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Entropic measure of directional emissions in microcavity lasers
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We propose a notion of the directional emission in microcavity lasers. First, the Shannon entropy of the
far-field profiles in the polar coordinate can quantify the degree of unidirectionality of the emission, while
previous notions about the unidirectionality cannot efficiently measure in the robust range against a variation of
the deformation parameter. Second, a divergence angle of the directional emission is defined phenomenologically
in terms of full width at half maximum, and it is only easily applicable to a simple peak structure. However, the
Shannon entropy of semimarginal probability of the far-field profiles in the Cartesian coordinate can present
equivalent results, and moreover it is applicable even to cases with a complicated peak structure of the emission.
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Microcavity lasers have recently garnered considerable
attention owing to their applicability as optimal candidate
models for studying wave chaos [1,2] and non-Hermitian
quantum systems [1,3,4] as well as their optoelectronic ap-
plications and photonics [5] such as speckle-free full-field
imaging [6], and broadband coupling [7]. In addition, recent
studies have revealed many interesting physics in phase space
related to photon transport [8,9]. In particular, the key to
such applications is that microcavity lasers have high-quality
(Q) factors and directional emission simultaneously [10,11].
High-Q modes guarantee low threshold lasing; in addition,
they can be adopted for biomolecule detections [12,13] and
nanoparticles [14,15]. However, they are limited by isotopic
emissions and low output power. Hence, directional emission
is also required to support high output power, and also facili-
tate easy coupling to a waveguide for optoelectronic circuits.
Therefore, to date, several microcavity lasers have been stud-
ied to achieve these properties simultaneously [16–21].

In these studies, the discussions about a high Q-factor
have been addressed quantitatively and systemically, because
the Q factor can be well defined by Q = fr

� f , where fr is a
resonance frequency and � f is a resonance width, or equiva-
lently, Q = fr

2| fi| in the context of a complex eigenfrequency
fc = fr + j fi. However, regarding directional emission, we
consider that its definition is relatively subtle and it remains
not well established up to date. In this Letter, thus, we intro-
duce measures of the unidirectional emission by exploiting
the notion of Shannon entropy, and this suggestion holds that
an entropic measure of the unidirectional emission is more
accurate and efficient than former alternatives related to the
emission window [22,23]. It is possible to validate these re-
sults by demonstrating that former alternatives fail to detect
the degree of the directional emission, yet our methods can.
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To further engage this discussion, we consider a prevalent
and basic limaçon-shaped microcavity laser as a candidate for
the directional emission with a high Q factor [10,11,24,25],
as it has been extensively studied to date. The geometrical
boundary of the limaçon-shaped microcavity is defined as
follows,

R(θ ) = R0(1 + χ cos θ ), (1)

where θ is the angle in the polar coordinate, χ is the deforma-
tion parameter, and R0(= 1) is the radius of circles at χ =
0. The limaçon-shaped microcavity laser with an effective
index of refraction n = 3.3 (for an InGaAsP semiconductor
microcavity) is treated in a ray simulation. Some of the repre-
sentative far-field profiles (FFPs) in the limaçon-shaped cavity
are shown in Fig. 1. The FFPs are obtained from transmit-
ted rays by using Fresnel equations for transverse magnetic
(TM) modes. Figures 1(a)–1(c) are plotted in the Cartesian
coordinate within the range of |x| � 5 and |y| � 5 at each de-
formation χ = 0.43, χ = 0.454, and χ = 0.478, respectively.
Figures 1(d)–1(f) are FFPs plotted in the polar coordinate, cor-
responding to FFPs in the Cartesian coordinate, respectively.
We call the angles in the range of |θ | � π

4 as the “emission
window,” which was first introduced by Refs. [22,23] for the
definition of unidirectionality.

It was reported that the deformation parameter χ = 0.43
is the optimal value for unidirectional emission [10]. More-
over, they have concluded that the results are robust against
any variation of the deformation parameter in the range of
0.43 � χ � 0.49 [10]. Consistent with their results, the over-
all profiles of Fig. 1 appear similar to each other. However, if
we observe the morphologies of FFPs for Figs. 1(d)–1(f) si-
multaneously, we can suggest that FFPs at χ = 0.454 exhibit
a larger unidirectionality than the others.

To validate this suggestion, we address three types of mea-
sure for the unidirectionality. The blue squares (UW ) and red
circles (UC) in Fig. 2(a) are measures of the unidirectionality
associated with the emission windows. More precisely, the
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FIG. 1. Far-field profiles in a limaçon-shaped cavity. (a)–(c) are
the far-field profiles in the Cartesian coordinate within x ∈ [−5, 5]
and y ∈ [−5, 5] at each deformation χ = 0.43, χ = 0.454, and χ =
0.478, respectively. (d)–(f) are also far-field profiles plotted in the
polar coordinate corresponding to the far-field profiles in the Carte-
sian coordinate. The angles in the range of |θ | � π

4 are the emission
window. The inset in (c) shows the boundary shape of the cavity at
each χ = 0.43 (black lower line), 0.454 (red center line), and 0.478
(blue upper line), respectively.

unidirectionality UC marked by red circles is defined as fol-
lows [26,27]:

UC =
∫ 2π

0 I (θ ) cos θdθ
∫ 2π

0 I (θ )dθ
. (2)

Here, I (θ ) denotes the intensity of angular distribution of
FFPs [28]. The cos θ as a window function determines the
extent to which the emission directionality deviates from
unidirectionality. Actually, the positive and negative UC rep-
resent tendencies toward a forward and backward emission,
respectively, and UC = 0 corresponds to the bidirectional or
isotropic emission of the microcavity laser. In our case, the
values of UC almost increase linearly from UC � 0.3 to UC �
0.35 in the range of 0.43 � χ � 0.478. This result implies
that the unidirectionality increases as the deformation param-
eter χ increases, unlike observing the morphologies of FFPs
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FIG. 2. Three types of measure of unidirectionality in the
limaçon-shaped cavity. The blue squares (UW ) and red circles (UC)
in (a) are measures of unidirectionality associated with the emission
window. They almost increase linearly as a function of the deforma-
tion. The orange circles in (b) are normalized Shannon entropies and
they have a local minimum at χ = 0.454.

for Figs. 1(d)–1(f). Note that we here discretize 2π into 3600
pieces for numerical calculation, i.e., dθ ∼ �θ = 0.1◦.

The other measure of the unidirectionality UW marked by
blue squares is also defined as follows [22,23],

UW =
∫ π

4
−π
4

I (θ )dθ

∫ 2π

0 I (θ )dθ
, (3)

where the integral range of the numerator runs from −π
4 to π

4 .
The angles in this range of |θ | � π

4 are the so-called emission
window as mentioned before.

Hence, the meaning of this definition is clearly the ratio
between accumulated intensities of FFPs within the emission
window and the total intensity of FFPs. The values of UW also
increase almost linearly from UW � 0.56 to UW � 0.59 in the
range of 0.43 � χ � 0.478. Consequently, these values of UW

are also inconsistent with our observation. We can conjecture
that this discrepancy is attributed to the fact that UW increases
proportionally to the integral value of the emission window,
regardless of the detailed structure of the emission window.
Furthermore, it should be noticed that UC exhibits a similar
trend with UW .

Next, we introduce entropic unidirectionality. Accordingly,
we first have to obtain a Shannon entropy associated with
FFPs. Shannon entropy is a relevant measure of the average
amount of information for a random variable with a given
probability distribution function [29]. It was first developed
and utilized in communication theory [29]. However, recently
it has been also exploited in various areas such as biosystems
[30], economics [31], atomic physics [32], and microcavity
lasers [33].

The discrete Shannon entropy for the intensity of FFPs is
formally defined as

SN = − 1

ln K

K∑

i=1

ρilnρi, (4)

where ρi represents the probability distribution obtained
under the normalization condition

∑K
i=1 I (θi ) = 1. That is,

the random variable X is an angular coordinate (�) with
the probability distribution {ρi} = {P(� = θi )}. In addition,
the 1

lnK is a normalization factor such that the value of
Shannon entropy is restricted in the range of 0 � SN � 1,
with K = 3600 as mentioned above. The orange circles in
Fig. 2(b) represent normalized Shannon entropy (SN ) calcu-
lated by this definition. The value of SN has a local maximum
(0.898) at χ = 0.43 and local minimum (0.888) at χ = 0.454,
respectively.

Our recent works have confirmed that Shannon entropy
can be beneficial in measuring the delocalization of the
given probability distributions [34]. Hence, the minimum (or
maximum) value of the Shannon entropy indicates the maxi-
mum localization (or delocalization) of the intensity of FFPs
in the polar coordinate under the normalization condition∑K

i=1 I (θi ) = 1. Consequently, the local minimum value of
SN at χ = 0.454 directly verifies the maximal undirectional-
ity. Moreover, the maximal entropy lnK corresponds to the
isotropic distribution that is not a bidirectional emission in the
polar coordinate. This result validates the conjecture that by
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FIG. 3. FFPs in an oval-shaped microcavity laser. (a)–(c) are
FFPs in the Cartesian coordinate restricted in the range of x ∈
[−5, 5] and y ∈ [−5, 5] at each deformation ε = 0.043, ε = 0.05,
and ε = 0.058, respectively. (d)–(f) are also FFPs plotted in the polar
coordinate corresponding to FFPs in the Cartesian coordinate. The
inset in (c) shows the boundary shape of cavity at each ε = 0.043
(black upper line), 0.05 (red center line), and 0.058 (blue lower line),
respectively

exploiting the Shannon entropy, our measure of unidirection-
ality is coincident with our observations in Fig. 1.

For more generality of our argument and to understand
the discrepancy between Figs. 2(a) and 2(b), let us consider
an oval-shaped microcavity laser [35]. The FFPs are also
obtained from transmitted rays by using Fresnel equations for
transverse electric (TE) modes with an effective index of
refraction n = 3.3. The geometrical boundary condition of
an oval-shaped cavity, which is deformed from an ellipse, is
defined as follows:

x2

a2
+ (1 + εx)

y2

b2
= 1. (5)

For convenience, we substitute the deformation parameter χ

to ε. It was reported that the optimized condition for a direc-
tional emission is a = 1.0, b = 1.03, and ε = 0.05, where a
and b are the major and minor axis of an ellipse, and ε is the
deformation parameter, respectively [35]. According to their
results, we conduct a ray simulation in the range of 0.043 �
ε � 0.058 at fixed values of a = 1.0 and b = 1.03. We plot
some of the representative FFPs, i.e., Figs. 3(a)–3(c) in the
Cartesian coordinate restricted in x ∈ [−5, 5] and y ∈ [−5, 5]
at each deformation ε = 0.043, ε = 0.05, and ε = 0.058. The
corresponding FFPs in the polar coordinate are displayed in
Figs. 3(d)–3(f).

In contrast to Fig. 1, we can easily notice that the overall
FFPs depending on the deformation parameter vary mani-
festly, and it can be naturally expected that the local maximum
of the unidirectionality is obtained at ε = 0.05 by observ-
ing Figs. 3(b) and 3(e), and comparing other subpanels in
Fig. 3. In this case, the local minimum value of SN , and local
maximum values of UW and UC are attained at ε = 0.05 simul-
taneously, i.e., the entropic measure of the unidirectionality SN

agrees well with the former measure of the unidirectionality
(UC,UW ) related to the emission window. Consequently, this
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FIG. 4. Three types of measure of the unidirectionality in the
oval-shaped microcavity. The blue squares and red circles in (a) are
measures of the unidirectionality associated with the emission win-
dow. Both of them have local maximal values at ε = 0.05. The
orange circles in (b) are normalized Shannon entropies. The values
of orange circles have a local minimum value at ε = 0.05.

fact implies that UC and UW can only detect the unidirection-
ality when the overall FFPs vary significantly with a manifest
variation of the emission window. However, our measure for
the unidirectionality by employing the Shannon entropy can
efficiently capture the unidirectionality in any case. Notice
that the relative difference between the local maximum and
the local minimum of SN in Fig. 4 is much larger than that of
Fig. 2. This fact coincides with our initial intuition.

Another aspect for the definition of the directional emis-
sion along with the unidirectionality is a so-called “divergence
angle.” This concept presents an analogy for the full width
at half maximum (FWHM) [11]. In our case, the divergence
angle estimates the width of the peak emission (i.e., the lobe
around θ = 0) [11,16] of the emission intensity in the polar
coordinate, and this can indicate the degree of the spread
of FFPs onto the y axis in the Cartesian coordinate. Under
these assumptions, we first introduce the concept of semi-
marginal probability distribution. When the joint probability
distribution function of random variables X and Y is given by
ρ(x, y), the marginal probability distribution of Y is ρ(y) =∫

ρ(x, y)dx, where the integral is carried out over all points
in the range of (X,Y ) for which Y = y. We can interpret the
intensity of FFPs, I (x, y), in the Cartesian coordinate as a joint
probability distribution function under the normalization con-
dition

∫∫
I (x, y)dxdy = 1, i.e., the random variables X and

Y are components of the Cartesian coordinate with the joint
probability distribution function ρ(x, y) = P(X = x,Y = y).
The integral

∫
ρ(x, y)dx is performed over the interval x ∈

[0, 5] to solely handle the forward emission. This is why we
call it a semimarginal probability distribution. Note that we
have discretized the (x, y) coordinate in the range x ∈ [−5, 5]
and y ∈ [−5, 5] into a 1000 × 1000 grid for the numerical
calculation. Then, the discrete Shannon entropy from ρ(y j )
is defined by

Sy = − 1

ln K

K∑

j=1

ρy j lnρy j , (6)

where the semimarginal distribution ρy j = ∑K
i=1 ρ(xi, y j ) and

K = 1000.
The blue squares in Fig. 5(a) represent the divergence angle

(DA) and the red spheres in Fig. 5(a) represent the Shannon
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FIG. 5. (a) The blue squares are markers of the divergence angle
(DA) and the red circles are those of Shannon entropy of the semi-
marginal probability densities (Sy) in the oval-shaped microcavity
laser at each ε = 0.043, ε = 0.05, and ε = 0.058. These two plots
show similar trends. The three insets are semimarginal probabilities
related to Sy. (b) The orange squares are markers of Shannon entropy
of semimarginal probabilities (Sy) in the limaçon-shaped microcavity
laser at χ = 0.43, χ = 0.454, and χ = 0.478. The three insets are
also semimarginal probabilities related to Sy.

entropy (Sy) of the semimarginal probabilities in the oval-
shaped microcavity laser at each ε = 0.043, ε = 0.05, and
ε = 0.058. Note that these two plots show similar trends and
these results support our previous assumption. The three insets
in Fig. 5 represent semimarginal probability densities (ρy).
All peaks of ρy are located at ε � ±1, and careful exami-
nation reveals that the third one is more spread out than the
others.

In the case of complex peak structures, as illustrated in
Figs. 1(d)–1(f), we can barely define DA (i.e., FWHM). How-
ever, we can quantitatively and systematically measure the
spread of the emission peak by exploiting Sy, and the ob-
tained results are presented in Fig. 5(b). The orange squares
in Fig. 5(b) indicate Shannon entropy (Sy) of semimarginal

probability (ρy) in the limaçon-shaped cavity at χ = 0.43,
χ = 0.454, and χ = 0.478. The minimum value of Sy in
Fig. 5(b) is substantially larger than that of Sy in Fig. 5(a),
which can be confirmed by comparison between Figs. 1(e)
and 3(e).

Consequently, we can say that the oval-shaped microcavity
laser has larger unidirectionality and smaller Sy (i.e., DA) than
the limaçon-shaped microcavity laser at least in our examples.
In contrast, the limaçon-shaped microcavity laser has a more
robust range against any variation of the deformation parame-
ter than the oval-shaped microcavity laser.

We have presented measures for directional emission in
microcavity lasers by exploiting the Shannon entropy. There
are primarily two aspects of the directional emission—the
unidirectionality and the divergence angle. Shannon entropy
obtained from the normalized intensity of angular distri-
butions of FFPs can measure the unidirectionality even if
former notions cannot effectively detect the directional emis-
sion when the emission is robust against a variation of the
deformation parameter. However, it should be noticed that our
method can be wrong in some extreme cases. For example,
extreme bidirectional emission can yield a very low value of
the Shannon entropy. In order to exclude such cases, each FFP
must have a single broad but dominant emission. To guar-
antee this condition, an overlap between FFPs and Gaussian
normal distribution must be larger than a critical value as
the role of auxiliary measure. In the proposed examples, the
overlaps are always larger than 0.6 with a mean value 〈θ〉 = 0
(corresponding to the emission peak) and standard deviation
σ = 45◦ (corresponding to the emission window). Shannon
entropy obtained from the semimarginal probability densities
of FFPs in the Cartesian coordinates can provide equivalent
results to the divergence angle; moreover, it can be applied
even in the case of complicated peak structures.

Our measure is entirely defined by normalized FFPs (as
probability distributions), regardless of the origin of emis-
sions. Thus, our measure is applicable to the FFPs obtained
from the wave simulations and, furthermore, it can be appli-
cable to any shape of microcavity lasers and various antenna
structures. We hope that our results can help to design and to
modulate micocavity lasers for better directional emissions.
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