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Excitation of absorbing exceptional points in the time domain
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We analyze the time-domain dynamics of resonators supporting exceptional points (EPs), at which both the
eigenfrequencies and the eigenmodes associated with perfect capture of an input wave coalesce. We find that
a time-domain signature of the EP is an expansion of the class of waveforms which can be perfectly captured.
We show that such resonators have improved performance for storage or transduction of energy. They also can
be used to convert between waveforms within this class. We analytically derive these features and demonstrate
them for several examples of coupled optical resonator systems.
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Optimal energy transfer via electromagnetic waves is of
high importance for a variety of applications, such as trans-
mitting information in integrated photonics and quantum
processors, and energy transduction in ablation and solar cells.
The limit of perfect transfer (zero scattering) in general has
solutions only at discrete (possibly complex) frequencies. One
form of optimal transduction of an electromagnetic wave is
coherent perfect absorption (CPA), the time-reversed process
of lasing at threshold, in which by tuning the degree of
absorption in a structure, a specific continuous-wave (cw)
input at real frequency will be perfectly absorbed [1]. It has
recently been shown that an analogous phenomenon can be
achieved in lossless systems by exciting a zero scattering
state at a complex frequency with an exponentially rising
input wave. In this case, the system will simply store the
input until the ramp is turned off and the energy is released
[2]. Showing that it is possible to access such states raises
a natural question: What are the time-domain signatures of
degeneracies of these states, known as exceptional points
(EPs).

When a non-Hermitian system is tuned to have a degen-
eracy, two or more eigenvalues and eigenfunctions coalesce.
EPs of resonances have been shown to lead to enhanced
wave-matter interactions, improved sensing, asymmetric state
transfer, and novel lasing behavior [3–24]. Recently, phe-
nomena associated with the presence of EPs of CPAs
have been studied and probed in the frequency domain,
focusing on real frequencies. An anomalous quartic line
broadening was predicted due to the presence of the EP
[25], and observed in a coupled ring resonator system,
[26]. However, this earlier work considered only the cw
input.

Here, we show that the implication of this coalescence of
eigenfunctions at a real or virtual CPA EP is that a second
wave-equation solution arises, of the form (vt − z)eikz−iωt ,

where v is the propagation speed and k is the wave vector.
Here ω, k ≡ (ω/v) are real for CPA EPs and complex for
virtual CPA EPs. More generally for an mth-order degeneracy,
solutions of the form (vt − z)m−1eikz−iωt and all lower powers
exist and any superposition thereof satisfies the zero scattering
boundary condition. These modes are growing temporally
and decaying spatially along the propagation axis. Impor-
tantly, from time-reversal arguments one can show that the
time reversal of these more general waveforms describes the
emission of systems at resonance EPs [27,28]. The possibility
of exciting a zero scattering state with any superposition of
these waveforms has yet to be explored. Not only is this
of fundamental interest, but it allows increased flexibility in
exciting such a structure without generating reflections; we
will show that this leads to improved impedance matching of
finite pulses and the ability to load and potentially empty a
cavity faster.

The fact that these waveforms are reflectionless can be
seen from the following general argument, which applies
both to CPA and the recently discussed reflectionless scat-
tering modes (RSMs). While at a CPA, with appropriate
spatial excitation, there is no reflection to any of the input
channels, RSMs are states which are defined by zero re-
flection into a chosen subset of the input channels [29,30]
but for which the input is partially or fully transmitted into
the complementary outgoing channels. For both CPA and
RSMs, an eigenvalue of a suitably defined reflection matrix
is zero at a particular ω, and EP of order m is created by
the coalescence of m such frequencies and eigenvectors at
ωEP. The single remaining reflection eigenvalue vanishes as
ρ(ω) ∼ (ω − ωEP)m at the EP [25], and hence all deriva-
tives of ρ(ω) up to order m − 1 vanish. Specializing this
to the case m = 2, which will be our focus here, we con-
sider inputs at z = 0 of eiω1t and teiω1t ; we Fourier transform
(FT) them, and then apply the inverse FT to their product
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with ρ(ω):

F (eiω1t ) = δ(ω − ω1), F (teiω1t ) = δ′(ω − ω1),∫
δ(ω − ω1)ρ(ω)eiωt dω = ρ(ω1)eiω1t ,

∫
δ′(ω − ω1)ρ(ω)eiωt dω = ρ ′(ω1)eiω1t + ρ(ω1)iteiω1t . (1)

Thus, at a CPA or RSM EP, since ρ(ω) = ρ ′(ω) = 0, there
is no reflection of any linear combination of such inputs at
real or complex ωEP. This obviously applies to the inputs
tm−1 exp(iω1t ) with m � 3 at higher-order EPs. To satisfy
the wave equation, the input has to be of the form f (vt − z)
and we obtain the explicit solution mentioned above. In ad-
dition, it can be seen that at a generic CPA, in which only
ρ(ω) = 0, the growing input t exp(iωt ) is reflected but is
converted to the constant-amplitude output exp(iωt ). We will
discuss such conversion processes, which generalize to higher
orders, briefly below and in the Supplemental Material (SM)
Sec. 1 [31].

The above argument neglects the effect of the turn on and
off of the input wave. To estimate the effect of the turn on at a
CPA and CPA EP, we FT the inputs of the form θ̃ (t )eiω1t and
θ̃ (t )teiω1t , where θ̃ (t ) ≡ θ (t ) or [tanh(t ) + 1]/2 and multiply
the results by ρ = r, the reflection coefficient, to get

lim
ω→ωCPA

F (θ̃ (t )eiωt )rCPA ∝ ω − ωCPA

ω − ωCPA
= const,

lim
ω→ωEP

F (θ̃ (t )eiωt )rCPA EP ∝ (ω − ωEP)2

ω − ωEP
= (ω − ωEP),

lim
ω→ωEP

F (θ̃ (t )teiωt )rCPA EP ∝ (ω − ωEP)2

(ω − ωEP)2
= const.

Interestingly, we see that for input eiωt the effect of the turn
on (introducing a pole) is strongly damped at CPA EP, as the
response at ωEP is zero, whereas at a CPA it is a constant,
corresponding to a slower temporal decay for the same input.
In addition, while the response to teiωt at a CPA EP is also
constant, the input in this second case is much larger for long
excitation times, which implies smaller relative reflection.
Moreover, due to the linear dependency on t in t exp(iωt ),
the scattered field that originates from the incoming field at
earlier times is smaller in magnitude than the current input and
the scattered field before the destructive interference starts is
small, which results in small relative reflection compared to
exp(iωt ).

We now demonstrate these general properties in an an-
alytically solvable model oriented towards optics; similar
excitation properties apply in ac circuits, acoustics, and quan-
tum scattering. For simplicity we take a structure with a single
input channel, terminated with a perfect mirror. A property of
the response at an EP, which has been exploited for sensing
applications, is that the EP leads to higher sensitivity of the
eigenvalues to perturbations in the parameters of the system
[32–35]. In the context of modeling this implies a higher
degree of difficulty in locating EPs by pure numerical search.
To avoid this, as a first step we consider the single-port three-
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FIG. 1. (a) Model of two coupled cavities terminated on the right
with a perfect mirror and separated by two lossless partially reflecting
mirrors of reflectivities r1, r2. At a real CPA EP, ωEP is real and there
is no scattering of the inputs associated with exp(iωt ) and t exp(iωt ).
At a virtual CPA EP, ωEP is complex and there is no scattering of the
inputs associated with exp(iωrt + �t ) and t exp(iωrt + �t ), where
ωr ≡ Re(ω) = krv and � ≡ Im(ω) = kiv. This model can represent
three mirrors in a uniform medium, two slabs, and two slabs with
Bragg mirrors. (b) Examples of virtual CPA EPs for the two-slab
setup with r2 EP = 0.574 (n2 = 4.52), r1EP = 0.1 (n1 = 1.22), l1 =
l2 = 1 where we varied r2. For this special case, additional CPA EPs
occur in each free spectral range. (c) Meeting of two CPAs at a real
CPA EP for the two-slab and Bragg-mirror setup as we varied l2. The
EP is at N1 = 5, N2 = 7, n3 = 1.9, n4 = 1.5, n1 = 1.083 + 0.005i,
n2 = 2.17 + 0.107i, l1 = 1, l2 EP = 1.5.

mirror model shown in Fig. 1, which is analytically tractable
and still rather general. It consists of two regions of length
l1, l2 and uniform refractive index n1, n2 terminated by a per-
fect mirror. There are lossless mirrors of reflectivity r1, r2 on
the left surface of each region; the model can represent three
specific setups [see Fig. 1(a)].

The total reflection amplitude coefficient for any realiza-
tion of this model is given by

r = − r1(e2ikn2l2 r2 + 1) + e2ikn1l1 (r2 + e2ikn2l2 )

1 + e2ikn2l2 r2 + e2ikn1l1 (r2 + e2ikn2l2 )r1
. (2)

To find the EPs of this model analytically we impose the
two conditions r(ω) = r′(ω) = 0 simultaneously. Defining
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x = e2ikn2l2+2π ip, y = e2ikn1l1+2π iq, we get

x=
r2

2

(
1
�

− 1
) − 1

�
− 1 ±

√[
r2

2

(
1 − 1

�

) + 1 + 1
�

]2 − 4r2
2

2r2
,

y=r1

r2
2 (� − 1)−�−1∓

√[
r2

2 (� − 1) + �+1
]2 − 4�2r2

2

2r2
,

(3)

where � ≡ n1l1
n2l2

is the ratio of the optical lengths of the slabs.
By expressing k = ω/c using x and y and equating, we obtain
a general analytic condition for a CPA EP that holds in the
weak- and strong-coupling regimes (see SM Sec. V [31] for
details):

ye2π ip� = x�. (4)

Using this method we can find quite easily continuous curves
of EPs in the parameter space of the model (see Fig. S3), al-
lowing design flexibility. Assuming � is an integer, neglecting
dispersion and other nonidealities, the model gives an infinite
number of simultaneous EPs for the same parameter values,
labeled by an integer p. For � = 1, equal optical length, we
obtain analytical solutions for the EPs,

ω

c
= ln

(−r2(r±
1 +1)

2

) + 2pπ i

2in1l1
, r±

1 =
−r2

2 + 2 ± 2
√

1 − r2
2

r2
2

.

EPs for virtual CPA with � = 1 are shown in Fig. 1(b). In the
generic case, � �= 1, the solution of Eq. (4) only gives a single
EP; such an example is shown in Fig. 1(c). Further examples
are given in the SM Sec. V [31].

We now choose an appropriate model for a virtual CPA EP
and calculate the temporal response for the relevant finite-time
inputs, where ωr = Re(ω1), � = Im(ω1). To that end, we pro-
ceed similarly to Ref. [36] (see SM Sec. VI [31]). We present
in Fig. 2 the scattered fields for the inputs exp(iωrt + �t )
[Fig. 2(a)] and t exp(iωrt + �t ) [Fig. 2(b)] multiplied by the
step functions [θ (t − t1) − θ (t − t2)], in a lossless two-slab
system similar to that in Figs. 1(a) and 1(b). As expected,
after a transient, both inputs are not scattered, but the relative
instantaneous scattering for the input teiω1t is much smaller
compared to eiω1t (see insets). In Fig. 2(c) we present the
relative integrated reflected energies as functions of time for
both inputs in Figs. 2(a) and 2(b), compared to eiω1t at a
virtual CPA in a single-cavity setup with the same total length,
Im(ω), and r1. Clearly, the impedance matching is superior for
both inputs at the virtual CPA EP, and the input teiωt performs
significantly better. In addition, the total energy accumulated
and released in the slab system is larger by two orders of
magnitude for teiωt (see SM Fig. S5 [31]).

Now we calculate the temporal responses for CPA EP
(real ω) in a two-slab setup with loss. Here, we seek effi-
cient transduction, so we must keep track of energy which
is scattered after the input is turned off. To alleviate several
computational challenges, we developed a general approach
to perform a numerical inverse FT of the output (see SM
Sec. VI B [31]). Since the FT of a step function decays slowly
at high frequencies, we used tanh(t ) as a smooth switching
function. Importantly, we show there that a term in the FT of
θ̃ (t − t1)t exp(iωt ) is proportional to the switching-off time
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FIG. 2. Scattered field at a virtual CPA EP for the inputs
of (a) eiωr t+�t and (b) teiωr t+�t , multiplied by [θ (t − t1) − θ (t −
t2)], where ω1 = (1.57 + 0.575i)/2 + π , the same parameters as
Fig. 1(b), except both optical lengths are doubled. Both inputs cap-
tured almost perfectly after an initial transient; the relative scattering
for eiωr t is larger (see insets). (c) Relative integrated scattered ener-
gies for both inputs compared with a virtual CPA in one cavity with
the same total length, Im(ω), and r1.

t1. This implies that for t exp(iωt ) there is negligible accumu-
lation of unabsorbed energy at a CPA EP (due to the double
zero), whereas for the conversion process, at an ordinary CPA
there would be a large accumulation of unabsorbed energy in
the resonator which will be emitted after turn off.

In Fig. 3 we present the temporal responses to exp(iω1t )
and t exp(iω1t ) at a real CPA EP in a high-Q two-slab setup
with Bragg mirrors. In a high-Q cavity since the reflection is
large and the absorption is low, the scattered field and equili-
bration time are larger. Evidently, at the CPA EP, the scattering
from both input signals is relatively small and does decay in
time while the pulse is on, as seen in the inset of Fig. 3(b)
(the moving average of the scattered power normalized by the
average incident power), implying large dissipation within the
medium. For the increasing input t exp(iω1t ) it is noteworthy
that negligible scattering occurs after turn off of the input,
in agreement with our conclusion above. This contrasts with
the response at ordinary CPA (single zero) shown in Fig. 4
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FIG. 3. Scattered wave at a real CPA EP for the inputs of (a) eiω1t

and (b) teiω1t , multiplied by {tanh(t ) + 1 − [tanh(t − t1) + 1]}/2, for
a high-Q cavity with Bragg mirrors and EP parameters in Fig. 1. Both
inputs are absorbed in the steady state.

in a low-Q two-slab system without Bragg mirrors. Here,
exp(iω1t ) is absorbed as expected and teiω1t is converted to
eiω1t in agreement with our cw analysis. Moreover, the scat-
tered field in response to eiω1t at the CPA is larger than at the
CPA EP even though the Q factor of the CPA EP setup is much
larger, which means that taking into account the Q-factor dif-
ference, the effective transient scattering at a CPA EP is much
smaller [approximately two orders of magnitude for the times
in the insets in Figs. 3(a) and 4(a)]. Finally, after stopping
the signal for the input teiω1t , the substantial accumulated
energy is released, in agreement with our analysis above [see
Fig. 4(b)].

We validate our model analysis by simulating a realistic
setup of a photonic integrated circuit (PIC) that can be easily
tuned to a CPA EP on the real axis, and verify its unique scat-
tering features with full-wave simulations. The PIC consists
of coupled ring-optical waveguide (CROW) resonators with a
geometry that can be readily implemented using conventional
PIC technology [see Fig. 5(a)]. The coupling parameters be-
tween the waveguides and the ring resonator g and g0, which
are determined by their distances, allow us to tune the setup
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FIG. 4. Scattered wave at a real CPA (not an EP) in a low-
Q two-slab setup for the inputs (a) eiω1t and (b) teiω1t , multiplied
by {tanh(t ) + 1 − [tanh(t − 50) + 1]}/2, with l1 = 1, l2 = 1.5, n1 =
1.533, n2 = 1.4 + 0.3i, ωCPAl1/c = 1.27. It can be seen that teiω1t is
converted to eiω1t (constant amplitude) and there is emission of the
accumulated energy after the input stops.
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FIG. 5. (a) Photonic integrated circuit (PIC) platform to realize
CPA EP on a real axis. (b) Electric field in the PIC at the CPA EP. (c),
(d) Temporal response at the EP for constant and linearly growing
input pulses.
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to a CPA EP, and in this platform they can be tuned with
high accuracy using a nanopositioner stage, making it highly
promising for an experimental implementation. The param-
eters of the setup were chosen to have the CPA EP close
to the optical telecommunication wavelength λ0 = 1.56 μm
(see SM Sec. VIII [31]). In Fig. 5(b) we plot the electric
field distribution for a sinusoidal excitation and input power
Pin = 1 (W/m) at a CPA EP occurring at g/g0 = 1.08. As
expected, there is no reflection at the right port. Finally, we
plot the time-domain response for both inputs in Figs. 5(c)
and 5(d), showcasing the same dynamics predicted in the
three-mirror model.

We conclude that cavities tuned to an EP provide superior
performance for wave capture and impedance matching, for

both energy storage (virtual case) and transduction (coherent
absorption). Particularly interesting is the possibility of per-
fectly absorbing a linearly growing wave as well as a cw wave.
The generalization of this work to higher-degeneracy EPs was
mentioned above and is straightforward. While we have only
shown single-port realizations of absorbing structures tuned
to an EP, our conclusions are valid for multiport excitation,
as long as the appropriate wave front is imposed at each
port.
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