
PHYSICAL REVIEW A 106, L030201 (2022)
Letter

Quantum heat engine based on a spin-orbit- and Zeeman-coupled Bose-Einstein condensate
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We explore the potential of a spin-orbit-coupled Bose-Einstein condensate for thermodynamic cycles. For
this purpose we propose a quantum heat engine based on a condensate with spin-orbit and Zeeman coupling
as a working medium. The cooling and heating are simulated by contacts of the condensate with an external
magnetized media and demagnetized media. We examine the condensate ground-state energy and its dependence
on the strength of the synthetic spin-orbit and Zeeman couplings and interatomic interaction. Then we study the
efficiency of the proposed engine. The cycle has a critical value of spin-orbit coupling related to the engine’s
maximum efficiency.
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Introduction. Quantum cycles are of much importance both
for fundamental research and for applications in quantum-
based technologies [1,2]. Quantum heat engines have been
demonstrated recently on several quantum platforms, such
as trapped ions [3,4], quantum dots [5], and optomechanical
oscillators [6–9]. Well-developed techniques for experimen-
tal control make Bose-Einstein condensates (BECs) [10] a
suitable system for a quantum working medium of a thermal
machine [11–14].

Recently, a quantum Otto cycle was experimentally real-
ized using a large quasispin system with individual cesium
(Cs) atoms immersed in a quantum heat bath made of ultra-
cold rubidium (Rb) atoms [15,16]. Several spin heat engines
have been theoretically and experimentally implemented us-
ing a single-spin qubit [17], ultracold atoms [18], a single
molecule [19], a nuclear magnetic resonance setup [20], and
a single-electron spin coupled to a harmonic oscillator fly-
wheel [21]. These examples have motivated our exploration
of the spin-orbit-coupled BEC considered in this Letter.

Spin-orbit coupling (SOC) links a particle’s spin to
its motion, and artificially introduces chargelike physics
into bosonic neutral atoms [22]. The experimental genera-
tion [23–26] of SOC is usually accompanied by a Zeeman
field, which breaks various symmetries of the underlying
system and induces interesting quantum phenomena, e.g.,
topological transport [27]. In addition, in BEC systems with
SOC, studies on moving solitons [28–30], vortices [31], the
stripe phase [32], and dipole oscillations [33] have been
reported.

In this Letter, we propose a BEC with SOC as a working
medium in a quantum Stirling cycle. The classic Stirling cycle
is made of two isothermal strokes, connected by two iso-
chores. The BEC is characterized by SOC, Zeeman splitting,
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a self-interaction, and is located in a quasi-one-dimensional
vessel with a moving piston that changes its length. The
external “cooling” and “heating” reservoirs are modeled by
the interaction of the spin- 1

2 BEC with external magnetized
and demagnetized media. The expansion and compression
works depend on the SOC and Zeeman coupling. Our main
goal is to examine the condensate ground-state energy and
its dependence on the strength of the synthetic spin-orbit,
Zeeman couplings, interatomic interaction, and length of the
vessel. For the semiquantitative analysis, perturbation theory
is applied to understand the effects of SOC and Zeeman split-
ting. We further analyze several important parameters, e.g.,
the critical SOC strength for different self-interactions, and
investigate how they affect the efficiency of the cycle.

Model of the heat engine: Working medium. We consider
a quasi-one-dimensional BEC, extended along the x axis and
tightly confined in the orthogonal directions. The mean-field
energy functional of the system is then given by E = ∫ +∞

−∞ εdx
with a spin-independent self-interaction of the Manakov’s
symmetry [34],

ε=�†H0� + g

2
(|ψ↑|2 + |ψ↓|2)2, (1)

where � ≡ (ψ↑, ψ↓)T (here, T stands for transposition) and
the wave functions ψ↑ and ψ↓ are related to the two pseu-
dospin components. The parameter g represents the strength
of the atomic interaction which can be tuned by atomic s-
wave scattering length using Feshbach resonance [35,36] with
g > 0, g < 0, and g = 0 giving the repulsive, attractive, and
no atomic interaction, respectively. The Hamiltonian H0 in
Eq. (1) of the spin- 1

2 BEC, trapped in an external potential
V (x), is given by

H0 = p̂2

2m
σ̂0 + α

h̄
p̂σ̂x + h̄

2
�σ̂z + V (x)σ̂0, (2)
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with p̂ = −ih̄∂x being the momentum operator, σ̂x,z being the
Pauli matrices, and σ̂0 being the identity matrix. Here, α is
the SOC constant and � is the Zeeman field. We choose
a convenient length unit ξ , an energy unit h̄2/(mξ 2), and a
time unit mξ 2/h̄, and express the following equations in the
corresponding dimensionless variables. The coupled Gross-
Pitaevskii equations are now given by

i
∂

∂t
ψλ =

(
−1

2

∂2

∂x2
+ �

2
+ g n(x) + V (x)

)
ψλ − iα

∂

∂x
ψλ′ ,

(3)
where (λ, λ′) = (↑,↓) or (λ, λ′) = (↓,↑), and the density
n(x) = |ψ↑|2 + |ψ↓|2. We fix the norm N = ∫ ∞

−∞ n(x)dx = 1.
We consider a hard-wall potential V (x) of the width w:

V (x) = 0 (0 � x � w), V (x) = ∞ (x < 0, x > w).
(4)

This potential is analogous to a piston in a thermodynamic
cycle and allows one to define the work of the quantum cycle.
The ground state � of the BEC then depends on the width
w, the detuning �, the interactions g, and the SOC α, i.e.,
�α,g(w,�), and the corresponding ground-state energy of the
BEC is then denoted as Eα,g(w,�). We define the pressure
which in a one-dimensional system coincides with a general-
ized force Pα,g(w,�) as a measure of the energy Eα,g(w,�)
stored per length w:

Pα,g(w,�) ≡ −∂Eα,g(w,�)

∂w
. (5)

In the special case of � = 0 and for the spin-independent
self-interaction proportional to n(x), the energy [37,38]
is given by Eα,g(w, 0) = E0,g(w, 0) − α2/2 resulting in α-
independent pressure Pα,g(w, 0). Notice that at both nonzero
α and �, the system is characterized by a magnetostriction in
the formMα,g(w,�) = ∂Pα,g(w,�)/∂�.

Model of the heat engine: Quantum Stirling cycle. We con-
sider a quantum Stirling cycle keeping the interaction g and
the SOC α fixed during the whole process. The key idea is that
the external “cooling” and “heating” reservoirs are modeled
by the interaction of the spin- 1

2 BEC with external magnetized
media [see Fig. 1(b), right] respectively demagnetized media
[see Fig. 1(b), left]. This external (de)magnetized source leads
to a random magnetic field in the condensate and because
of the Zeeman effect this corresponds to a detuning of the
condensate to � with some probability density distribution
p(�). We assume that this external source brings the system
to a stationary state with the condensate described by a density
operator

ρ̂ =
∫

p(�)|�α,g(w,�)〉〈�α,g(w,�)|d�. (6)

The probability density distribution of the demag-
netizing source pdm(�) is centered around 〈�〉dm ≡∫

� pdm(�)d� = 0 while the one of the magnetizing
source pm(�) is centered around a positive value 〈�〉m > 0.
As an increase in � decreases the BEC energy [10] by an
α-dependent amount, the demagnetization source plays the
role of a “hot thermal bath” here and the magnetization
source plays the role of a “cold thermal bath.” In general there
could exist a stationary external magnetic field leading to an

FIG. 1. (a) The schematic diagram of the quantum Stirling cycle
based on the Zeeman and SOC. (b) Visualization of the demagne-
tization (left) and magnetization (right) processes with the external
sources; the blue dots represent the BEC atoms and the orange dots
represent the external source.

additional detuning. Here, we neglect this possibility in order
to simplify the notation.

The realization of the Stirling cycle is described by a four-
stroke protocol, illustrated in Fig. 1(a). We start at point A with
the BEC being in contact with the demagnetization source,
leading to an effective detuning centered around 〈�〉dm = 0.
The BEC state is given by Eq. (6) with p(�) = pA(�) ≡
pdm(�).

Quantum “isothermal” expansion stroke A → B. Dur-
ing this stroke, the working medium stays in contact with
the external demagnetization source while the potential
expands adiabatically from w1 to w2 without excitation
in the BEC. The probability density distribution p(�)
stays constant during this “isothermal” stroke, i.e., we
have pA(�) = pB(�) = pdm(�) (effective detuning centered
around 〈�〉dm = 0). The average work done during this
isothermal expansion stroke can be then calculated as [39]
〈We〉 = ∫

pdm(�)[Eα,g(w1,�) − Eα,g(w2,�)]d�.
Quantum isochore cooling stroke B → C. The contact with

the demagnetization source is switched off and the work-
ing medium is brought into contact with the magnetization
source while keeping w2 constant. The probability distribution
p(�) is changed to pC (�) ≡ pm(�), which corresponds to a
“cooling” (as the total energy of the BEC is lowered). The
average heat exchange in this stroke can be calculated as
〈Qc〉 = ∫

[pm(�) − pdm(�)]Eα,g(w2,�)d�.
Quantum “isothermal” compression stroke C → D. Dur-

ing this stroke, the working medium stays in contact with
the external magnetization source while the BEC compresses
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adiabatically from potential width w2 to w1 without ex-
citation in the BEC. The probability density distribution
p(�) remains constant during this “isothermal” stroke,
i.e., we have pD(�) = pC (�) = pm(�) leading to an ef-
fective detuning centered around 〈�〉m > 0. The average
work done during this isothermal compression is 〈Wc〉 =∫

pm(�)[Eα,g(w2,�) − Eα,g(w1,�)]d�.
Quantum isochore heating stroke D → A. The contact with

the magnetization source is switched off and the working
medium is brought again into contact with the demagne-
tization source while keeping w1 constant. The probability
distribution p(�) is changed back to pA(�) = pdm(�), which
corresponds to a “heating” (as the total energy of the BEC is
increased). The average heat exchange in this stroke can be
calculated as 〈Qh〉 = ∫

[pdm(�) − pm(�)]Eα,g(w1,�)d�.
To study this quantum cycle, it is important to examine and

understand the dependence of the BEC ground-state energy on
the different parameters. This will be done in the following.

Perturbation theory for the ground-state energy. The com-
plex BEC system used in the thermodynamic cycle does not
have an exact analytical solution. However, we can obtain
analytical insight by considering perturbation theory of the
ground-state energy Eα,0(w,�) of the non-self-interacting
BEC (i.e., g = 0) at small α (and nonzero �), as well as at
small � (and nonzero α).

In the case of small α 
 1/w, the Hamiltonian in
Eq. (1) can be written as H0 = H0,0 +H ′

0, where H0 =
p̂2/2 + �σ̂z/2 + V (x) and the perturbation term being H ′

0 =
α p̂σ̂x. The eigenstate basis of H0,0 is given by ψ

(0)
n,↓(x) =

[0, ψn(x)]T, ψ
(0)
n,↑(x) = [ψn(x), 0]T, where ψn(x) are the

eigenstates of the potential in Eq. (4). The first-order correc-
tion to the energy vanishes and the second-order correction
becomes

ε
(0)
2 = −

∑
n>1

∣∣〈ψ (0)
n,↑(x)

∣∣H ′
0

∣∣ψ (0)
0,↓(x)

〉∣∣2

(n2 − 1)π2/(2w2) + �
. (7)

Thus, the ground-state energy Eα,0(w,�) of the system up to
second order in α is given by

Eα,0(w,�) ≈ π2

2w2
− �

2
− π2α2

w2�
+ 2π2α2

w4�2
ζ (w,�), (8)

where ζ (w,�) ≡ χ (w,�) cot[χ (w,�)/2] with χ (w,�) ≡√
π2 − 2w2�. We can simplify Eq. (8) by approximating the

expression up to first order in �:

Eα,0(w,�) ≈ π2

2w2
− �

2
− α2

2
+ π2 − 6

12π2

( w

�sr

)2
�. (9)

The first three terms on the right-hand side of Eq. (9) cor-
respond to kinetic energy, Zeeman energy (at α = 0), and
SOC energy (at � = 0). Here, we introduced the spin rotation
length �sr ≡ 1/α with w/�sr 
 1.

Alternatively, in the case of large α > 1/w and small de-
tuning �, the Hamiltonian can be written asH0 = H0,1 +H ′

1
where H0 = p̂2/2 + α p̂σ̂x + V (x), and the perturbation term
H ′

1 = � σ̂z/2. The unperturbed H0,1 has pairs of degenerate
eigenstates ψ (0)

a and ψ
(0)
b with the energy Eα,0(w, 0):

ψ (0)
a (x) = ψn(x)e−iαx

(
1
1

)
, ψ

(0)
b (x) = ψn(x)eiαx

(
1

−1

)
.

(10)

FIG. 2. Pressure Pα,0(w, �) vs potential width w for the cases of
� = 0, α = 1.6 (solid black, α independent), � = 1, α = 1 (dashed
blue), � = 1, α = 1.6 (dotted-dashed red), and � = 1, α = 1.75
(solid green). Inset: The pressure difference between points C and
B, δP = Pα,0(w2, 1) − Pα,0(w2, 0).

Based on the perturbation theory for degenerate states and
taking into account that the diagonal matrix elements of the
perturbation �〈ψ (0)

i |σz|ψ (0)
i 〉/2 = 0, we obtain at w/�sr  1

the ground-state energy in the form

Eα,0(w,�)≈ π2

2w2
− α2

2
− π2

2

�sr/w

|(w/�sr )2 − π2|
∣∣∣sin

( w

�sr

)∣∣∣�.

(11)
When we look at the corresponding pressure following from
Eq. (11), we can calculate approximately the pressure differ-
ence δP between the points B and C in the cycle (at w2; see
Fig. 1). The difference δP jumps from negative to positive at
certain widths where w2/�sr ≈ (n + 1)π or α ≈ (n + 1)π/w2

with n = 1, 2, 3, 4, . . .. In addition, there is always an α be-
tween two consecutive “jump points” where δP becomes zero.
We will denote the first corresponding value of α, where the
change of δP for negative to positive occurs, as the critical
αc(g,�).

Energy and pressure. We examine now the exact numerical
values of energy and pressure where we fix w1 = 2 and w2 =
4. The corresponding pressure is illustrated in Fig. 2 for a
noninteracting BEC (g = 0). The shown pressure Pα,0(w2, 0)
for � = 0 is α independent, as discussed above. We can
also see that the pressure Pα,0(w2, 1) is approximately equal
to the pressure Pα,0(w2, 0) at α w2 ≈ 2π , providing crossing
between the red dashed-dotted line and black lines; this corre-
sponds then to a critical αc(0, 1) ≈ 1.6. The corresponding δP
is shown in detail in the inset; it can be seen that δP changes
from negative to positive at αc(0, 1) as one expects it from the
perturbation theory above.

In Fig. 3, the relations between the critical αc(g,�) and
detuning � for different nonlinearities g are plotted. From the
perturbation theory for g = 0 and for small �, one expects
a value of αc(g,�) ≈ 2π/w2 ≈ 1.57. The figure shows that
the exact αc is increasing with increasing � for all cases of
g. There is a competition between the SOC and Zeeman field,
therefore, a larger detuning � requires automatically a larger
α (and therefore a larger αc) to have an effect. We also see that
αc is larger (smaller) for attractive g = −1 (repulsive g = 1)
for all �. The heuristic reason is that there is a compres-
sion (expansion) of the wave function for g < 0 (g > 0) and,
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FIG. 3. Critical αc(g, �) vs detuning � for different nonlineari-
ties: Attractive g = −1 (black solid line), noninteraction g = 0 (blue
dashed line), and repulsive g = 1 (dotted-dashed red line).

therefore, a weaker (stronger) effect of SOC. This requires
heuristically a larger (smaller) α (and therefore αc) to show an
effect.

Work, heat, and efficiency of the engine. Here, we are
mainly interested in the properties of the cycle originating
from the BEC and not in the details of the (de)magnetization
source. Therefore, we assume that the probability density
distributions pdm and pm are sharply peaked at 〈�〉dm =
0 and 〈�〉m = �0 > 0, respectively. Thus we approximate
pdm(�) = δ(�) and pm(�) = δ(� − �0), where δ is the
Dirac function. In this case, the black solid line and the
blue dashed line in Fig. 2 present an example of the ex-
pansion and compression strokes of the cycle shown in
the schematic Fig. 1. The work done during the “isother-
mal” expansion process in Fig. 1, 〈We〉, is then given by
the energy differences 〈We〉 = Eα,g(w1, 0) − Eα,g(w2, 0). The
cooling heat exchange from B to C 〈Qc〉 through contact with
the magnetization source, becomes 〈Qc〉 = Eα,g(w2,�0) −
Eα,g(w2, 0). The work 〈Wc〉 done during the compression
stroke is then 〈Wc〉 = Eα,g(w2,�0) − Eα,g(w1,�0). The heat
in the last stroke can be calculated by 〈Qh〉 = Eα,g(w1, 0) −
Eα,g(w1,�0). The total work then becomes

A = 〈Wc〉 + 〈We〉 =
∮

ABCD
Pα,g(w,�0)dw. (12)

For small �0,

A = −�0

∫ w2

w1

Mα,g(w,�0 → 0)dw. (13)

As defined above, at α = αc(g,�0), the pressures at w2 for
� = 0 and �0 > 0 approximately coincide. If α > αc(g,�0),
the pressure dependencies on a for � = 0 and �0 > 0 cross
at a certain width w̃ with w1 < w̃ < w2 [see, for example,
in Fig. 2, the case of α = 1.75 (solid green line) where w̃ ≈
3.8]. In that case, the work at the interval (w̃,w2) provides a
negative contribution (work done on the system) to A, while
the contribution of the interval (w1, w̃), that is the work done
by the system, is still positive. In the inset of Fig. 4(a), the
total work A vs α is plotted. We see a maximum of A being
close to αc(g,�0). In the following, we restrict our analysis to
the case α � αc(g,�0) (only work done by the system).

FIG. 4. Efficiency η vs α with �0 = 0.5 (solid black), �0 = 1.0
(solid blue), and �0 = 2.0 (solid red); the dotted vertical lines denote
the critical SOC strength αc(g, �0). (a) g = 0. Inset: Total work A
vs α with �0 = 1.0; results based on perturbation theory in Eq. (15)
(blue, red, and black dashed lines). (b) g = −1.

The efficiency of each quantum cycle is now defined as

η = A
〈Qh〉 . (14)

At small α 
 1/w, where 〈Qh〉 ≈ �0/2, we get η ≈ 2A/�0.
Using Eq. (8), we approximate the total workA as

A≈ π2

�0

[(
1

w2
1

− 1

w2
2

)
+ 2

�0

(
ζ (w1,�0)

w4
1

− ζ (w2,�0)

w4
2

)]
α2.

(15)
At �0 
 π2/(2w2

2 ), Eq. (15) yields forA and η,

A = π2 − 6

12π2
�0

(
w2

2 − w2
1

)
α2, η = π2 − 6

6π2

(
w2

2 − w2
1

)
α2.

(16)
It is worth noticing that Eq. (16) has two limits with respect
to the value of w2. Let us define ηc as the efficiency at the
critical αc. First, Eq. (16) is applicable only at α w2 < 2π ,
thus limiting the critical ηc to the values of the order of 0.1.
Second, for g < 0, the value of w2 is limited to soliton width
4/|g| [40], thus ηc is limited correspondingly. [Notice that
Eq. (16) is not directly applicable to g �= 0 BEC.]

Figure 4 shows that the efficiency η grows as α increases.
The approximate efficiency in Eq. (15) is a quadratic func-
tion of α, and this is in good agreement with the numerical
results in Fig. 4(a) for the case g = 0. In the limit of �0 → 0,
the efficiency η ∼ α2 [see Eq. (16)]. This limit case is also
shown by the dashed pink line in Fig. 4(a). As one expects
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FIG. 5. Efficiency ηc at αc(g,�0 ) vs �0. Nonlinearities: Attrac-
tive g = −1 (black solid), noninteraction g = 0 (blue dashed), and
repulsive g = 1 (dotted-dashed red). Values of αc(g, �0 ) are the same
as those in Fig. 3.

a maximum of the total work close to αc(g,�0), one expects
also that the efficiency reaches the maximum at α close to
αc(g,�0). The efficiency ηc at a critical αc with respect to �0

is shown in Fig. 5. The efficiency decreases with increasing
�. This corresponds to Eq. (15) when α = αc ≈ 2π/w2 for
all three cases of g (see Fig. 3).

Discussion and conclusions. Here, we return to the physical
units and discuss the possibility of the experimental real-
ization of the present Stirling cycle. In the one-dimensional
realization considered above, with the physical unit of length
ξ , the resulting dimensionless coupling constant g can be
estimated as ∼2Naatξ/sp, where sp is the condensate cross
section, physically corresponding to the piston cross section.
Here, aat is the interatomic scattering length (typically of the
order of 10aB, where aB is the Bohr radius) dependent on
the Feshbach resonance realization, and N ∼ 103 is the total
number of atoms in the condensate [41]. A reasonable ξ for

optical setups is of the order of 10 μm. Thus, the choice of
w1,w2 of the order of 10 μm allows one to achieve stable
well-controllable dimensionless α and �0 of the order of
unity [26], and thus explore the operational regimes of the
Stirling cycle up to the critical values.

In summary, we have explored the potential of a spin-
orbit-coupled Bose-Einstein condensate in a thermodynamic
Stirling-like cycle. It takes advantage of both the noncom-
muting synthetic spin-orbit and Zeeman-like contributions.
The “cooling” and “heating” is assumed to originate by an
interaction with external magnetization and demagnetization
media. We have examined the ground-state energy of the
condensate and how the corresponding pressure depends on
the system parameters. We have studied the efficiency of the
corresponding engine in the dependence on the strength of
these spin-related couplings. The cycle is characterized by
a critical spin-orbit coupling, corresponding, essentially, to
the maximum efficiency. The dependence of the efficiency
on the spin-dependent coupling and nonlinear self-interaction
paves the way to applications of these cycles. While we have
concentrated here on the BEC-originated effects, it will be
interesting to study in the future the details of external magne-
tization and demagnetization sources. In addition, one could
examine if ideas of regeneration of the heat [42,43] could be
also applied to the system of interest.
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