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Ponderomotive forces, Stokes drift, and momentum in acoustic and electromagnetic waves
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We reveal universal connections between three important phenomena in classical wave physics: (i) the pon-
deromotive force acting on the medium particles in an oscillatory wave field, (ii) the Stokes drift of free medium
particles in a wave field, and (iii) the canonical wave momentum in a medium. We analyze these phenomena for
(a) longitudinal sound waves in a gas or fluid and (b) transverse electromagnetic waves interacting with electrons
in a plasma or metal. In both cases, assuming quasimonochromatic yet arbitrarily inhomogeneous wave fields,
the connections between the ponderomotive force, Stokes drift velocity, kinetic energy, and canonical wave
momentum carried by the medium particles are given by the same simple expressions. This sheds light on
the nature of these phenomena, their fine interplay, and can be useful for applications to dynamical transport
phenomena in various types of waves.
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I. INTRODUCTION

Fundamental relations between the velocity v, momentum
p, and force f for a point particle lie at the heart of classical
mechanics and Newton’s second law,

f = dp
dt

, p = mv, (1)

where m is the mass of the particle. In wave physics, such
relations are not so obvious. Indeed, the very definition of the
wave momentum causes ongoing debates in acoustics, fluid
mechanics, and electrodynamics of continuous media [1–11].
Some approaches associate the wave momentum with the
force acting on the medium or probe particles. However, this
force depends on the type of wave-matter interaction, proper-
ties of the particles, medium inhomogeneities, etc. Radiation
forces in acoustic and optical fields are subjects of numerous
nontrivial studies [12–20].

In this Letter, considering waves in basic continuous me-
dia with free particles, we derive simple relations between
the ponderomotive force acting on the medium particles in a
quasimonochromatic wave field, the wave energy and canon-
ical wave momentum carried by the particles, and the Stokes
drift [21–23] of the particles:

F̄ = −∇W̄ + ∂P̄
∂t

, P̄ = ρ VS. (2)

Here and hereafter, the overbar stands for the cycle average
over oscillations with central frequency ω, F̄ is the pondero-
motive force density, W is the kinetic energy density of the
particles, P is the canonical wave momentum density carried
by the particles, VS is the velocity of the Stokes drift of the
particles, and ρ is the unperturbed mass density of the parti-
cles. The first term in the force (2) is known as the gradient

force [24–26], while the second term can be regarded as the
wave analog of Newton’s second law Eq. (1).

Although particular cases of this time-derivative term have
appeared in several studies on the electromagnetic wave mo-
mentum in dispersive media [10,25–27], and measurements
of the radiation force/momentum have also been performed
[28–30], its general form for waves of a different nature and
connection with the Stokes drift of the particles have yet to
be described, to the best of our knowledge. Moreover, we
show that the wave momentum density P̄ is the canonical
field-theory momentum density (or its part carried by the par-
ticles), which was properly recognized for structured optical
and acoustic wave fields only recently [14,19,27,31–37]. We
also emphasize that Eq. (2) describes the force on individual
microscopic particles constituting the medium rather than the
radiation force on a macroscopic particle immersed in the
medium [12–20].

Below we consider two basic types of longitudinal and
transverse waves in isotropic homogeneous continuous media:
(a) sound waves in a fluid or gas and (b) electromagnetic
waves in a medium with free electrons (plasma or metal). In
both cases Eq. (2) is valid for quasimonochromatic wave fields
with arbitrary spatial inhomogeneities. This is in contrast to
some previous studies considering only plane-wave-like fields
with well-defined wave vectors [10,26,38]. Furthermore, we
consider the effect of losses, which adds a dissipative con-
tribution to the first Eq. (2), also determined by the Stokes
drift velocity. Our derivations can be applied to waves of other
natures, e.g., the Langmuir plasma waves similar to sound
waves [37,39].

Our findings shed light on the nature of the wave mo-
mentum in continuous media, ponderomotive forces, and their
connection with the Stokes drift phenomenon (mostly known
in fluid mechanics). For example, the momentum carried by a
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FIG. 1. Schematics of the propagation of an inhomogeneous
sound wave with different directions of the intensity gradient and the
local wave vector. As the wave amplitude grows in a given point, the
medium particles experience the action of two ponderomotive forces,
Eq. (2): (i) the gradient one, proportional to the intensity gradient and
(ii) the one due to the time derivative of the wave momentum density.
These forces accelerate the medium particles and generate the two
corresponding drift velocities. The velocity associated with the wave
momentum is known as the Stokes drift, Eqs. (2) and (7).

sound wave packet is produced by the ponderomotive forces
which accelerate the medium particles as the wave packet
approaches the given point, so that the particles acquire the
Stokes drift velocity (plus an extra velocity from the gradient
force) inside the packet, as shown in Fig. 1. Since ponderomo-
tive forces, wave momentum, and drifts are highly important
for numerous applications, such as optical or acoustic ma-
nipulation of particles [13,15–18,20], laser cooling [40–42],
optomechanics [43], and microfluidics [12,44], our results can
have practical implementations.

II. SOUND WAVES IN A FLUID OR GAS

We start with the equation of motion for particles of a fluid
or gas in a linear sound wave [23,45],

ρ
∂v(r, t )

∂t
= −∇p(r, t ) ≡ F(r, t ), (3)

where v is the particle Eulerian velocity and p is the pressure.
Sound waves are longitudinal: ∇ × v = 0. Since the velocity
of a given particle is v = ∂r/∂t , Eq. (3) can be regarded as
a nonlinear equation for the particle coordinates r. Quadratic
corrections to the linearized oscillatory motion of the particle
are responsible for both the ponderomotive force and Stokes
drift. Note that we use the Eulerian description of all quantities
in a given spatial point, and therefore the local force density F
is associated with the partial rather than total (material) time
derivative of the velocity.

To find these effects, we use the method of averaging
over fast oscillations. We write the particle coordinates as
r = R + a, where R describes the fixed (Eulerian) coordi-
nates, whereas a corresponds to the fast oscillatory motion.
In the linear approximation, ρ ∂2a(R,t )

∂t2 = F(R, t ). In the next

approximation, the force density on the right-hand side of
Eq. (3) can be written as F(r) � F(R) + [a(R) · ∇]F(R).
We now introduce the complex-amplitude represen-
tation for all linear quasimonochromatic wave fields:
v(R, t ) = Re[v(R, t )e−iωt ], F(R, t ) = Re[F(R, t )e−iωt ],
a(R, t ) = Re[a(R, t )e−iωt ], etc. Substituting this representa-
tion into the above expansion for the force and performing
the time averaging over one period of fast oscillations
with frequency ω, we obtain the time-averaged quadratic
ponderomotive force density:

F̄ = 1
2 Re[(a∗ · ∇)F]. (4)

Using the relations v = ∂a/∂t − iω a, F = ρ ∂v/∂t − iρ ω v,
∇ × v = 0, and some algebra, Eq. (4) can be written as

F̄ = −ρ

4
∇|v|2 + ρ

2

∂

∂t
Re[(a∗ · ∇)v]. (5)

Equation (5) has the form of the first Eq. (2) if we note
that the time-averaged kinetic energy density is W̄ = ρ|v|2/4
and the canonical momentum density of sound waves is P̄ =
ρ

2 Re[(a∗ · ∇)v]. The latter equation yields

P̄ = ρ

2ω
Im[v∗ · (∇)v] (6)

for monochromatic fields. which agrees with recent
derivations [34–37].

The Stokes drift [21–23] is known to appear from the dif-
ference between the Lagrangian and Eulerian velocities of the
particle. It can be derived from the expansion of the velocity
similarly to the force above: v(r) � v(R) + [a(R) · ∇]v(R).
Performing the time averaging for quasimonochromatic fields
yields the Stokes drift velocity

VS ≡ v̄ = 1
2 Re[(a∗ · ∇)v]. (7)

This yields the second Eq. (2).
For a plane sound wave with wave vector k, ∇ → ik, the

canonical momentum density and the Stokes drift velocity
become P̄ = ρ V̄S = 2 k W̄ /ω. Here, the factor of 2 is related
to the fact that the total sound-wave energy, consisting of the
kinetic and potential parts, is 2W̄ [23,35,45].

III. ELECTROMAGNETIC WAVES INTERACTING
WITH ELECTRONS IN A PLASMA OR METAL

We now consider different kinds of waves: electromagnetic
waves in a medium with free electrons, i.e., a plasma or metal
[39,46]. The equation of motion for electrons in an electro-
magnetic wave involves the Lorentz force,

ρ
∂v(r, t )

∂t
= en

[
E(r, t ) + v(r, t ) × H(r, t )

c

]
, (8)

where E and H are the electric and magnetic fields, which
obey Maxwell’s equations, e < 0 is the electron charge, n is
the concentration of electrons, c is the speed of light, and we
use Gaussian units. The heavy ion background in plasma neu-
tralizes the total electric charge of the electrons and is assumed
to be motionless in this approximation. Note that ρ = mn,
where m is the electron mass, so that Eq. (8) is equivalent to
the single-electron equation of motion. We write it in terms of
volume densities to derive the densities of force, momentum,
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etc., akin to the sound-wave case. In contrast to sound waves,
electromagnetic waves are transverse: ∇ · E = ∇ · H = 0.

To derive the quadratic ponderomotive force and Stokes
drift of electrons we follow the same approach as for sound
waves. The only difference now is that the Lorentz force
from the magnetic field H is quadratic in the wave ampli-
tude and should be neglected in the linear approximation.
Therefore, linear oscillations of the electrons are described
by the equation ρ ∂2a(R,t )

∂t2 = en E(R, t ), whereas the quadratic
time-averaged force density for a quasimonochromatic wave
field is given by

F̄ = en

2
Re[(a∗ · ∇)E] + en

2c
Re(v∗ × H). (9)

Notably, introducing the dipole moment d = e a, the force
(9) becomes equivalent to the electric-dipole part of the
cycle-averaged Einstein-Laub force [47–49]. Thus, the two
descriptions, in terms of individual charges and in terms
of wave-induced dipoles, are equivalent to each other. Us-
ing the relations v = ∂a/∂t − iω a, enE = ρ ∂v/∂t − iρ ω v,
the Maxwell equation c∇ × E = −∂H/∂t + iωH (yielding
enH = −ρc∇ × v), and some algebra, Eq. (9) can be trans-
formed into exactly the same form as Eq. (5):

F̄ = −ρ

4
∇|v|2 + ρ

2

∂

∂t
Re[(a∗ · ∇)v]. (10)

Obviously, W̄ = ρ|v|2/4 is the time-averaged kinetic energy
density for electrons, and P̄ = ρVS is their momentum density
associated with the Stokes drift velocity (7). Thus, Eq. (10)
has the desired form of the first Eq. (2).

In contrast to longitudinal sound waves, the Stokes drift
velocity and time-averaged momentum of electrons vanish
in a plane electromagnetic wave: P̄ = VS = 0, because of its
transverse character: k · a = 0. Nonetheless, these quantities
are generally nonzero and play important roles in structured
electromagnetic waves. For monochromatic fields, using the
equations of motion, the electron wave momentum can be
written as [37]

P̄ = − ρ

4ω
∇ × Im(v∗ × v) = − ω2

p

16πω3
∇ × Im(E∗ × E),

(11)
where ωp =

√
4πn2e2/ρ is the electron plasma frequency

[39,46]. By adding this contribution to the Poynting mo-
mentum density carried by the electromagnetic field, P̄field =

1
8πc Re(E∗ × H), one can derive the canonical (i.e., Minkowski
with proper dispersive corrections) momentum density for
monochromatic electromagnetic wave in a medium with per-
mittivity ε(ω) = 1 − ω2

p/ω
2 [27,50,51].

Thus, the Stokes drift and the corresponding momentum
of electrons provide an important contribution to the to-
tal momentum of an electromagnetic wave in a plasma or
metal. This contribution vanishes for a plane wave because
the dispersive correction to the wave momentum from the
frequency-dependent permittivity ε [27,50–52] exactly can-
cels the difference between the Minkowski and Abraham
wave momenta, P̄M = ε P̄field and P̄A = P̄field [8,10,11,53]. In
the interpretation of Ref. [54] this is explained by the fact that
electromagnetic waves in a plasmalike medium do not excite
mass density waves.

Consider now effects of the medium absorption on the
ponderomotive force. Absorption can be introduced via an
effective friction force Fdiss = −γ ρ v on the right-hand side
of the equation of motion (3) or (8). In the electromagnetic-
wave case, this results in the complex permittivity of plasma

or metal: ε(ω) = 1 − ω2
p

ω(ω+iγ ) [39,46]. Substituting the dissi-
pative force into Eqs. (4) or (9) and using Eq. (7), we obtain
the dissipative ponderomotive force proportional to the Stokes
drift velocity:

F̄diss = −γ ρ VS. (12)

This force is neither a gradient force nor a derivative of the
wave momentum, and it should be considered as the third
contribution to the first Eq. (2).

IV. CONCLUSIONS

We have examined ponderomotive forces produced by
quasimonochromatic wave fields in continuous media with
free particles. We considered both longitudinal sound waves
and transverse electromagnetic waves. In both cases the pon-
deromotive force has the same form (2) consisting of two
contributions. The first contribution is the well-known gra-
dient force proportional to the gradient of the kinetic energy
density of the medium particles. The second contribution is
given by the time derivative of the particle contribution to the
canonical momentum density in the wave. We have shown that
this momentum density is associated with the Stokes drift of
the particles. In dissipative media, the ponderomotive force
has the third, dissipative contribution (12), which is also deter-
mined by the Stokes drift velocity. Thus, our results illuminate
close interrelations between the ponderomotive force, wave
momentum, and Stokes drift.

For sound waves in a fluid or gas, the Stokes drift and the
corresponding particle momentum provide the total canoni-
cal momentum of the wave. For electromagnetic waves, the
Stokes drift momentum of electrons is only a part of the
total wave momentum; the remaining part is given by the
electromagnetic field momentum. Notably, the Stokes drift
momentum provides an important contribution for the resolu-
tion of the Abraham-Minkowski dilemma in a metal or plasma
[27,37].

When a wave packet or another inhomogeneous wave
propagates in a medium, the ponderomotive forces acceler-
ate the medium particles near the front edge of the wave
packet and produce the corresponding particle drift inside the
wave packet, Fig. 1. Thus, the gradient and momentum-related
forces in Eq. (2) generate two contributions to the total drift
and momentum of particles. This explains (at least partly) why
the Stokes drift is difficult to observe in its pure form [22]:
It is always accompanied by another drift from the gradient
force. However, the drift from the gradient force cannot be
associated with the wave momentum: It can appear even in a
standing wave without any propagation.
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