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Driven anti-Bragg subradiant correlations in waveguide quantum electrodynamics
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We study theoretically driven quantum dynamics in periodic arrays of two-level qubits coupled to the
waveguide. We demonstrate that strongly subradiant eigenstates of the master equation for the density matrix
emerge under strong coherent driving for arrays with the anti-Bragg periods d = λ/4, 3λ/4 . . .. This happens
even though are no such eigenstates at low driving powers and is directly manifested by long-living quantum
correlations between the qubits.
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Introduction. Many-body quantum systems in the presence
of driving and dissipation are now a subject of active studies.
It is now understood that their dynamics is not limited to
conventional relaxation to the ground state and thermaliza-
tion. Instead, the system can exhibit many-body localization
[1,2], or even more exotic time-crystalline phases that break
discrete time-translational symmetry under the presence of
external driving and oscillate in time instead of decaying to
the time-independent stationary phase [3–6]. Here, we predict
the formation of driving-induced correlations, immune to ra-
diative dissipation in the waveguide quantum electrodynamics
(WQED) platform, shown in Fig. 1, where a periodic array of
qubits is coupled to photons in a waveguide [7–11].

The suppression of spontaneous emission by destructive
interference has been known at least since the work of Dicke
[12]. Briefly, two quantum emitters can be excited with op-
posite phases to the state |ψ〉 = (σ †

1 − σ
†
2 )|0〉/√2 (here, σ

†
1,2

are the raising operators). Subradiant states have been also
extensively studied in the last several years for arrays of
qubits coupled to the waveguide, both theoretically [13–17]
and experimentally [18,19]. Nevertheless, to the best of our
knowledge, previously considered subradiant states are very
distinct from those studied here. First, typical subradiant
states exist only for relatively low filling factors of the array
[13]. Specifically, it has been proven in our recent work [20]
that many-body subradiant eigenstates of the effective non-
Hermitian Hamiltonian of the array disappear for fill factors
above f = 1/2 which indicated that they can be seen only
under relatively weak driving. Indeed, an increase of the driv-
ing strength typically results in the growth of the linewidth
and the saturation of optical transitions of a two-level system
[21]. Second, a typical subradiant state is a feature of an array
with the subwavelength period (d � λ) or, more generally,
a Bragg period that is close to any integer multiple of λ/2
[22]. On the other hand, for two qubits with λ/4 spacing the
waveguide-induced coupling has a purely exchange character:
Both eigenmodes have the same lifetime as a single qubit and

*poddubny@coherent.ioffe.ru

neither super- nor subradiant states exist. This has been exper-
imentally demonstrated in Ref. [10]. It is however precisely
this anti-Bragg regime with d = λ/4, 3λ/4, . . . that we focus
on here. We predict that while conventional subradiant states
do not exist for d = λ/4 for small values of N , subradiant
correlations emerge under strong coherent driving through
the waveguide mode. Importantly, these correlations manifest
themselves only in the full master equation for the density
matrix of the driven system. This explains why they have not
previously been revealed in the spectrum of effective many-
body Hamiltonians analyzed in Refs. [13–15,17]. On the other
hand, in the cavity QED, where the master equation is a
standard tool [23–25], spacing between the atoms is a less
important parameter and the concepts of Bragg and anti-Bragg
spacing are not directly applicable.

The qualitative origin of anti-Bragg driven subradiant cor-
relations is illustrated in Fig. 1(b). Our main finding is that
strong coherent electromagnetic driving at the qubit resonance
frequency effectively splits the array into two parts, including
only odd-numbered and only even-numbered qubits, respec-
tively, i.e., the exchange photon-mediated interaction between
these two subarrays is suppressed. The driven λ/4-spaced
array behaves akin to two λ/2-spaced subarrays. In each of the
subarrays subradiant states can be understood by analyzing
the saturation of transitions between collective spin states [in-
set in Fig. 1(b)]. Thus, the driving breaks the spatial symmetry
of the array and separates a nonsubradiant system into two
subradiant ones. Such symmetry breaking is a mesoscopic fea-
ture of finite-size arrays that occurs even though the external
driving is homogeneous in space, the array is periodic, and has
no disorder.

Model. The time dynamics of the density matrix of the sys-
tem ρ is described by the master equation ∂tρ = Lρ, where L
is the Lindblad superoperator [26,27],

Lρ = 2γ1D

N∑

m,n=1

cos[ϕ(m − n)]σmρσ †
n − i(H†ρ − ρH ).

(1)

Here, γ1D is the spontaneous decay rate of a single qubit into
the waveguide mode, ω0 is the qubit resonance frequency,
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(a) weak driving

(b) strong driving odd even

(a) weak driving

(b) strong driving odd even

FIG. 1. Schematic illustration of an array of qubits coupled to
a waveguide with an anti-Bragg period of λ/4. (a) and (b) corre-
spond to weak and strong coherent driving from the left-hand side,
respectively, illustrated by a green wave. There are no subradiant
states for weak driving, while strong driving splits the array into two
λ/2-spaced subarrays with subradiant correlations in each half. The
inset illustrates collective spin states after the splitting.

c is the light speed in the waveguide, and ϕ ≡ 2πd/λ is
the light phase gained between two neighboring qubits. The
Hamiltonian reads

H = H0 + V, H0 = −iγ1D

N∑

m,n=1

σ †
mσneiϕ|m−n|, (2)

where the H0 term describes the waveguide-induced coupling
between the qubits. The non-Hermitian part of H0 accounts for
the spontaneous decay into the waveguide. This Hamiltonian
also assumes the usual Markovian and rotating-wave approxi-
mations. The interaction term V = �R

∑N
n=1(σ †

n e−iϕn + H.c.)
is responsible for the resonant coherent driving at the qubit
resonance frequency. For simplicity we count all the frequen-
cies from the qubit resonant frequency ω0.

Many-body time dynamics. In order to provide insight into
the time dynamics we study the eigenstates of the master
equation defined as Lρ = �ρ. One of the eigenvalues � is
always exactly equal to zero, and corresponds to the stationary
solution. The real part of the nonzero eigenvalues − Re �

is the spontaneous decay rate of the transient correlations in
the presence of the driving. More details are given in the
Supplemental Material (SM) [28]. We show in Fig. 2 the
dependence of the smallest nonzero rate − Re � on the Rabi
frequency �R and the array period d . Figure 2(a) shows
the decay rate as a color map, while Fig. 2(b) presents the
map cross sections for specific values of �R. The calcula-
tion demonstrates that at low powers, �R � γ1D, the strongly
subradiant correlations exist for d close to 0 and d close to
λ(ω0). They become less subradiant at larger powers [com-
pare the first three curves in Fig. 2(b) calculated for �R/γ1D =
10[−1,0.5,0]].

These results at low powers are in full agreement with
Refs. [13,14,17,20,33]. However, these previous works, in-
cluding ours [14,20], have been focused on the eigenstates
of the non-Hermitian Hamiltonian H0 in Eq. (2), that are
characterized by a certain integer number of polaritons n̂ =∑

m σ †
mσm. On the other hand, here we consider the master

equation in the presence of driving. Hence, the current study

FIG. 2. Dependence of the lifetime of the longest-living corre-
lation on the array period d and the Rabi frequency �R. (a) shows
the color map, and (b) shows the cross sections of the color map for
several Rabi frequency values indicated on the graph. The symbols
on the top of (a) schematically indicate the spin phases. Calculated
for N = 5.

captures additional physics at larger powers, �R � γ1D, that
is beyond the effective Hamiltonian approach.

Specifically, it can be seen in Fig. 2 that while strongly sub-
radiant correlations are not present for an anti-Bragg period
d ≈ λ(ω0)/4 under weak driving, they emerge for �R � γ1D.
This is also manifested as a sharp dip in the middle of the last
two red curves in Fig. 2(b). The larger the driving, the longer
is the lifetime. An observation of these anti-Bragg subradiant
correlations constitutes our main finding.

In order to examine subradiant correlations in more detail
we show in Fig. 3 the dependence of the decay rates on �R

for d = λ/4. At low powers, �R � γ1D, there are no strongly
subradiant correlations. The smallest decay rate for d = λ/4
(ϕ = π/2) and N � 1 is given by Re � = −π2γ1D/N3, in
contrast to the much smaller decay rate Re � ∼ ϕ2γ1D/N3

in the subwavelength structures where ϕ � π [13,18,28]. At
larger powers, �R � γ1D, these decay rates first increase be-
cause qubit transitions are saturated by the driving. However,
the spectrum drastically changes for �R � 10γ1D. Nine eigen-
values split from the rest of the spectrum, and acquire small
real parts ∼γ 3

1D/�2
R that decrease at larger powers. These are

considered anti-Bragg subradiant correlations. Their spatial
structure is further examined in Figs. 3(b)–3(d) where we
present the correlation function Tr[ρσ †

n σm] for the longest-
living correlation at three different powers. With the increase
of the driving the correlations acquire a characteristic checker-
board pattern, namely, they exist only for qubit numbers of
the same parity. This suggests that the subarrays with odd-
and even-numbered qubits, that have λ/2 spacing [see also
Fig. 1(b)], should be analyzed separately at larger powers.
The same checkerboard structure exists also in the spin-spin
correlation functions calculated for the ground state [28]. The
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FIG. 3. (a) Dependence of the normalized decay rates on �R for
d = λ/4 and N = 5. (b)–(d) Spin-spin correlation function |〈σ †

n σm〉|
calculated for the second longest-living eigenstate for �R/γ1D =
100.4, 100.6, 101. These values are also indicated by blue stars in (a).

patterns in Figs. 3(b)–3(d) are mirror asymmetric because the
driving is performed from the left of the array.

Eigenstates of effective Hamiltonian. Our approach, fo-
cused on the eigenstates of the Lindblad operator (1), might
seem redundant since it could be sufficient to consider just
the eigenstates of the effective non-Hermitian Hamiltonian H
in Eq. (2) that already includes both spontaneous decay into
the waveguide and the driving term V . The decay rates are
then found as imaginary parts of the Hamiltonian eigenvalues
ω and are shown in Fig. 4. Surprisingly, there are no subra-

FIG. 4. Decay rates of the eigenstates of the effective Hamilto-
nian H , Eq. (2). Calculation has been performed for d = λ/4 and
N = 5. Color shows the expectation value of the Hamiltonian Eq. (6).
The inset shows the complex energy spectrum for �R = 100γ1D.

diant eigenstates in Fig. 4 at large driving powers, in stark
contrast to the more rigorous approach in Fig. 3 that shows the
presence of subradiant correlations for �R � γ1D. Thus, the
effective Hamiltonian does not capture the formation of sub-
radiant correlations. This can be qualitatively explained by the
underlying assumption that after spontaneous photon emis-
sion the quantum state of the qubit array is lost in the effective
treatment, while in fact it just decays into the less-excited
subspace of the Hilbert space. Thus, the effective Hamiltonian
does not fully capture the driven-dissipative dynamics. In
other words, the formation of subradiant correlations requires
a delicate balance between the spontaneous decay (quantum
jump terms in the master equation) and the driving. Unless
both these terms are rigorously taken into account, subradiant
correlations cannot be adequately described.

Explanation of subradiant correlations. We start with an
auxiliary simplified case of a vanishing array period d , so that
ϕ = 0. Only the collective spin raising operator, correspond-
ing to the usual Dicke state, σtot = ∑N

n=1 σn, is then coupled
to photons. In particular, the driving term is proportional just
to V = �R(σ †

tot + σtot ) ≡ �Rσtot,x, and the dissipation is gov-
erned by the Lindblad operator

Ldissρ = γ1D(2σtotρσ
†
tot − σ

†
totσtotρ − ρσ

†
totσtot ). (3)

It is then convenient to use the basis of the eigenstates ψ
(ν)
J,M

with the given total collective spin J and its projection M =
−J,−J + 1 . . . J onto the x axis. Such collective spin for-
malism is widely used also in the cavity QED (see, e.g.,
Refs. [23,25]). Here, the index ν = 1 . . . χJ distinguishes be-
tween different irreducible representations with the same J .
For example, for N = 2 spins we get the usual triplet (J = 1)
and a singlet (J = 0). For N = 3 there exists one quadruplet
with J = 3/2, and χ1/2 = 2 doublets with J = 1/2. Subradi-
ant eigenstates can be then sought in a quasidiagonal form

ρ (ν,ν ′ ) =
J∑

M=−J

∣∣ψ (ν)
J,M

〉
fM

〈
ψ

(ν ′ )
J,M

∣∣. (4)

Since the matrices Eq. (4) are by construction quasidiago-
nal in the ψJ,M basis, they commute with the driving term,
[V, ρ (ν,ν ′ )] = 0. Next, the master equation dρ/dt = Lρ for
the matrices Eq. (4) reduces to an effective kinetic Boltzmann
equation for the occupation numbers fM . Namely, we obtain

dfM

dt
= γ1D[WM+1( fM+1 − fM ) + WM ( fM−1 − fM )], (5)

where WM = (J + M )(J − M + 1)/2 ≡ σ 2
tot,M−1,M/2 [34]

(the first and second terms on the right-hand side should be
omitted for M = J and M = −J , respectively). Equation (5)
has a uniform stationary solution fM = 1/(2J + 1) that
corresponds to a subradiant correlation, Lρ (ν,ν ′ ) = 0. Such
a uniform solution is especially transparent for just the
N = 1 qubit, when J = 1/2. Then it reduces to a usual
saturated state of a strongly driven two-level system, where
the ground and excited states have equal populations of 1/2.
Due to the degeneracy in ν, ν ′, the number of independent
subradiant correlations ρ (ν,ν ′ ) is given by

∑
J χ2

J , that is,
1,2,5,14 for N = 1, 2, 3, 4, respectively. These operators (4)
correspond to long-living correlations in Fig. 2 for ϕ = 0.
Exactly the same analysis is applicable also to the Bragg

L031702-3



ALEXANDER N. PODDUBNY PHYSICAL REVIEW A 106, L031702 (2022)

FIG. 5. Time dynamics of the correlation function 〈σ †
n σ1〉 de-

pending on the driving power. (a)–(c) Dependence of the correlation
functions for three different driving strengths, indicated on the
graphs. (d) Time dependence of the correlation function 〈σ †

3 σ1〉.
Calculation has been performed for d = λ/4, N = 5. At the moment
t = 0 the array is in the fully excited state.

structures with d = qλ/2 (ϕ = qπ , q = 1, 2, . . .). The only
difference is that the total spin raising operator is given by
σtot = ∑N

n=1(−1)qnσn.
Subradiant correlations for ϕ = 0 and ϕ = π are not es-

pecially surprising since subradiant eigenstates also exist
without driving. Somewhat similar phases have recently been
also reported for the related case of cavity QED [25] with
incoherent driving. However, we are now in a position to
explain also the less expected strongly subradiant correlations
for the anti-Bragg case of ϕ = π/2. The main idea is that the
even and odd sublattices of the d = λ/4-spaced lattice, with
d = λ spacing, become independent for a strong driving. For a
weak driving there exists an exchange coupling between these
two sublattices, described by the Hamiltonian

He−o = −iγ1D

∑

k,l

σ
†
2kσ2l−1eiϕ|2k−2k+1|. (6)

However, such coupling is suppressed when the sublattices
are effectively detuned from each other by strong driving.
Indeed, the color of the lines in Fig. 4 encodes the expecta-
tion values of the Hamiltonian Eq. (6). At large driving the

lines become darker, which indicates the quenching of the
coupling. This supports our interpretation of Figs. 3(b)–3(d):
Two sublattices become independent for �R � γ1D. As such,
subradiant eigenstates of the Lindblad operator for ϕ = π/2
are products of the corresponding eigenstates (4) for odd-
and even-numbered subarrays, ρϕ=π/2 = ρodd

ϕ=π ⊗ ρeven
ϕ=π . Such

an eigenstate factorization is a rather special feature of the
λ/4 spacing. It becomes possible only because the odd-even
mixing Hamiltonian Eq. (6) is Hermitian and it is suppressed
by the driving, while the dissipative part of the Lindblad
operator does not mix the two sublattices, cos[ϕ(m − n)] = 0
for ϕ = π/2 and odd m − n. A more detailed analysis reveals
that spontaneous decay is still possible in the Re � ∼ γ 3

1D/�2
R

order. The perturbation theory to calculate the decay rate is
described in Sec. S1B of SM [28]. In particular, for N = 3
qubits the rate for the longest-living correlation is approxi-
mately given by 59γ 3

1D/(9�2
R). We also note that there also

exist two superradiant correlations, arising at d = λ/4 for
strong driving (see SM [28]), which is consistent without our
interpretation of an array split into two.

Potential observation. The considered subradiant eigen-
states could be directly observed in the time-dependent
correlations between the qubit excitations. The results are
shown in Fig. 5 for different driving strengths. We start with
the array being fully excited at the moment t = 0 and then
study the evolution of the correlations 〈σ †

n σ1〉 depending on
the driving strength. For low strength [Fig. 5(a) and red curves
in Fig. 5(d)], the correlations for n > 1 quickly decay with
time. A stronger driving strength leads to the appearance of
the significant correlations 〈σ †

3 σ1〉 and 〈σ †
5 σ1〉 at large times.

The blue curves in Fig. 5(d) clearly indicate the slowdown of
the decay. This is fully consistent with the correlations shown
in Fig. 3. A potential experiment would require a supercon-
ducting processor with just N = 3 anti-Bragg-spaced qubits,
which is well within the current technological limits of circuit
QED [35].

Outlook. Our findings uncover yet another mechanism of
the formation of subradiant correlations in the Dicke-like
models. Since the considered subradiant eigenstates have
large degeneracy, they should be quite sensitive to the modifi-
cation of system parameters, such as driving and interactions.
It could be instructive to look for similar effects in other setups
such as quantum metasurfaces [36]. There might also ex-
ist related nondecaying time-crystalline phases, mediated by
the inherently long-ranged waveguide-mediated interactions
[5,37,38].
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