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We present, theoretically and experimentally, phase-matched noncritical off-axis second-harmonic generation
which is easily tuned using a spatial light modulator. The phase-matching condition depends on both the spatial
properties of the fundamental beam and the thermal properties of the medium. We show that a thermally induced
phase mismatch can be compensated by choosing the pump beam spatial properties resulting in phase-matched
noncollinear second-harmonic generation.
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I. INTRODUCTION

Phase matching (PM) in crystals is usually achieved either
by critical PM, where the angle orientation of a birefrin-
gent crystal is the matching parameter, or by noncritical PM
(NCPM) (also called temperature PM), where the temper-
ature T of the crystal is the matching parameter. Critical
PM and NCPM have been widely studied and experimentally
demonstrated in various nonlinear bulk crystals and optical
waveguides [1,2]. Noncritical PM can also be achieved when
ordered modulation of the properties of the medium is used to
satisfy momentum conservation of the photons involved in the
process, in what is known as quasi-phase-matching [3].

In second-harmonic generation (SHG) two photons of
the fundamental beam are combined to produce a second-
harmonic (SH) photon at a doubled frequency. We denote the
fundamental (pump) field by subscript p and the SH (signal)
field by subscript s. The pump of wavelength λ0 propagating
in the crystal is influenced by a temperature-dependent refrac-
tive index np � n(λ0, T ). Analogously, the SH is subject to a
refractive index ns � n(λ0/2, T ).

Lithium niobate is a useful nonlinear material for its
uniquely large second-order nonlinearity. Lithium niobate
crystals used for noncritical PM are usually doped due to a
strong photorefractive effect, which damages the crystal at
high temperatures. The dopant is often MgO, as in the crystal
we use here (5% doping [4]), having a critical temperature of
about 114.5 ◦C [5].

Spatial light modulators (SLMs) are widely used to control
the phase front of an optical beam. Spatial light modulator-
based pump field shaping has been used to obtain SH of
desired shapes [6] or to achieve PM [7], both through a
machine-learning algorithm. Spatial light modulator-based
field shaping was also used to achieve tunable on-the-fly all-
optical quasi-phase-matching of high-harmonic generation in
gases using a pump composed of a superposition of Bessel and
Gauss beams [8]. Here we utilize SLM-based beam shaping to
tune the spatial properties of the pump beam in SHG to allow

phase matching in the presence of temperature-induced phase
mismatch.

II. THEORY

Second-harmonic generation in birefringent crystals is of-
ten observed in an on-axis collinear scheme [Fig. 1(a)],
where the fundamental and signal beams propagate along the
same axis. Assuming energy balance 2ωp = ωs, a relevant
NCPM condition for SHG reads �kcl � 2kp − ks = 4π (np −
ns)/λ0 = 0, where λ0 is the fundamental wavelength and cl
stands for collinear. Therefore, the PM condition is np = ns,
achievable by tuning the crystal’s temperature. We denote the
NCPM temperature by T 0

pm, i.e., np(T 0
pm) = ns(T 0

pm). For ex-
ample, collinear PM can be achieved using a loosely focused
Gaussian beam (FGB). We indicate the k-vectors correspond-
ing to an FGB by kG

p .
A collinear off-axis PM scheme for SHG is shown in

Fig. 1(b) and it can be achieved using a focused ring beam
(FRB). We add a superscript B to its k-vector denotation
kB

p to indicate it produces a Bessel beam in the vicinity of
the focal point. The case in Fig. 1(b) results in a conical
shape of the generated SH signal, with the apex at the focal
point. Superimposing an FGB and an FRB, a noncollinear PM
scheme [Fig. 1(c)] can be observed. Here the generated signal
propagation direction is between the directions of kG

p and kB
p .

Defining |kp| � |kG
p | ∼= |kB

p |, the PM condition now reads

�k � 2|kp| cos θ − |ks| = 4π

λ0
[np(T ) cos θ − ns(T )] = 0.

(1)
Obviously, it can be controlled by both the temperature T and
the angle θ between the two pump components. This condi-
tion describes an off-axis spatially tunable noncritical phase
matching (STNPM). For θ = 0 we recover the collinear phase
mismatch �k(θ = 0) = �k(T ) � �kcl , which is purely ther-
mally induced.

2469-9926/2022/106(3)/L031502(6) L031502-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6580-9327
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.L031502&domain=pdf&date_stamp=2022-09-08
https://doi.org/10.1103/PhysRevA.106.L031502


SHOULGA, BARIR, AND BAHABAD PHYSICAL REVIEW A 106, L031502 (2022)

FIG. 1. (a) Collinear on-axis, (b) collinear off-axis, and (c) non-
collinear schemes of PM in SHG. The generated SH k-vector is
shown in green. Phase mismatch is assumed to be zero. Gray colored
k-vectors do not participate in a PM process.

Considering a geometric optics treatment of an FRB of
radius R focused by a lens of focal length f into a nonlinear
crystal, the angle θ inside the crystal is given by

2θ = arcsin

{
nair

np
sin

[
arctan

(
R

f

)]}
, (2)

where nair is the refractive index of the medium between the
lens and crystal (usually air) and we accounted for Snell’s law
in the air-to-crystal transition. Combining Eqs. (1) and (2), the
PM (optimal) ring radius Ropt is

Ropt (T ) = f tan

(
arcsin

{
np

nair
sin

[
2 arccos

(
ns

np

)]})
. (3)

A second-order Taylor series and small-angle approximation
of Eqs. (1) and (2) yield Ropt (T ) ∼= (np/nair ) f

√
8(1 − ns/np).

For an annular ring not infinitesimally narrow, there is
a range of kB

p -vector directions [4]. Consequently, PM may
occur for a ring of radius R that differs from Ropt , as long as
Ropt ∈ [R − W, R + W ], where W is the half-width of the ring.
Therefore, a wider ring should lead to PM for a broader range
of temperatures.

III. NUMERICAL RESULTS

We now consider numerically the system depicted in Fig. 2.
The initial fundamental field is set at the input plane and
propagated for a distance �L in air to the nonlinear crystal.
It is further propagated inside the crystal of length Lcr , taking
into account diffraction and nonlinear dynamics. The gener-
ated SH at the output of the crystal is propagated for �L in
air to the output plane. The initial fields of FGB, FRB, and a
superposition of the two (including a focusing lens phase) are
given by

EG(r, 0) = 2

w

√
P0

πε0c
exp

[
−

(
r

w

)2]
exp

(
−i

kairr2

2 f

)
,

EB(r, 0) =
√

P0

πε0cS
exp

[
−

(
r − R

W

)8]
exp

(
−i

kairr2

2 f

)
,

EG+B(r, 0) =
(

1 + 2βQ

S
+ w2β2

4S

)−1/2

×
(

wβ

2
√

S
EG(r) + EB(r)

)
, (4)

where w is the initial waist, P0 is the total field power, S �∫ ∞
0 re−2[(r−R)/W ]8

dr, Q �
∫ ∞

0 re−(r/w)2
e−[(r−R)/W ]8

dr, and β

FIG. 2. Schematic of the simulated system.

is the ratio of FGB to FRB peak amplitudes. To avoid dis-
continuities in the ring’s profile, we utilize a super-Gaussian
envelope of power 8. We consider an ordinary refractive index
no

p for the pump beam, an extraordinary refractive index ne
s for

the signal [4], a lens of focal length f = 150 mm, and a pulse
power of 1.175 W.

We perform the simulation in a two-dimensional spatial
geometry (x-z plane), utilizing the cylindrical symmetry, to
save computation time. Propagation from the input plane to
the crystal is performed by standard Fresnel diffraction

E (x,�L) = F−1

[
exp

(−ik2
x �L

2kair

)
F [E (x, 0)]

]
, (5)

where F [· · · ], F−1[· · · ], kair = 2πnair/λ0, and kx are the
Fourier transform, its inverse, the wave number in air, and
spatial frequency, respectively. The value of �L such that
the focus would be in the middle of the crystal is a function
of f , nair , and no

p [4]. Reflection losses in the air-to-crystal
transition are neglected. Inside the crystal the pump field Ap

is propagated while accounting for nonlinear coupling to the
SH field As, according to [3,9]

∂Ap

∂z
= i

2kpc+c− ∇2
T Ap + 2ideffω

2
p

c2kpc+c− A∗
pAse

−i�	k·	r

+ i

2

(s−)2

c+c− kpAp,

∂As

∂z
= i

2ksc+ ∇2
T As + iω2

s deff

c2ksc+ A2
pei�	k·	r, (6)

where kp = 2πno
p

λ0
and ks = 2πne

s
λ0

are wave numbers of the pump

and SH fields, respectively, and �	k · 	r = (2kpc− − ks)(c+z +
s+x), with c± � cos( θ2±θ1

2 ) and s± � sin( θ2±θ1
2 ). The two pho-

tons that participate in SHG propagate at angles θ1 and θ2 in
the vicinity of the focal point. Consequently, the PM schemes
in Fig. 1 correspond to θ1 = θ2 = 0 (collinear on-axis PM),
θ1 = θ2 = 2θ (collinear off-axis PM), and θ1 = 0 and θ2 = 2θ

(noncollinear off-axis PM). The effective nonlinear coupling
coefficient is deff = 4.4 pm/V. Pump and SH frequencies are
ωp = 2πc

λ0
and ωs = 2πc

λ0/2 , respectively, where c is the speed of

light in vacuum. The Laplacian operator ∇2
T acts on the fields’

transverse coordinate x. The first and second terms on the
right-hand side of Eq. (6) represent diffraction and nonlinear
coupling of the pump and SH fields, respectively. The third
term in the ∂Ap

∂z equation accounts for noncollinearity. We

neglect a signal beam walk-off term − tan( θ2+θ1
2 ) ∂As

∂x as for
the maximal θ we used here the maximum walk-off angle
θmax is only about 2 mrad. Absorption losses are neglected as
well as they were calculated to be 1.5% and 0.3% for the SH
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FIG. 3. (a) Field distributions |E | at the input plane (left column) for a FGB (top), a FRB with R = 4.9 mm (middle), and their superposition
(bottom). Also shown are the corresponding SH distributions at the output plane without (middle column, T = T 0

pm) and with (right column,

T 
= T 0
pm) thermally induced phase mismatch. Field-value multipliers are shown in top right corners. (b) Plot of

√
2πrdr|E (r)| for various

initial ring radii R. The image of the initial Gaussian contribution is bound by 0 < r � w = 0.5 mm (dashed line). The image of the initial
ring contribution appears along the dash-dotted line. A strong phase-matched ring is seen in between.

and pump, respectively [10]. We solve Eq. (6) numerically,
utilizing a fourth-order Runge-Kutta scheme.

After the crystal, the generated SH field is propagated to
the output plane, neglecting again crystal-to-air power losses.
Initial pump and resulting signal distributions at the output
plane are shown in Fig. 3(a), considering T = T 0

pm = 114.5 ◦C
and T = 113.6 ◦C 
= T 0

pm. For the FGB or FRB alone, the
output plane signal observably inherits the initial structure
(Gaussian or ring). However, for a superposition of the two,
the signal shows a new component, corresponding to an
STNPM scheme. This additional ring contains a larger part
of the total power in the output plane for T 
= T 0

pm relative to
the T = T 0

pm case. The reason is that here, while the collinear
processes suffer from a thermally induced phase mismatch,
the noncollinear scheme compensates for this mismatch.

We now study how this STNPM signal’s ring power
changes when T , W , and R are varied. The FGB from now
on is fixed with w = 0.5 mm. Radial field distributions at the
output plane for T = 113.6 ◦C ( 
= T 0

pm) as a function R are
obtained first. To account for the integrated intensity over a
ring with radius r, the resultant field distribution (for each R)
is multiplied by the factor

√
2πrdr, where r and dr are the

radial coordinate and radial resolution of the output plane,

FIG. 4. Plot of
√

2πrdr|E (r)| for (a) R = 4.9 mm and (b) R =
3.9 mm and various initial ring half-widths W . Here the crystal’s
temperature T = 113.6 ◦C corresponds to Ropt = 4.9 mm.

respectively. The resultant graph is shown in Fig. 3(b) for
1 � R � 8 mm. Since the Gaussian component is fixed, its
image is bound in the interval 0 < r � 0.5 mm (white dashed
line) in the output plane, regardless of the ring’s radius. The
distance between the input and output planes is about 2 f , so
the input plane ring is imaged to r ∼= R (white dash-dotted
line). Finally, between the individual locations of the orig-
inal superposition components lies a strong contribution of
the phase-matched central ring. The PM ring radius for an
STNPM in this case (T = 113.6 ◦C) is Ropt

∼= 4.9 mm. The
process is repeated to collect the values of PM radii Ropt , for
various T . The result is shown in Fig. 8(b), along with the
geometrical optics prediction by Eq. (3) (solid line). Precise
values of small Ropt are harder to calculate from simulation, as
all three components (Gaussian, ring and, central ring) overlap
and make it difficult to isolate the central ring.

We now study the influence of the ring half-width W in two
scenarios. First, we choose a temperature (T = 113.6 ◦C 
=
T 0

pm) and a corresponding PM radius (R = Ropt = 4.9 mm).
By varying W we now obtain radial field distributions at the
output plane [Fig. 4(a)]. As expected, all distribution maxima
appear at the same r ∼= Ropt/2. Larger W results in a reduced

FIG. 5. Experimental setup for STNPM in LiNbO3.
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FIG. 6. Initial SLM masks. (a) Only a first-order diffraction mask (grating) is applied, (b) a Gaussian-shaped beam generating mask is
applied, (c) an annular ring-shaped beam generating mask is applied, and (d) superposition of (b) and (c) is applied.

peak field since the initial power is kept constant and wider
initial rings reduce the initial peak field. Consequently, less
power is transferred to the SH signal at the PM condition and
the peak field in the output plane decreases. Additionally, the
output plane central ring width is weakly increasing with W .

Second, we choose R = 3.9 mm 
= Ropt (still T =
113.6 ◦C) and again vary W . Figure 4(b) shows that now the
peak field does not monotonically decrease as W increases;
instead, for W = 0.5, 0.8 and 1.1 mm the field increases. The
reason is that for R = 3.9 mm and W > 1 mm the ring con-
tains the required Ropt = 4.9 mm and the PM condition can
still be met. Nevertheless, increasing W further reduces the
peak field again since the SH gain is not enough to compensate
for the power reduction caused by the increasing input-plane
ring’s width. In addition, the central ring peak shifts as W
increases, closer to the coordinate r ∼= Ropt/2 corresponding
to the PM radius Ropt .

IV. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 5. A pulsed laser
(InnoLas Picolo-AOT MoPa Nd:YVO) beam at λ0 = 1064
nm central wavelength, repetition rate of 1 kHz, and pulse
width of 800 ps is expanded to cover the area of the SLM.
The SLM mask [11] contains a spatial diffraction grating
component [Fig. 6(a)]. Only the first diffraction order is kept;
all others are blocked by an aperture stop (after which the
beam’s power is P ∼= 1 μW). The beam is then focused into

the Mg:CLN crystal after passing through a λ/2 plate ensuring
the correct beam polarization enters the crystal. We have used
an Mg:CLN crystal grown by the Czochralski method [12],
which has the appropriate refractive indices [13] and nonlinear
coefficients [14,15]. The crystal (z cut with optic axis oriented
perpendicular to the laser propagation) is located inside a
custom-made copper heat sink, with temperature maintained
by an external (ElectroTherm/Watlow PT100 S50) controller
of resolution 0.1 ◦C. The pump beam is then blocked by a
bandpass filter (Thor Labs FGB37), while the generated SH
beam passes through it and is then imaged on the camera
(Thor Labs DCC1240M, 1280 × 1024 pixels, 6.78 × 5.43
mm2). Data from the camera are recorded and analyzed in
MATLAB.

We use a Holoeye PLUTO-2.1 LCOS SLM to create
and control the pump field, with an active area of 1920 ×
1080 pixels (15.38 × 8.64 mm2). Consequently, the maximal
available ring radius is 540 pixels (4.32 mm). Lenses L1 and
L2 serve as a magnifying 2× telescope, doubling the maximal
R available. The focusing lens L3 defines the angle θ . Values
of R after L2 used are in the range of 50–440 pixels (800 μm
to 7 mm) in steps of 5 pixels (80 μm). Temperatures used are
in the range 113 ◦C � T � 114.5 ◦C.

First we obtained noncritical PM at temperature T 0
pm =

114.5 ◦C of the crystal [4], by measuring the SH power
with only the Gaussian mask applied on the SLM. This
agrees with T 0

pm of a similarly doped LiNbO3 in the work
of Schlarb and Betzler [16]. Then T is reduced to 113.6 ◦C

FIG. 7. Second-harmonic intensity (arbitrary units) on camera for a Gaussian (top row), annular ring (middle row), and both masks applied
on the SLM (bottom). Columns differ by initial ring radii R (from left to right): 3.5, 4.1, 4.7, 5.3, 5.9, and 6.5 mm.
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FIG. 8. (a) Measured SH central ring power for various initial
ring radii and crystal temperatures. (b) Optimal ring radii vs crystal
temperature (measurements, theoretical, and simulation predictions).
The initial ring half-width in all cases is 1.8 mm.

to achieve �kcl 
= 0. Figure 7 shows the SH signal gener-
ated from each of the three initial SLM masks shown in
Figs. 6(b)–(d), for various R values. The signal is not influ-
enced by R for the Gaussian mask, as it is independent of it.
It represents the case of collinear on-axis PM [Fig. 1(a)]. The
middle row shows the SH generated by a ring mask and repre-
sents a collinear off-axis scheme [Fig. 1(b)]. The weak signal
in the center of the images might be due to Raman-Nath-type
diffraction employing the axial component of the pump wave
vector. Finally, the bottom row shows the SH signal generated
by the superposition, corresponding to the STNPM scheme
[Fig. 1(c)]. The general behavior coincides with the simu-
lation predictions [Fig. 3(a)]. Next we measured the power
of the central ring as a function of R and T [Fig. 8(a)]. As
expected, the PM radii increase for lower temperatures, to
compensate for a growing �kcl . Figure 8(b) shows the PM
radii Ropt as a function of T . The measurements indeed follow
a square-root dependence of Ropt on T , predicted by approxi-
mation of Eq. (3) and simulation.

Finally, we measured the SH central ring intensity depen-
dence on W (Fig. 9). Unlike that shown in Fig. 4(a), here
the SH signal grows with increasing W , because the ratio
β = 2 [see Eq. (4)] is controlled, but not the total light power
covering the SLM. Wider rings then produce a stronger SH.
As predicted by the simulation [Fig. 4(a)], wider rings do not
shift the SH central ring maximum [Fig. 9(a)] for R = Ropt ,
only leading to a weak broadening of the SH central ring pro-
file. In contrast, when R 
= Ropt is chosen and W is increased
[Fig. 9(b)], the SH central ring drifts towards a coordinate
r ∼= Ropt/2, corresponding to a PM radius of Ropt [Fig. 4(b)].
The ratio β = 2 was chosen in the experiment and in the
simulation. This value was chosen quite arbitrarily, within a
range that allows both the FGB and FRB components to be of

FIG. 9. Measured SH central ring radial intensity (in logarithmic
scale) vs output plane coordinate for various half-widths W for
(a) R = Ropt = 4.9 mm and (b) R = 3.9 mm 
= Ropt . The temperature
in all cases is T = 113.6 ◦C, corresponding to Ropt = 4.9 mm. Each
horizontal pair of red dots indicates the FWHM of the SH central
ring. Blue curves indicate the drift of the SH central ring’s maximum
towards r ∼= Ropt/2.

the same order of intensity inside the crystal. Otherwise, one
of the components becomes dominant and SHG tends to be
of the collinear type, either on-axis (Gaussian component is
dominating) or off-axis (ring component is dominating).

V. CONCLUSION

We have shown theoretically and experimentally that PM
can be achieved out of noncritical PM temperature using an
additional optical spatial modulation of the pump beam. When
both thermally induced and geometrical spatial mismatch are
present they can compensate for each other. We showed that a
noncollinear spatial modulation created by a superposition of
Gaussian and annular ring beams inside a birefringent crystal
can fulfill PM this way. As temperature decreases from its
PM value, spatially tuned PM is achieved by introducing a
more rapid spatial modulation, in terms of a larger initial ring
radius.

An obvious advantage of our phase-matching scheme over
other schemes of NCPM is that optical beam mode tuning
is much faster than temperature tuning, which enables better
stability of SHG in the face of environmental temperature
fluctuations. The premise of controlling nonlinear optical
processes with the optical mode structure of light can be
further applied to various scenarios such as parametric down-
conversion (in relation to quantum optics), to applications in
nonlinear multimode fibers, and to computational optics.
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