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Topological molecules and topological localization of a Rydberg electron on a classical orbit
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It is common knowledge that atoms can form molecules if they attract each other. Here, we show that it is
possible to create molecules where bound states of the atoms are not the result of attractive interactions but
have the topological origin. That is, the bound states of the atoms correspond to the topologically protected edge
states of a topological model. Such topological molecules can be realized if the interaction strength between
ultracold atoms is properly modulated in time. A similar mechanism allows one to realize topologically protected
localization of an electron on a classical orbit if a Rydberg atom is perturbed by a properly modulated microwave
field.
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Introduction. Experiments often suffer from imperfections
and external perturbations that are difficult to eliminate. The
situation can change if the state which has to be realized
in the laboratory is protected by topology. The phenom-
ena determined by topological invariants are robust unless
a perturbation is so strong that it changes the topology. For
example, we may dramatically deform a torus, but it is still
the same topological object unless we cut it. The range of
topologically protected phenomena is broad, from the quan-
tum Hall effect to ideas of topological quantum computation
[1,2].

In this Letter, we address the question of whether bound
states of atoms or localization of a Rydberg electron on a
classical orbit can be protected by topology. It would be vital
to experimentalists because these objects would be robust
and resistant to external perturbations. To accomplish our
objectives, we employ time engineering developed in the field
of time crystals and phase space crystals, which allows the
realization of condensed matter physics in the time domain
[3–5] (for reviews, see [6–9]). Basically it relies on resonant
periodic perturbation of, e.g., ultracold atoms, which effec-
tively behave like a solid-state system.

Localization of a Rydberg electron. Let us begin with a
highly excited hydrogen atom. Even if the electron is highly
excited and prepared in a localized wavepacket, the classical
picture of a particle moving on a Kepler orbit is quickly lost
due to the spreading of the wavepacket over the entire classical
orbit [10]. Spreading can be suppressed if the atom is driven
resonantly by an electromagnetic field [10–12]. Then, in the
frame moving along a Kepler orbit, a potential well is created
that supports the wavepacket, and the classical picture of the
electron circulating around the nucleus can be experimen-
tally demonstrated [13–16]. There is also an idea to prevent
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the electron from spreading by employing a fluctuating mi-
crowave field [17]. That is, a fluctuating microwave field
induces destructive interference phenomena that are respon-
sible for Anderson localization of an electronic wavepacket
on a classical orbit. Signatures of Anderson localization of a
Rydberg electron can also be observed if ground-state atoms
are immersed within a Rydberg wavefunction [18].

To show that the electron in a hydrogen atom can be
represented by a wavepacket whose localization is protected
by topology, let us consider a H atom in the presence of
a static electric field and two linearly polarized microwave
fields with frequencies ω and 2ω and a certain superposition
of their subharmonics and harmonics f (t ) = f (t + s2π/ω) =∑

k �=0 fkeikωt/s where s is integer. The Hamiltonian of the
system in the atomic units reads

H = p2

2
− 1

r
+ z[F + F1 cos(ωt ) + F2 cos(2ωt ) + λ f (t )],

(1)
where F , Fj , and λ are the strength of the electric field and the
amplitudes of the microwave fields, respectively. Before we
present quantum results, we derive a classical effective Hamil-
tonian that allows us to understand how the phenomenon, in
which we are interested, emerges.

The natural variables for the classical description of a H
atom are the action angle variables, where I is the principal
action (the classical analog of the principal quantum num-
ber n), L is the total angular momentum, and θ and ψ are
the corresponding conjugate canonical variables that describe
the position of the electron in a Kepler orbit and the angle
between the major axis of the elliptical orbit and the z axis,
respectively [10]. We assume that the projection of the angular
momentum of the electron on the z axis, which is a constant
of motion, is zero. We also assume that the microwaves are
resonant with unperturbed electronic motion, i.e., the ratio of
the frequency ω and the frequency of the electronic motion
is an integer number s = ωI3

s where Is is the resonant value
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of the principal action [s is the same as in the expression of
f (t )]. In the frame moving along the orbit, � = θ − ωt/s,
all dynamical variables are slowly varying if we are close to
the resonant trajectory, i.e., if P = I − Is ≈ 0. By averaging
the Hamiltonian over time t , we obtain the effective (secular)
Hamiltonian [19,20],

Heff = P2

2meff
+ V1 cos(s�) + V2 cos(2s�) + λVb(�), (2)

where a constant term is omitted, the effective mass
meff = −I4

s /3, V1 = −I2
s F1J ′

s (s)/s, V2 = −I2
s F2J ′

2s(2s)/2s,
and Vb(�) = −I2

s

∑
k �=0 f−kJ ′

k (k)eik�/k, where J ′
k ’s are

derivatives of the ordinary Bessel functions. The effective
Hamiltonian (2) describes the motion of the electron around
the elongated Kepler ellipse with the total angular momentum
L = 0. This orbit is aligned along the z axis (ψ = 0) and
is stable, provided that the static electric field is sufficiently
strong [20,21].

If λ = 0 and s � 1, the Hamiltonian (2) shows that the
electron in a H atom, in the frame moving along the elongated
resonant orbit, behaves the same way as an electron in a
crystalline structure with a two-point basis. Actually, if we
quantize the classical Hamiltonian (2) and restrict ourselves
to its first two energy bands, we arrive at the Su-Schrieffer-
Heeger model [22], which is topologically nontrivial if
V1/V2 > 0, i.e., it is characterized by the nonzero winding
number [23,24]. This is a simple model of a topological
insulator that has been investigated theoretically and exper-
imentally in many different systems [23,25–28]. A striking
property of topological insulators with edges is the presence
of topologically protected states that are localized at the edges
[23]. To introduce an edge in the potential in (2), we turn
on the subharmonics and harmonics of the microwave field
(λ �= 0) prepared so that the additional potential λVb(�) de-
scribes a barrier located at a certain �. Then, the spectrum of
the quantized version of Heff reveals a pair of energy levels in
the gap between two bands and the corresponding eigenstates
are localized close to the edge (see Fig. 1).

So far we have described a H atom by means of the
classical effective Hamiltonian which at the end is quantized.
However, the entire description can be performed fully quan-
tum mechanically starting with (1). When we switch to the
moving frame by means of the unitary transformation ein̂ωt/s,
where n̂ is the principal quantum number operator, and av-
erage the Hamiltonian over t , we obtain the matrix of the
quantum effective Hamiltonian

〈n′, l ′|Ĥeff |n, l〉 =
(

− 1

2n2
− n

ω

s

)
δnn′δll ′ + 〈n′, l ′|z|n, l〉

× [Fδnn′ + F1(δn+s,n′ + δn−s,n′ )/2

+ F2(δn+2s,n′ + δn−2s,n′ )/2 + λ fn−n′], (3)

where |n, l〉 is a hydrogenic eigenstate with the principal
quantum number n, total angular momentum l , and the pro-
jection of the angular momentum on the z axis equal to zero.
The spectra of the quantized classical Hamiltonian (2) and the
quantum Hamiltonian (3) are compared in Fig. 1. In Fig. 2
we present the time evolution, in the laboratory frame, of an
eigenstate of (3) corresponding to one of the edge states iden-
tified with the help of the Hamiltonian (2). One can see that
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FIG. 1. Topological localization of a Rydberg electron. Panel
(a) shows the spectrum of the quantized version of the classical
Hamiltonian (2) (red dashed lines) and the corresponding energy
levels of the quantum effective Hamiltonian (3) (solid blue lines) for
s = 4. For V1/V2 > 0, two edge states of the Hamiltonian (2) form
with nearly degenerate energies visible in the middle of the spectrum.
Energy values are presented in the atomic units multiplied by n2

s

and the constant term −3/2 is subtracted. Panel (b) presents prob-
ability densities of these two edge states for V1/V2 = 2—the edge is
located around � = 0 (or equivalently � = 2π ) and the edge states
localize close to it. Other eigenstates (bulk states) are delocalized
along the entire range of � [in (c) the fifth excited eigenstate of
(2) is shown]. The parameters of the system are the following: the
resonant principal quantum number ns = Is = 800, n3

s ω = 4, n4
s F =

1.5 × 10−4, n4
s F1 = 1.258 × 10−3, n4

s λ = 1.172 × 10−5, and fk =
eikε cos(kπ/21)sinc2(kπ/14)k/J ′

k (k) with ε = 5 × 10−3 for |k| � 20
and fk = 0 for higher |k| [29]. In (b) and (c), n4

s F2 = 1.93 × 10−3.
Quantities are in atomic units.
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FIG. 2. Topological localization of a Rydberg electron. Proba-
bility densities of an eigenstate of (3) corresponding to one of the
edge states identified with the help of (2). The densities are plotted
in the laboratory frame and in the cylindrical coordinate for different
moments of time, i.e., ωt/s = 7π/4 + jπ/4 where integer j goes
from 0 to 4 from left to right panels, respectively. The presented
edge state reveals the wavepacket evolving on the elongated Kepler
orbit with the period s2π/ω and its localization is protected by
topology. The sequence of the panels illustrates time evolution of the
wavepacket during one half of the period. During the other half, the
time evolution can be illustrated by the same panels but ordered from
right to left. The parameters are the same as in Fig. 1(b). Quantities
are in atomic units.
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the electron is represented by a wavepacket that periodically
propagates on the elongated ellipse and does not spread be-
cause its localization is protected by topology. This behavior is
resistant to a perturbation of the effective Hamiltonian, unless
the perturbation is so strong that the gap between the bands is
closed [20].

In Ref. [10] nonspreading wavepackets of a Rydberg elec-
tron are described. However, their formation has nothing to
do with topological protection. They are related to the trap-
ping of a Rydberg electron in a single well of an effective
potential that is created by the 1 : 1 resonant driving of the H
atom. The mechanism of the formation of the localized states
considered in this Letter is completely different. The localized
states are edge states with localization length ξ ∝ 1/ ln(J ′/J ),
where J and J ′ are tunneling rates of an electron through
the higher and lower barriers, respectively, of the effective
potential in (2) [23]. The localization length ξ can be much
larger than the size of a single well of the effective potential
in (2). Topological protection means that if we change the
parameters of the effective model (2), ξ can change but the
localization phenomenon itself will not be broken, provided
that the energy gap is not closed.

Topological molecules. Attractive interactions between
charge particles allow atoms to form molecules. It is also
possible to create bound states of atoms if the interaction
potential between them changes in a disordered way as a
function of their relative distances. Then, they can form the
so-called Anderson molecules that are created due to de-
structive interference and the resulting Anderson localization
[8,30,31]. Here we show that it is possible to realize bound
states of atoms which have a topological origin. We will see
that the description of two atoms with the interaction strength
modulated in time can be reduced to the effective Hamiltonian
where we can identify a center-of-mass degree of freedom
described by the free particlelike Hamiltonian and the relative
position degree of freedom described by the Hamiltonian (2).
The edge states of the Hamiltonian (2) will correspond to the
molecular bound states protected by topology.

Let us consider two atoms which are moving in the one-
dimensional (1D) infinite well potential. For simplicity, we
assume that they are the same atomic species but in different
hyperfine states. The infinite well potential in one dimen-
sion can be created experimentally if, in a three-dimensional
trap, with strong transverse confinement, two barriers are
implemented that limit the motion of the atoms along the
longitudinal direction [32]. At low kinetic energies, the in-
teraction between atoms can be modeled by means of the
contact Dirac delta potential with the strength g proportional
to the s-wave scattering length of the atoms. We assume that
g(t ) is modulated periodically in time by means of Feshbach
resonance [33] or confinement-induced resonance [34] so that
the Hamiltonian of the system reads

H = p2
1 + p2

2

2
+ g(t )δ(x1 − x2), (4)

where g(t ) = F1 cos(ωt ) + F2 cos(2ωt ) + λ f (t ). We have
used π2h̄2/mR2 and R/π as units of energy and length, re-
spectively, where R is the size of the potential well and m
is the mass of the atoms. For simplicity, we have used the
same notation for the parameters of g(t ) as in the case of a

H atom [cf. (1)], but now Fj and λ are quantities proportional
to the s-wave scattering length of the atoms. As previously,
f (t ) = f (t + s2π/ω) = ∑

k �=0 fkeikωt/s. In the units that we
use, the motion of the atoms is limited between 0 and π due
to the presence of the potential walls. Thus, the wavefunction
vanishes if x1 or x2 equals 0 or π .

To describe the system, it is sufficient to restrict to the
subspace of symmetric combinations of the eigenstates of
the noninteracting atoms, i.e., �n1,n2 = [φn1,n2 + φn2,n1 ]/

√
2

for n1 > n2 and �n1,n1 = φn1,n1 , where φn1,n2 (x1, x2) =
2 sin(n1x1) sin(n2x2)/π , because there is no interaction be-
tween the atoms in the antisymmetric subspace [20]. We
are interested in the resonant behavior of the system where
n1 ≈ ω/2s and n2 ≈ ω/2s. Switching to the moving frame
by means of the unitary transformation ei(n̂1+n̂2 )ωt/2s and av-
eraging the resulting Hamiltonian over time, we arrive at the
matrix of the quantum effective Hamiltonian Ĥeff that consists
of independent blocks labeled with different values of nc.m. =
n1 − n2. That is, in a given nc.m. block the matrix elements of
the Ĥeff read [20]

〈n′|Ĥeff |n〉 = n2δn′,n + F1

2π
(δn′,n+s + δn′,n−s)

+ F2

2π
(δn′,n+2s + δn′,n−2s) + λ

π
fn′−n

+ n2
c.m.

4
δn′,n, (5)

where n = (n1 + n2)/2 − ω/2s. The position operators con-
jugate to the quantum numbers nc.m. and n are xc.m. = (x1 −
x2)/2 and x = x1 + x2, respectively. This effective description
is valid in the subspace |n| 
 ω/2s.

Apart from the last term, the matrix (5) is identical to
the matrix of the quantized version of the classical effec-
tive Hamiltonian (2) calculated in the plane-wave basis,
ein�/

√
2π , if the effective mass meff = 1/2, Vj = Fj/π , and

Vb = ∑
k �=0 fkeik�/π . Thus, the two-atom system behaves like

a two-particle system whose center-of-mass position xc.m.

(conjugate to the momentum quantum number nc.m.) moves
like a free particle [cf. the term n2

c.m./4 in (5)] while the
relative position x can possess topologically protected edge
states corresponding to the bound states of the particles. Parti-
cles prepared in an edge state form a topological molecule in
which their relative position x is described by a localized state
that is protected by topology.

Our secular approximation approach allows us to iden-
tify parameters suitable for the realization of a topological
molecule, but we are also able to describe the system ex-
actly by numerical diagonalization of the Floquet Hamiltonian
HF = H − i∂t where H is given in (4) [10,20,35]. The eigen-
states of HF are called Floquet states which evolve with the
same period as the period of g(t ) and the corresponding eigen-
values are quasienergies of the system. The eigenstates of
the effective Hamiltonian (5) also evolve periodically in time
when we return to the laboratory frame, and they constitute a
very good approximation of the exact Floquet eigenstates of
HF .

In Fig. 3(a) we show the exact Floquet states, in the moving
frame, that correspond to the edge states described above.
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FIG. 3. Topological molecules. Panel (a) shows probability den-
sities of two edge states in the moving frame. The densities are
localized around the certain position x, indicating that two atoms
form bound states. Panel (b) presents signatures of the formation
of the topological molecule in the laboratory frame. If the atoms
are prepared in, e.g., the edge state drawn with the blue line in
(a), the probability density for the measurement of the atoms at
x1 + x2 = π reveals a periodic appearance of the localized edge
state. The results are obtained within the exact diagonalization of
the Floquet Hamiltonian, but they are indistinguishable from the
densities obtained with the help of the effective Hamiltonian (5).
The parameters of the system are the following: F1/F2 = 2 with
F2 = 10, ω = 105, λ = 35 and the Fourier components of f (t ) are
fk = eikε cos(kπ/21)sinc2(kπ/14) with ε = 10−4 for |k| � 40 and
fk = 0 for greater |k|. Unit are specified following Eq. (4).

The probability densities describing the position x, which
is conjugate to the quantum number n, perfectly match the
edge state probability densities obtained with the help of the
effective Hamiltonian (5). It confirms that the atoms can form
topologically protected bound states. When the system is ob-
served in the laboratory frame, the signatures of the formation
of the topological molecule are illustrated in Fig. 3(b). That
is, the probability density for the atoms to be observed at
x1 + x2 = π reveals a periodic appearance of the localized
edge state.

Conclusions. We have shown that topology is capable of
protecting the states of the atomic constituents. A Rydberg

electron can be represented by a localized wavepacket moving
along a classical orbit, and such a localization is protected
by topology. A similar mechanism is responsible for the for-
mation of topological molecules—bound states of particles
protected by topology.

We have considered the localization of a Rydberg elec-
tron on a Kepler orbit aligned along the static electric field
direction. However, one may expect that the topological
localization can also be observed on Kepler orbits with dif-
ferent shapes. That is, the static electric field allows one to
control the shape of a stable Kepler ellipse [21], and sim-
ilar microwave fields as we have used here should lead to
the topological localization of the electron on the ellipse.
The experimental setup for realization of the phenomenon
we predict can be very similar to the procedure used in
Refs. [13–16] where nonspreading Rydberg wavepackets
were demonstrated.

Ultracold atoms in a quasi-1D squared well potential [32]
seem to be a suitable system for the realization of topological
molecules. Two localized clouds of atoms can be pushed to
motion, and if it is done at proper phase of the time-periodic
modulation of the strength of interactions between atoms, the
clouds will be locked to a localized edge state of an effective
topological model that describes the system [20]. Modulation
of the interaction strength can be done by means of the Fesh-
bach resonance [33] or the confinement-induced resonance in
quasi-1D potentials [34,36].
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