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We study the dynamical evolution of a two-dimensional Bose gas after a disorder potential quench. Depending
on the initial conditions, the system evolves either to a thermal or a superfluid state. Using extensive quasiexact
numerical simulations, we show that the two phases are separated by a Kosterliz-Thouless transition. The
thermalization time is shown to be longer in the superfluid phase, but no critical slowing down is observed at
the transition. The long-time phase diagram is well reproduced by a simple theoretical model. The spontaneous
emergence of Kosterlitz-Thouless transitions following a quench is a generic phenomenon that should arise both
in the context of nonequilibrium quantum gases and in the context of nonlinear classical wave systems.
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Following a quench, ergodic quantum systems experi-
ence a progressive loss of memory of their initial state.
At a long time a thermal equilibrium establishes, governed
by a few conserved quantities [1,2]. This ubiquitous phe-
nomenon arises, in particular, in isolated systems, which act
as a thermal bath for their subparts as formalized by the
eigenstate thermalization hypothesis [3–5]. Despite the rather
generic character of thermalization, it has been shown that its
transient dynamics could be very rich. For certain far-from-
equilibrium initial states, e.g., the postquench correlations
functions of a quantum gas can display a universal spatiotem-
poral scaling [6–8]. Near-integrable systems also exhibit a
slow prethermal dynamics [9–12], characterized by a gener-
alized Gibbs ensemble [13,14]. Theoretically, descriptions of
the full evolution of a quantum system from its early- to late-
time dynamics have been proposed in a few cases [15–18], but
this problem remains, in general, largely unexplored.

An important ingredient that may significantly impact the
quench dynamics of an isolated system is spatial disorder.
The role of disorder has been, for instance, addressed in
the context of strongly interacting systems where the phe-
nomenon of many-body localization prevents the emergence
of a thermal state [19]. Initially described in one-dimensional
geometries [20,21], many-body localization has also been
recently touched upon in two dimensions (2D) [22–25]. In
parallel, the ergodic regime has been explored in weakly in-
teracting disordered Bose gases where it was shown that at
transient times the competition between disorder and interac-
tions can destroy localization effects [26–29] or drive the gas
to a prethermal state [30,31].

Another central question in nonequilibrium physics is the
possibility for coherent condensatelike structures to spon-
taneously emerge in an isolated system after a quench, a
phenomenon that depends on dimensionality and occurs for
specific initial conditions [32–39]. In practice, the dynami-
cal formation of condensates has been much studied in the

context of nonlinear optics where an optical field, analogous
to a degenerate Bose gas, obeys a time-dependent nonlin-
ear Schrödinger equation. Such dynamical condensation has
been explored in atomic vapors [40,41] and in multimode
fibers [42–44]. In these works, the effective spatial dimension
was 2, and signatures of condensation were observed either
due to the presence of a spatial confinement [42–44] or be-
cause the dynamics was probed at a finite time [40,41]. In
2D infinite space, however, no true condensation is expected
at a long time, but rather a Kosterlitz-Thouless (KT) transi-
tion [45]. For homogeneous quantum gases at equilibrium,
the KT transition has been observed in liquid helium [46]
and with cold atoms [47–51]. In contrast, its spontaneous
emergence in isolated systems following a quench is still
elusive, although progress has been recently made in that
direction [52,53]. Studies of the KT transition in the presence
of disorder, on the other hand, remain scarce [54–57].

In this Letter, we demonstrate the spontaneous emer-
gence of a KT transition triggered by the sudden quench
of a spatially disordered potential in a 2D interacting Bose
gas using a relatively simple approach based on a random
Gross-Pitaevskii equation. This allows us to explore two yet
poorly understood problems: (1) How 2D systems dynami-
cally evolve toward the vicinity of a KT transition depending
on the quench parameters, and (2) once equilibrium is es-
tablished, how is the transition affected by the disorder? To
address the first question, we numerically study the full time
evolution of the coherence function and the thermalization
time of the Bose gas. This allows us to explain, in particular,
findings of the recent experiment [11]. In the second problem,
we characterize the long-time equilibrium transition line as a
function of the disorder and compare it with state-of-the-art
theoretical predictions. We finally investigate two core prop-
erties of the KT transition, the finite value of the superfluid
density and the divergence of the correlation length and find
evidence for their universality in the presence of disorder.
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Consider a dilute 2D Bose gas initially prepared in a plane-
wave state |k0〉, i.e., an eigenstate of the free Hamiltonian.
From now on we choose the initial momentum k0 oriented
along x. At time t = 0, we assume that the gas is suddenly
subjected to a 2D disorder potential V (r = x, y), which we
model by an uncorrelated random Gaussian function with
zero mean: V (r) = 0 and V (r)V (r′) = γ δ(r − r′) where the
overbar refers to the disorder average and γ is the disorder
strength. The latter defines an energy scale γ m, where m is
the mass of the particles and we have set h̄ = 1. From t = 0
onward, |k0〉 is no longer an eigenstate of the problem so
that the Bose gas starts evolving in time. We describe this
evolution using the nonlinear Schrödinger equation,

i ∂tψ = −∇2ψ/(2m) + V ψ + gN |ψ |2ψ, (1)

where ψ = ψ (r, t ) is the wave function. The latter is normal-
ized according to

∫
d2r|ψ (r, t )|2 = 1, and the prequench state

is ψ (r, 0) = 1/
√

� exp(ik0 · r) with � as the volume of the
system. The particle density is ρ0 = N/�. In practice, this
quench protocol can be realized by cooling a Bose gas to low
temperatures, transferring it a momentum, and subjecting it to
an optical random potential [58]. The problem is also relevant
in the context of nonlinear paraxial optics where k0 refers to
the transverse wave vector of a laser impinging on a nonlinear
medium at finite angle of incidence [40,41,59]. In that case,
the disorder can be realized by imprinting 2D refractive-index
fluctuations on the (x, y) plane [60,61].

Averaging the solutions of the random Eq. (1) over many
realizations of V (r) allows us to effectively go beyond the
mean-field level and capture the complex dynamics of the
Bose gas, including the KT transition. In spirit, this approach
is similar to a truncated Wigner approximation where one
samples a random initial state [62]. To describe the gas dy-
namics, we study the average coherence function,

g1(r, t ) = ψ∗(0, t )ψ (r, t )/|ψ (r, t )|2. (2)

To evaluate g1, we numerical propagate the wave function
with Eq. (1) using a split-step algorithm from which we com-
pute the momentum distribution [29]. g1 follows from inverse
Fourier transformation and disorder averaging. In our simula-
tions, we discretize space on a rectangular lattice � = L ×
L with step δ = 1.5 and use periodic boundary conditions.
Throughout the Letter, lengths, momenta, and energies are
given in units of a, a−1, and 1/(ma2), where a is an arbitrary
unit length. The behavior of g1 as a function of time is entirely
governed by three independent energy scales characterizing
the postquench state: the kinetic, disorder, and interaction
energies k2

0/2m, γ m, and gρ0, respectively [63]. We first show
in Fig. 1 g1 vs time for two different sets (k2

0/2m, γ m, gρ0).
In panel (a), γ m � gρ0. In this low-energy regime (weak
disorder quench), g1 quickly exhibits an algebraic scaling,

g1(r, t ) ∼ (ξ/r)α(t ). (3)

The algebraic exponent α(t ) is shown in the inset of Fig. 1(a).
It decreases in time and saturates when t ∼ 104τg with τg =
1/(gρ0), indicating that the system has reached its final equi-
librium state where the gas behaves as a superfluid. The time
evolution of α(t ) features a slow crossover from a prether-
mal regime at a short time, where α(t ) 	 γ m/4πgρ0 [30],

FIG. 1. Coherence function g1(x = 0, y, t ) vs time of a 2D Bose
gas after a disorder quench for two sets of initial conditions (the first
and last time steps are indicated in each plot) (a) γ m = 0.09, gρ0 =
1, and k0 = 0 (γ m/gρ0 � 1): shortly after the quench, g1 decays
algebraically, Eq. (3). At a short time, the gas lies in a prethermal
regime: the algebraic exponent α(t ) 	 γ m/4πgρ0 (dashed line), then
decreases slowly, and g1 is limited by a Lieb-Robinson bound. At a
long time, thermal equilibrium establishes: α(t ) → α(∞) and g1 is
only limited by the system size. The inset shows the full evolution of
α(t ). (b) γ m = 0.09, gρ0 = 0.003, and k0 = 0.754 (γ m/gρ0 � 1):
shortly after the quench, g1 acquires an exponential shape, Eq. (4),
with a correlation length L(t ) slowly increasing with time. All data
are averaged over 128 disorder realizations and over system sizes
L ∈ [75, 100] (a) and L ∈ [350, 400] (b). Space and time units are
explained in the main text.

to a finite-temperature superfluid state at a long time, where
α(t ) → α(∞) is related to the superfluid density as will be
investigated below. At a short time, the algebraic decay is
limited by the Lieb-Robinson bound r = 2cst , where cs =√

gρ0/m is the speed of sound, whereas at a long time it is
limited by the system size.

Figure 1(b) shows g1(r, t ) for a different initial condition
such that γ m � gρ0. In this regime, the coherence function
right after the quench is governed by disorder scattering and is
nonuniversal [31]. Very quickly though, particle interactions
take over and induce an exponential coherence that persists
over all times,

g1(r, t ) ∼ exp[−r/L(t )]. (4)
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FIG. 2. Equilibrium phase diagram reached by the 2D Bose gas
a long time after the disorder quench, deduced from the spatial
decay of g1(r, t → ∞). Each cross symbol corresponds to a given set
(k2

0/2m, γ m, gρ0 ) with γ m ranging from 0.01 to 0.49 and k0 from 0
to 0.9. Here gρ0 = 0.1 is fixed, and we use a system size L = 400 and
64 disorder realizations for averaging. The dashed curves indicate the
points of constant k0 values, and the solid curve is the theoretical pre-
diction for the Kosterlitz-Thouless transition line (γ m, TKT), Eq. (5).

The correlation length L(t ) is shown in the inset of Fig. 1(b).
It increases in time and saturates when t ∼ 103τg, the Bose
gas now reaching a purely thermal state. Whereas full ther-
malization takes some time to establish, it is remarkable that,
in this regime of stronger disorder, the exponential coher-
ence emerges shortly after the quench. This result explains
the recent observations of Ref. [11] where a transition from
algebraic to exponential coherence was observed in a nonequi-
librium fluid of light despite the system being probed at
relatively short times.

This dynamical analysis shows that after the quench the
Bose gas thermalizes into a phase that crucially depends
on the initial conditions (k2

0/2m, γ m, gρ0). To characterize
the final equilibrium state more exhaustively, we have per-
formed a systematic analysis of the coherence function vs
time for a large set of initial conditions. For each of those,
we have determined whether g1(r, t → ∞) behaves expo-
nentially or algebraically [64]. The result of this analysis is
summarized by the phase diagram in Fig. 2. The various equi-
librium phases are represented as a function of the disorder
energy γ m and the temperature T at fixed gρ0. Here T is
the effective temperature acquired by the Bose gas after its
self-equilibration and is determined by the initial conditions.
To find it, we have computed numerically the occupation num-
ber at energy ε, Nε (t ) = ρ0〈ψ (t )|δ(ε − H0)|ψ (t )〉/νε , where
H0 = −∇2/(2m) + V and νε is the average density of state
per unit volume. Whatever phase it lies in at a long time,
the Bose gas always contains a certain fraction of thermal
particles. These particles occupy the states of highest en-
ergy, corresponding to Nε→∞(∞) ∼ T/(ε − μ), where μ is
the chemical potential. This asymptotic law is the so-called
Rayleigh-Jeans distribution, which describes the thermal equi-
librium of classical-field theories [32,34,35]. Therefore, by

examining Nε (∞) at large ε, one can infer both T and μ

for a given (k2
0/2m, γ m, gρ0) [64]. In practice, at fixed γ m

and gρ0, higher temperatures are achieved by increasing k0 as
illustrated by the equi-k0 lines in Fig. 2.

Figure 2 shows that the long-time equilibrium state crosses
from a superfluid to a normal fluid as T is increased. A similar
transition is also observed if the ratio γ m/gρ0 is increased at
fixed temperature. The set of parameters for which both an
algebraic or an exponential decay can equally well describe
g1 due to numerical uncertainties defines the central green
region in the phase diagram [64]. It is in this region that we
expect a Kosterlitz-Thouless transition to occur. To confirm
it, we have evaluated semianalytically γ vs the critical tem-
perature TKT of the KT transition, in the spirit of the recent
work [23]. The approach consists of calculating the superfluid
density ρs(T ) on the superfluid side of the transition in the
presence of disorder using Bogoliubov theory [65,66] and
extrapolating the result to the transition point assuming the
Nelson-Kosterlitz relation ρs(TKT) = 2mTKT/π . This relation,
well known in the homogeneous case, describes a universal
jump of the superfluid density at the transition [67]. Below we
will verify its validity numerically in the presence of disorder.
At weak disorder γ m � gρ0, this calculation provides

γ m = 4πgρ0

I1

[
1 − TKT

Td
(4 + I2)

]
, (5)

where Td = 2πρ0/m, I1 = ∫
dε 4gρ0(νε/ν)/(ε + 3gρ0 − μ)2

and I2 = ∫
dε(νε/ν)/(ε + 3gρ0 − μ) with ν = m/2π [64].

In these integrals, ε is bounded from above by the lat-
tice energy 4/(mδ2). We also restrict ourselves to ε >

0, the density of states being very small at negative
energy. In the homogeneous limit (γ , δ → 0), Eq. (5) re-
duces to TKT = Td/ ln(e4Td/gρ0), very close to the value
of 	Td/ ln(60Td/gρ0) obtained in Monte Carlo simula-
tions [57,68]. Because Eq. (5) holds at weak disorder only,
however, it is insufficient to accurately capture our simu-
lations. To solve this issue, we have further included the
next-order disorder correction to Eq. (5) [69,70] and have also
accounted for the disorder dependence of νε [64]. With these
corrections, Eq. (5) becomes an implicit equation for γ which
needs to be numerically solved. This yields the critical curve
shown in Fig. 2 where we have adjusted gρ0 	 0.122. This
analysis confirms the validity of Eq. (5) within 20% accuracy,
a value that might be improved by working at weaker interac-
tion.

To further characterize the KT transition emerging after the
quench, we have studied two critical observables. The first one
is the superfluid fraction ρs(T = TKT) = 2mTKT/π at the tran-
sition, which in the absence of disorder is known to undergo
a jump associated with a proliferation of vortices. This is also
the relation we have assumed above for deriving the critical
line, Eq. (5). To test it, we have numerically computed the
algebraic exponent α(t → ∞) of g1(r, t → ∞), see Eq. (3),
for various disorder strengths and temperatures in the vicinity
of TKT. In homogeneous systems, α(∞) = 1/ρs(T )λ2

T with
λT = √

2π/mT as the thermal wavelength. The jump of ρs at
the transition then corresponds to α(∞) = 1/4. The results
of this analysis are shown in Fig. 3(a). As T → TKT, we
indeed observe that points at different γ tend to all satisfy
α(∞) = 1/4. A second central property of the KT transition
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FIG. 3. (a) Inverse of the algebraic exponent α(∞) on the su-
perfluid side of the KT transition, extracted from g1(r, t → ∞)
for different temperatures and disorder strengths. The plot suggests
α 	 1/4 near the transition, irrespective of γ . The dashed line pin-
points α−1(∞) = 4. (b) Correlation length L(∞) extracted from
g1(r, t → ∞) on the normal side, for different temperatures and
disorder strengths. In both plots parameters are the same as in Fig. 2,
namely gρ0 = 0.1, L = 400, and we average over 64 disorder real-
izations. The critical temperature TKT is found numerically by taking
the average of the two extreme points lying in the critical area in
Fig. 2. The dashed curve is a fit to Eq. (6).

is the fast divergence of the correlation length L, see Eq. (4),
in the vicinity of the transition [71],

L(∞) ∼
√

TKT

T
exp

[√
ζTKT

T − TKT

]
. (6)

To test Eq. (6) in the presence of disorder, we have extracted
L(∞) from g1(r, t → ∞) for various disorder strengths and
temperature close to TKT. The results, shown in Fig. 3(b),
remarkably fall on the same universal curve. A fit (dashed
curve) further demonstrates a good agreement with Eq. (6).
Overall, these results point toward a universal character of
the KT transition in the presence of disorder, once the critical
temperature has been properly rescaled according to Eq. (5).
We have, finally, analyzed the thermalization time τth needed
for the system to equilibrate after the quench. To estimate it,
we use the empirical numerical criterion that beyond τth, the
area A(t ) = ∫ L/2

0 dy g1(x = 0, y, t ) does not vary significantly
in time whatever the quench parameters, i.e., for any point
of the phase diagram in Fig. 2. In practice, we fit A(t ) with
a function of the form B − C/(t + D)2 and define τth as the
time for which this function reaches 95% of its maximum B.

FIG. 4. Thermalization time vs temperature for three disorder
strengths. Parameters are the same as in Fig. 2 except the system
size L = 300.

The uncertainty on the fit parameters provide error bars for
the determination of τth. Figure 4 shows τth vs temperature
for different γ m’s. Whereas τth(T ) decreases nearly expo-
nentially on the normal side, we observe a sizable increase
in the thermalization time as one crosses from the normal to
the superfluid phase. Note also that except perhaps at strong
disorder, in the superfluid region disorder tends to “help”
the system to thermalize faster, a phenomenon that has been
previously pointed out for interacting bosons in dimension
one [73]. This nontrivial outcome is the result of a compro-
mise between two antagonistic effects, the disorder that makes
the system more ergodic after the quench, and the interactions
that drive a superfluid state less sensitive to the disorder.

In conclusion, we have characterized the dynamical equi-
libration of 2D interacting Bose gases subjected a disorder
potential quench, exploring both the nonequilibrium and the
equilibrium facets of the problem and providing a benchmark
for future experiments on atomic or photonic disordered flu-
ids. An analysis of the dynamical exponents governing the
approach to equilibrium would be an interesting challenge
for future work as well as the possible existence of a finite-
temperature localized or insulating phase at stronger disorder,
pointed out in Ref. [23]. Whereas it remains unclear whether
signatures of such a phase could be found from a classical-
field description, use of a nonequilibrium approach to describe
it is best suited, given the fundamental dynamical nature of the
many-body localization.
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