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Towards high photon density for Compton scattering by spectral chirp
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Scattering of intense laser pulses on high-energy electron beams allows one to produce a large number of
x and γ rays. For temporally pulsed lasers, the resulting spectra are broadband which severely limits practical
applications. One could use linearly chirped laser pulses to compensate for that broadening. We show for laser
pulses chirped in the spectral domain that there is the optimal chirp parameter at which the spectra have the
brightest peak. Additionally, we use catastrophe theory to analytically find this optimal chirp value.
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The scattering of intense laser pulses on high-energy elec-
tron beams is a well-established method for generating x and
γ radiation with applications in medicine, ultrafast radiogra-
phy, and nuclear physics [1–6]. Recent developments in both
compact powerful laser systems and compact laser-plasma-
based accelerators (LPAs) [6–11] have increased interest in
compact Compton photon sources. Small intensities of an
incident laser pulse lead to meager photon yields. Increasing
laser intensity helps to boost photon yields, but also brings
nonlinear effects into play, i.e., the spectrum is redshifted and
high harmonics are generated. For temporally pulsed lasers, it
also leads to a significant spectral ponderomotive broadening
[12–16], which severely limits practical applications of such
source. As a result, a lot of research was done to search
for methods to compensate for or avoid such ponderomotive
broadening. For example, it was proposed to use laser pulses
with flat-top profiles [12] or laser pulse chirping when laser
frequency is a nonlinear function of time following the change
of laser pulse envelope [14,17–19]. Recently, it was shown
that it is enough to use only linear chirp to significantly
reduce ponderomotive broadening [20,21] and sawtooth (dou-
bly linear) chirping also compensates the broadening quite
well [22]. Moreover, it was proposed to use laser pulses with
time-varying polarization to produce narrowband harmonics
in Compton spectra [23,24]. Recently, it was demonstrated
that one could use catastrophe theory to analytically study the
photon yield enhancement for the case of a laser pulse linearly
chirped in the time domain [20]. However, such laser pulses
are quite challenging to realize experimentally. Alternative ap-
proaches to produce x rays with low bandwidth include using
a traveling-wave setup that allows the overlap of laser and
electron beams much longer than Rayleigh length [25,26] or,
instead of modifying the laser pulse, introduce an additional
laser beam copropagating with the electron bunch [27].
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In this Letter, using catastrophe theory and numerical sim-
ulations, we show that using linearly chirped laser pulses in
the spectral domain significantly increases the peak photon
number compared to the nonchirped nonlinear Compton spec-
trum. Additionally, we determine analytically the location of
the optimal chirp parameter at which the photon peak is the
highest. Throughout the Letter, we use natural units h̄ = c =
1, while the space-time and energy variables are rescaled by
the incident laser frequency ω0 : xω0 → x, ω/ω0 → ω. The
dimensionless laser pulse amplitude is given by a0 = eA/m,
where e, m are the absolute value of the electron charge and
electron mass, respectively. Also, for calculations, we use the
classical framework since for the parameters of interest the
quantum parameter for head-on collision χ = 2a0γω0/m �
1, where γ is the electron gamma factor, and a classical
description is sufficient.

In the previous work [20], a laser pulse chirped in the time
domain was considered. To move closer to more realistic ex-
perimental scenarios, here we consider optimized chirping in
the spectral domain. The laser pulses are modeled as follows:

Ã(ω) =
√

2πa0τ exp

[
−τ 2

2
(ω − ω0)2(1 − iβ )

]
, (1)

where τ is the Fourier-limited pulse duration (i.e., with
vanishing spectral phase), and second-order spectral phase
parameter β controls the amount of linear chirp.

Such a laser pulse has constant spectrum |Ã(ω)|2 for
different chirp parameters. After performing the Fourier trans-
formation, one could see that the amplitude and duration of a
chirped laser pulse in the time domain depends on parameter
β,

A(φ) = aeff exp

(
− φ2

2τ 2
eff

)
exp

[
i(φ + βφ2

2τ 2
eff

+ φ0)

]
,

aeff = a0

(1 + β2)1/4
, τeff = τ

√
1 + β2, ωL(φ) = 1 + βφ

τ 2
eff

,

(2)

where φ0 is a constant phase shift that depends on β.

2469-9926/2022/106(3)/L031501(5) L031501-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5442-7331
https://orcid.org/0000-0003-3695-0051
https://orcid.org/0000-0002-6555-806X
https://orcid.org/0000-0002-3268-2267
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.L031501&domain=pdf&date_stamp=2022-09-01
https://doi.org/10.1103/PhysRevA.106.L031501


M. A. VALIALSHCHIKOV et al. PHYSICAL REVIEW A 106, L031501 (2022)

We work in the frame of reference where an electron was
initially at rest, p = (m, 0, 0, 0), and results in the laboratory
frame are obtained via Lorentz transformation to the frame
where the electron was initially counterpropagating the laser
pulse moving in the +z direction.

The radiation emitted by an electron is given by the scat-
tering integral [28],

d2I

dωd	
= κ

ω2

4π2

∣∣∣∣
∫ ∞

−∞
dφ n × [n × u] eiω(φ+z−n·r)

∣∣∣∣
2

, (3)

where κ = e2ω0, n is the direction of observation, and u, r
are the vector part of the electron’s 4-velocity and coordinate,
respectively. We will denote the expression under the modulus
by M : d2I

dωd	
= κ ω2

4π2 |M|2. The number of emitted photons is

calculated by d2Nph

dωd	
= α ω

4π2 |M|2, where α is the fine-structure
constant.

To transform the nonlinear oscillating parts in the exponent
into a sum over harmonics, we use the Jacobi-Anger expan-
sion. After the transformation for a slowly varying laser pulse
envelope, one could obtain the following expression:

M =
+∞∑
n=1

∫ ∞

−∞
dφ Bn(φ; ω, β )

× exp

[
i
∫ φ

0
ω + ω(1 − cos θ )

a2(ξ )

4
− nωL(ξ )dξ

]
,

(4)

where A(φ) = [ax(φ) cos ψL(φ), ay(φ) sin ψL(φ), 0],
ψL(φ) = ∫ φ

0 ωL(ξ )dξ , a(φ) = [ax(φ), ay(φ), 0], θ is the
scattering angle, and n is the harmonic number.

If the amplitudes B are slowly varying functions of φ,
we could use the stationary phase approximation to estimate
the values of the integrals (4). The stationarity condition de-
termines the so-called ray surfaces in the parameter space
(ω, θ, φ) for the nth harmonic,

�′(φ) = ω + ω(1 − cos θ )
a2(φ)

4
− nωL(φ) = 0. (5)

Ray surfaces from Eq. (5) in the parameter space
(kx, kz, φ) = (ω sin θ, ω cos θ, φ) for a fixed value of φ deter-
mine a set of ellipses in the (kx, kz ) plane for each harmonic
[20]. The conditions for fold and cusp singularity (i.e., higher-
order stationarity) are given by �′′(φ) = �′′′(φ) = 0,

ω(1 − cos θ )
(a2)′(φ)

4
= nω′

L(φ), (6)

(a2)′′ = 0. (7)

From Eqs. (5) and (6), we obtain expressions for scattered
frequency and folds location,

ω(φ, θ ) = nωL(φ)

1 + (1 − cos θ )a2(φ)/4
, (8)

cos θ (φ) = 1 − 4β

ωL(φ)[a2]′(φ)τ 2
eff − βa2(φ)

. (9)

Equation (8) follows from the stationary phase condition and
determines just the regular relation between frequency and

angle for a chirped pulse. Equation (9) follows from the fold
condition (6) where, for frequency ω, we used relation (8). For
a fixed value of φ, Eqs. (8) and (9) give us the frequency and
angle (if it exists) at which the folds are located.

From Eq. (7), we obtain the point at which the folds
coincide (φc = −τeff/

√
2) and that determines the cusp sin-

gularity.
From now on, we consider circularly polarized laser pulses

ax = ay and the main Compton line n = 1 (see Supplemental
Material [29] for the results on linearly polarized laser pulses).
We would like to find the optimal β parameter for fixed a0, τ

for which the spectra would have the brightest maximum.
Equation (9) shows that for narrowband and collimated emis-
sion, the cusp angle should lie close to the axis. Imposing an
additional constraint θc = π on Eq. (9), we obtain an equa-
tion for βc,

βc

(
1 + 2a2

0√
1 + β2

c

e−1/2

)
=

√
2τa2

0e−1/2, (10)

where the exponential multiplier is due to the Gaussian tem-
poral envelope and which could be solved either numerically
or perturbatively for effectively large a2

0τ : βc �
√

2e−1a2
0τ −

2
√

2e−1 a4
0τ√

1+2e−1a4
0τ

2
. This equation gives us the chirp value

βc at which the cusp would lie on-axis. The corresponding

frequency is given by ωc = 1 −
√

2βc

τ
√

1+β2
c

.

One could notice that emission is not brightest exactly at
the cusps. The values of the integral given by Eq. (4) near
the cusp are determined by the Pearcey diffraction pattern.
Thus, we do not have to demand that the cusp is on-axis,
but rather that the maximum of the Pearcey pattern is located
on-axis. Taylor-expanding the integral under the exponential
in the amplitude M around the cusp point φc, we obtain the
Pearcey integral Pe (see Supplemental Material [29]),

d2Nph

dωd	 |θ=π
≈ α

ω

8π2

a2
0e−1/4√
1 + β2

(
6
√

2τ 3
eff

ωa2
eff

)1/2

|Pe(x, y)|2,
(11)

where x, y are functions of ω, β. Knowing the values
x∗, y∗ ≈ −2.16, 0 at which |Pe(x, y)| achieves its maximum,
we obtain two equations x(ω, β ) = x∗, y(ω, β ) = y∗ which
gives us the optimal (ω∗, β∗) pair found by analyzing the
maximum of the Pearcey integral.

It turns out that even with the Pearcey maximum, the opti-
mal chirp parameter is not found because the prefactor B also
depends on ω, β that could not be neglected in our case due to

their variation in the region of interest [see Eq. (11)]: d2Nph

dωd	
∼√

ω(1 + β2)|Pe(x, y)|2. To improve our theoretical prediction
of optimal chirp, we Taylor-expanded this expression around
the Pearcey maximum (ω∗, β∗) up to the second order assum-
ing that the actual optimal pair lies close to the Pearcey pair
(see Supplemental Material [29]) and obtain corrected optimal
values (ωT , βT ). In the text, we would call this procedure
“Taylor prefactor correction.”

Figure 1 illustrates how varying the linear chirp parame-
ter β affects the incident laser pulse and, subsequently, the
emission spectrum. When the chirp is increased, two effects
come into play. On the one hand, stronger chirping produces
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FIG. 1. Top: Vector potential of a linearly chirped laser pulse
(a0 = 1.5, τ = 2π ) for different chirp parameters β = 0, 4. Bottom:
Corresponding backscattered spectra.

less intense and longer laser pulses for which the backscat-
tered spectra are less broad and therefore more bright because
the incident laser spectrum is constant. On the other hand,
increasing the chirp moves the cusp point closer to the axis
which, up to some point, also increases the peak spectrum
value. For instance, we could see that changing β from 0 to
4 in the laser pulse with a0 = 1.5, τ = 2π leads to a nar-
rower spectra with smaller number of subpeaks and a weak
pedestal is created. For large β, the cusp point vanishes and
increasing β even further leads to a larger spectral pedestal
along with a smaller spectral peak until it reaches the β � 1
limit.

Let us illustrate what the folds and cusp look like in our
problem setting. Figure 2 shows backscattered spectra from a
laser pulse (a0 = 2, τ = 4π ) for different β parameters. Due
to the dependence of the laser amplitude and duration on
chirp, the folds’ profile significantly differs from the original
article [20]. For larger laser intensities and duration, the max-
imal peak moves to higher frequencies and chirps and enters
the region where the emission frequency is almost constant.
That is why even Pearcey approximation (when we do not
take into account the prefactor that depends on ω, β) gives
satisfactory results.

To obtain numerical data, we fixed the laser pulse am-
plitude and duration (a0, τ ) and calculated the results on a
linear grid over β parameters. The numerical optimal β value
corresponds to the maximal photon peak observed from the
simulation results on the grid. Figure 3 shows the color map
for the normalized peak of the differential number of emitted
photons as a function of (a0, β ) for τ = 4π . We could see that

FIG. 2. Backscattered spectra for different β parameters and
a0 = 2, τ = 4π . The dashed black line shows folds terminating at the
cusp (black star). The red star shows the maximal peak found from
simulations; green and blue stars show the location of the maximal
peak obtained from different analytical methods.

FIG. 3. Peak of the differential number of emitted photons (color
map) as a function of laser amplitude a0 and chirp parameter β for
τ = 4π . The green dots show the optimal β at which the peak has the
highest value for a fixed a0, the solid blue line shows β as a function
of a0 obtained by solving the system of cusp-on-axis equations, the
dashed green line shows optimal β(a0) obtained by Pearcey approx-
imation of the scattering integral, while the white dashed line shows
β(a0) obtained by the Taylor prefactor correction procedure to the
Pearcey approximation. One could see that from a0 > 1, there is a
very good agreement between the Taylor prefactor correction and
actual numerical optima. Inset: Slice of the color map at a0 = 2; the
black triangle stands for the prediction of optimal β from the Taylor
procedure (blue and green symbols stand for the cusp-on-axis and
Pearcey prediction, respectively), and the red dashed line shows the
limit β � 1 for the given a0, τ .
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FIG. 4. Peak of the differential number of emitted photons es-
timated at optimal chirp value β∗ as a function of a0 for τ = 6π .
The blue line shows the peak values estimated from numerical sim-
ulations, the black solid line shows the analytical prediction from
the Pearcey approximation, the green line shows the peak of the
unchirped spectra for aeff, τeff estimated at optimal chirp value β∗,
and the orange line shows the linear Compton limit for β � 1. For
example, for a0 = 2, there is an almost double enhancement in the
peak value compared to the nonchirped case, and over eight time
enhancement compared to the limit case β � 1. Inset: a0 = 2. The
solid lines show on-axis spectra (left y axis): blue shows the opti-
mally chirped case, green shows the unchirped nonlinear Compton
spectra for aeff, τeff estimated at optimal chirp value β∗, and orange
shows the linear Compton limit case for a0, τ . The blue and green
dashed lines (right y axis) show the optimally chirped spectra and
nonlinear Compton spectra collimated over θc = 0.1/γ .

for a fixed a0, there is the optimal β value (which is greater for
larger a0, τ ) at which the photon peak is maximal. Our goal
is to analytically estimate this optimal value. One could see
that solving the system of cusp-on-axis equations overshoots
the target value and the agreement is generally not very good.
With the Pearcey approximation, the analytical prediction is
much better for larger a0 but still not good enough. Finally,
the Taylor prefactor correction procedure gives a very satis-
factory analytical prediction. The same could be seen on the
inset slice. Similar results were found for different laser pulse
durations (for τ = 2π, 6π , see Supplemental Material [29]),
although for larger duration the analytical prediction starts to
work from less intense values of a0.

To demonstrate the benefit of using chirped laser pulses, we
compared the peak photon spectrum values with the unchirped
case. Figure 4 illustrates that using optimally chirped laser
pulses increases the peak of the differential number of emit-
ted photons compared to the unchirped nonlinear Compton
spectrum (for aeff, τeff evaluated at optimal chirp value β∗) and
limit case for β � 1. For larger a0, the enhancement is more
noticeable. On the inset figure, we could see that the optimally
chirped spectra has a narrow and bright single peak on top
of a weaker pedestal, while the unchirped nonlinear Compton
spectrum presents a typical broadband interference substruc-
ture. After collimation over a small angle θc = 0.1/γ , the
spectrum remains narrow, but for larger collimation angles,
it would be significantly broader. It would be interesting to
have a look at real values corresponding to a found optimally
chirped laser pulse. For example, for a0 = 2, τ = 6π , the
optimal chirp βopt ≈ 48. For a laser with ω0 = 1.55 eV, the
duration would be τ̃ = 8 fs (bandwidth ∼1/τ ≈ 0.05) and
group delay dispersion (GDD) β (2) = βopt τ̃

2 ≈ 3072 fs2.
In this Letter, we considered the case of a laser pulse

chirped in the spectral domain. In the temporal domain, the
amplitude and duration of such laser pulse depend on the
chirp parameter. We showed that there is an optimal chirp
at which the backscattered spectrum has the brightest photon
peak which results from the interplay of two effects. First,
when we increase chirp, the laser energy remains constant
while the backscattered spectrum is shrunk towards ω ∼ 1,
which increases the maximal peak. Second, larger chirp leads
to the cusp moving closer to the axis, which makes the spectra
brighter as well until the cusp goes too far and the spectral
peak begins to fall down. Also, we discussed the analytical
approach (and some improvements to it) to predict the optimal
chirp value and showed that for relatively large laser ampli-
tudes and laser duration, the given approach works very well
and one does not need to perform costly linear scans to find
the values of interest. Also, chirping the laser pulse gives a
significant improvement over an unchirped case in terms of
the spectrum narrowness and brightness. Finally, these results
could help to move closer towards the experimental realiza-
tion.

The code to reproduce the results from the Letter can be
found in [30].
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