield beyond-quantum correlations in the quantum-input
scenario, and accordingly divulges a more complex picture
within the correlations zoo. Our study therefore welcomes
new principle(s) to isolate the correlations obtained from
quantum states, and more importantly, suggests that such a
principle should take the type of inputs into consideration
as the indistinguishability of nonorthogonal quantum-input
states plays a crucial role in making the distinction between
quantum and BQS states.

Our Theorem 2 establishes that within the quantum-input
paradigm all multipartite BQSs yield beyond-quantum corre-
lations which was known earlier only for a particular class
of such states [33]. After the work of Ref. [33], Torre et al.
have shown that when the local systems are identical qubits,
any theory admitting at least one continuous reversible inter-
action must be identical to quantum theory [34]. However, the
result in Ref. [34] has also been obtained within the classical-
input–classical-output paradigm. It might be interesting to
see what additional structures are required there to single
out the quantum correlations in the quantum-input scenario.
On the other hand, within the classical-input–classical-output
paradigm, the authors in Ref. [68] and the present authors
with other collaborators in Refs. [69,70] have studied beyond-
quantum correlations in the timelike domain. Similar studies
with quantum inputs might provide insights there.
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