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Quantum Hall states for Rydberg arrays with laser-assisted dipole-dipole interactions
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Rydberg atoms with dipole-dipole interactions provide intriguing platforms to explore exotic quantum many-
body physics. Here we propose a mechanism dubbed laser-assisted dipole-dipole interactions to realize synthetic
magnetic field for Rydberg atoms in a two-dimensional array configuration, which gives rise to the exotic bosonic
topological states. In the presence of an external effective Zeeman splitting gradient, the dipole-dipole interaction
between neighboring Rydberg atoms along the gradient direction is suppressed but can be assisted when Raman
lights are applied to compensate the energy difference. With this scheme we generate a controllable uniform
magnetic field for the complex spin-exchange coupling model, which can be mapped to hard-core bosons
coupling to an external synthetic magnetic field. The highly tunable flat Chern bands of the hard-core bosons are
then obtained and, moreover, the bosonic fractional quantum Hall states can be achieved with experimental
feasibility. This Letter opens up an intriguing avenue for the realization of the highly sought-after bosonic
topological orders using Rydberg atoms.
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Introduction. The two-dimensional (2D) electrons coupled
to an external magnetic field in the perpendicular direction
can fill into Landau levels, giving rise to the prominent quan-
tum Hall (QH) effects [1,2], whose discovery opened up the
extensive search for topological states of quantum matter
[3–7]. Unlike the electrons which are fermions, no quantum
Hall states are obtained for noninteracting bosons coupled
to external magnetic field since the bosons are condensed to
the round state at zero temperature, rather than filling into
an entire Landau band. To realize the QH phase for bosons
necessitates strong repulsive interactions so that the Bose
liquids become incompressible and the bosonic QH effects
may be reached [8–14]. In comparison with fermionic coun-
terparts, the bosonic integer and fractional QH states are all
strongly correlated topological phases, being intrinsic [15,16]
or symmetry-protected topological orders [17–19]. Important
attempts at achieving the QH regime have been made in
bosonic systems, such as rotating Bose-Einstein condensates
[20], Hofstadter-Hubbard model [21], and interacting photons
[22], whereas the feasibility of fully realizing such strongly
correlated topological phases in experiment is hitherto elusive.

Recently, the exploration of novel correlated quantum
states using Rydberg atoms attracted remarkable interests
[23]. The Rydberg atoms can be arranged individually in array
configuration through optical tweezers [24–26]. The highly
excited internal states enable the long-range dipole-dipole
interactions, which generate effective hopping couplings
between Rydberg atoms at different sites [27,28]. Such config-
uration simulates the hard-core bosons in lattice and provides

*These authors contributed equally to the work.
†Corresponding author: xiongjunliu@pku.edu.cn

versatile platforms to explore correlated bosonic quantum
matter. Several important fundamental correlated phases have
been observed in experiment, including quantum magnetism
[29–32], the one-dimensional bosonic Su-Schrieffer-Heeger
model [28], and 2D quantum spin liquid [33]. To further re-
alize the bosonic QH phase with Rydberg arrays necessitates
the generation of synthetic magnetic field which is associated
with complex-valued dipole-dipole interactions. The synthetic
gauge fields are the key ingredient to explore topological
physics and have been actively studied theoretically and ex-
perimentally for ultracold atoms in optical lattices [34–48].
The synthetic magnetic fields were also proposed for dipolar
atoms [49,50], and a density-dependent Peierls phase was
recently realized for a small system with three Rydberg atoms
[51], whereas to realize a uniform magnetic field with high
tunability for Rydberg arrays is currently a challenging task.
Being intrinsically strongly correlated quantum simulators,
the Rydberg atom arrays with synthetic magnetic fields are
of great interests.

In this Letter, we propose a mechanism dubbed the laser-
assisted dipole-dipole interaction for realizing a tunable
synthetic magnetic field for hard-core bosons simulated by
Rydberg atoms in a 2D array configuration. The realized
model is described by the Hamiltonian,

H =
∑
jx, jy

(
Jxb†

jx+1, jy
b jx, jy + Jyei� jx b†

jx, jy+1b jx, jy + H.c.
)

+
∑
jx, jy

(
Jd1 ei� jx b†

jx+1, jy+1b jx, jy + H.c.
)

+
∑
jx, jy

(
Jd2 ei� jx b†

jx−1, jy+1b jx, jy + H.c.
)
, (1)
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FIG. 1. Sketch of the proposal. (a) Rydberg atoms trapped in
optical tweezers to form a 2D array. An energy shift with gradient in
y direction modifies the energy difference between the two Rydberg
states (effective Zeeman splitting for pseudospin). (b) The Ryd-
berg dipole-dipole interaction can induce spin-exchange coupling
between adjacent sites along the x direction. (c) In the y direction,
the spin-exchange coupling is suppressed by the effective Zeeman
energy offset. A two-photon Raman process compensates this energy
offset and drives the laser-assisted spin-exchange couplings. (d) The
laser-assisted exchange couplings have a spatially dependent phase,
generating a synthetic magnetic flux in the 2D lattice.

where b†
i, j (bi, j) creates (annihilates) a hard-core boson at

site (i, j) with particle number 〈b†
i, jbi, j〉 � 1, the coefficients

Jx(y) and Jd1(2) characterize the nearest-neighbor hopping term
along the x (y) direction and next-nearest-neighbor (NNN)
hopping terms in two diagonal directions, respectively. The
hopping phase � represents a synthetic magnetic field for the
hard-core bosons and is induced by the Raman laser-assisted
dipole-dipole interactions. The flat Chern bands of the hard-
core bosons are obtained with their flatness being drastically
tuned by the diagonal Jd1,d2 terms, facilitating the realization
of bosonic QH states with Rydberg arrays.

The laser-assisted dipole-dipole interactions. We consider
the 2D rectangular array of Rydberg atoms, with lattice con-
stants a1,2 and each trapped in optical tweezers [Fig. 1(a)].
Two Rydberg states are chosen to simulate spin 1/2 at each
site with | ↓〉 ≡ |n, S〉 and | ↑〉 ≡ |n, P〉. An effective Zeeman
splitting Mjy between the two pseudospin states is introduced
with Mjy+1 − Mjy = � along the y direction, whereas the
on-site energy along the x direction is uniform. The total
Hamiltonian of the system,

H = Hdipole + HZeeman + VR(r, t ) (2)

includes the bare dipole-dipole interactions [23] which we
take up to diagonal terms,

Hdipole =
∑
jx, jy

(
J0

x σ+
jx, jy

σ−
jx+1, jy

+ J0
y σ+

jx, jy
σ−

jx, jy+1

)

+
∑
jx, jy

J0
d σ+

jx, jy
σ−

jx+1, jy±1 + H.c., (3)

the effective Zeeman energy gradient term,

HZeeman = 1

2

∑
jx, jy

Mjyσ
z
jx, jy

,

and the Raman coupling potential,

VR(r, t ) = �1�
∗
2

�i
ei �k·rei(ω2−ω1 )tσ x

jx, jy + H.c.

In the above Hamiltonian, the dipole-dipole interaction leads
to a spin-exchange coupling J0

x between adjacent sites along
the x direction as illustrated in Fig. 1(b). The key ingredient
of the scheme is that the bare exchange couplings J0

y and
J0

d are suppressed by the relatively large Zeeman splitting
offset �, but can be further induced by applying the Ra-
man coupling potential VR which is generated by two Raman
lights with the Rabi-frequencies �1,2 and frequency differ-
ence ω2 − ω1 ≈ � such that the Zeeman energy offset �

is compensated by the two-photon process. Specifically, this
Raman process is obtained by coupling one of the pseu-
dospins to an intermediate state |i〉 with detuning �i [see
Fig. 1(c)]. With this configuration, the effective exchange
couplings along the y and diagonal directions are recovered
by the Raman laser-assisted dipole-dipole interactions. Fur-
thermore, the wave-vector difference �k = k2 − k1 of two
Raman lights determines the phases of the induced exchange
couplings which are responsible to the magnetic flux in the
effective model [Fig. 1(d)]. With the above analysis we can
compute the effective exchange couplings through a time-
dependent perturbation theory (see the Supplemental Material
for details [52]),

Jeff
y = J0

y

�1�
∗
2

��i
ei(� jx+φy jy )(eiφy − 1), (4)

Jeff
d1(d2 ) = J0

d

�1�
∗
2

��i
ei(� jx+φy jy )[ei[φy+(−)�] − 1], (5)

where � = �kxa1 is a nontrivial phase generating flux in each
plaquette and the phase φy = �kya2 tunes the strengths of
Jy and Jd1(d2 ). The term eiφy jy is, however, trivial and can be
gauged out. We then reach the effective spin model in a more
compact form

Heff =
∑
jx, jy

(
Jxσ

+
jx+1, jy

σ−
jx, jy

+ Jyei� jx σ+
jx, jy+1σ

−
jx, jy

+ H.c.
)

+
∑
jx, jy

(
Jd1 ei� jx σ+

jx+1, jy+1σ
−
jx, jy

+ H.c.
)

+
∑
jx, jy

(
Jd2 ei� jx σ+

jx−1, jy+1σ
−
jx, jy

+ H.c.
)
, (6)

where Jy,d1,d2 denote the amplitudes of the effective ex-
change couplings and Jx = J0

x . The above model is mapped
to the Hamiltonian (1) for hard-core bosons by defining
the bosonic operator b†

j = | ↑〉 j〈↓ | j at each site. Unlike the
single-particle Raman process in optical lattices [36–39,44–
48], the present laser-assisted dipole-dipole interaction is a
nonlinear two-particle process, rendering a strongly correlated
bosonic system.

The Eq. (5) obtained in the perturbative regime is pre-
cise when � is large compared with the bare exchange
couplings and the two-photon Raman coupling strength,
namely, J0

y,d/� 	 1 and |�1�
∗
2|/(��i ) 	 1. However, the

generation of the magnetic flux through the laser-assisted
dipole-dipole interactions is valid for more generic case be-
yond perturbative regime. The only difference is that for a
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FIG. 2. Numerical simulation for the laser-assisted exchange couplings and the synthetic magnetic flux under φy = π . (a) Raman coupling
driven Rabi oscillation on a two-site system, which has an energy offset � compensated by the Raman potential. A boson is initialized at
site 1 and evolves afterwards. Take η = 2|�1�2/(��i )| = 0.5 and � = 5J0

y = 10Jy. The slow oscillation is driven by the Raman coupling,
whereas the fast oscillations of frequency � correspond to the off-resonant bare transition. (b) The amplitude of Jeff

y matches well with the
perturbative result |Jeff

y | = ηJ0
y when η and J0

y /� are small. When η is large, |Jeff
y | deviates clearly from the perturbation results. (c) The phase

of the exchange-couplings Jy, Jd1 , and Jd2 (not shown in figure). The numerical results show good coincidence with perturbation results.

moderate �, higher-order processes and additional interme-
diate processes will also contribute to the effective exchange
couplings, which quantitatively modify the amplitudes in
Eq. (5) as we show below.

We confirm the above results numerically by studying the
hopping dynamics for a single boson along the y direction
or diagonal direction as shown in Fig. 2. We initialize the
state of the single boson occupying site 1, and simulate the
Rabi oscillations by computing the dynamical evolution be-
tween the two sites from the original Hamiltonian (2) with
which we determine the numerical result of Jeff

y (the numeri-
cal study for Jeff

d1(d2 ) is similar, see the Supplemental Material
[52]). Figure 2(a) shows an example of the Rabi oscillations
from which one can read off directly the amplitude of Jeff

y .
From the phase accumulation in the wave-function evolution,
one can determine the phase ϕ( jx ) of the exchange-coupling
coefficient for fixed jx. Furthermore, the magnetic flux per
plaquette, denoted as �num, is given by �num = ϕ( jx = 1) −
ϕ( jx = 0) in two separate simulations for the two-site sys-
tem along the y direction, respectively, at jx = 0 and jx = 1.
Figures 2(b) and 2(c) shows the numerical results (blue solid
lines) compared with the perturbation results given by Eq. (5)
(red dashed lines). We find that for relatively small J0

y /�

and |�1�
∗
2|/(��i ), the numerical results of the amplitude of

the laser-assisted exchange coupling |Jeff
y | match better those

given from the perturbation theory [Fig. 2(b)]. In compar-
ison, the numerical results for the flux �num matches well
the perturbation results in more generic results [Fig. 2(c)].
With this we see that in the generic case the laser-assisted
exchange couplings are induced, together with a nontrivial
phase generating the magnetic flux in the effective model.

Before proceeding we provide estimates for the model
parameters in the real experiment. For the 87Rb atoms, for
instance, we may take the primary quantum number n ∼ 50
for the Rydberg states, which are of the lifetime τ ∼ 100 μs
at low temperature [53]. The lattice constants a1,2 can be
taken to be 10–20 μmfor which the bare exchange coupling
is about J0

x,y ≈ 1 to 2 MHz. Accordingly, it is sufficient to

set the effective Zeeman splitting offset as � ≈ 5.0–10 MHz
to suppress the bare exchange couplings along the y and
diagonal directions. When a Raman coupling with strength
�1�2/�i ∼ 0.25� is applied, the effective coupling of mag-
nitudes Jy ∼ 0.6 to 1.0 MHz is induced through numerical
calculation. As a key ingredient of the present scheme, the
effective Zeeman splitting offset between neighboring sites
can be realized with various approaches in the real experi-
ment. For example, one can apply additional optical lights,
which can be set together with the optical tweezer lights, to
couple one of the two Rydberg states say | ↓〉 and the ground-
state 5S for 87Rb atoms (or other low-energy normal states),
giving an AC Stark shift to the Rydberg state | ↓〉. Using
the same optical tweezer technique one can readily control
the light field strength on each array at different jy sites to
realize the required effective Zeeman splitting offset. Another
direct approach is apply a magnetic field with spatial gradient
along the y direction, which induces the real Zeeman energy
splitting between the S and P Rydberg atoms. More details
can be found in the Supplemental Material [52].

Flat Chern bands for the Rydberg states. We proceed
to study the topological Chern band physics of the realized
Hamiltonian (1), which exhibit exotic features. In particular,
in the presence of the NNN hopping Jd1(2) , the energy spectra
versus the flux � = (p/q)2π (with p and q being mutually
prime integers) exhibits distinct characters in comparison with
the conventional Hofstadter butterfly which is symmetric with
respect to both � and energy [54,55]. Specifically, here the en-
ergy spectra are generically asymmetric, showing a deformed
Hofstadter butterfly diagram [Fig. 3(a)]. A novel result is
that for the π -flux regime, the bulk is gapped with nonzero
Chern number [Fig. 3(b)], in stark contrast to the conventional
case without diagonal terms where the bulk is gapless [55].
Furthermore, for q = 5, an extremely flat lowest Chern band
is obtained [Fig. 3(c)].

The intriguing feature is that the NNN hopping coefficients
Jd1(2) can drastically change the flatness ratio between the
band-gap Egap and band-width W regarding the lowest Chern
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(a) (d)

(b) (c)

FIG. 3. The quantum Hall bands modulated by the diagonal hop-
pings Jd1(d2 ) when J0

x = J0
y . (a) The deformed Hofstadter butterfly is

generated at φy = 0.8π . (b) and (c) The Chern bands for different
φy’s and �’s. (d) The flatness ratio Egap/W versus φy. The red solid
lines show the flatness ratio for the realized model in comparison
with the case of setting Jd = 0 by hand (blue dashed line correspond-
ing). The maximal flatness is obtained at φy = φo

y .

band. Figure 3(d) shows numerically the flatness ratio (the red
solid lines) versus φy which governs Jy and Jd1(d2 ) via Eq. (5),
and for comparison the flatness ratio for the case of setting
Jd = Jd1,2 = 0 by hand is also given (the blue dashed lines).
We find that the flatness of the lowest band is greatly improved
in a large range of φy. Especially, at φy = φo

y ≈ 1.7π with
J0

x = J0
y = 1, the diagonal hoppings Jd1 = 0.1ei0.55π and Jd2 =

0.6ei0.85π for which the flatness ratio is optimized to maximum
and is remarkably large. This feature enables a feasible way to
realize bosonic fractional QH states.

Bosonic 1/2 Laughlin state. The flat Chern bands for hard-
core bosons facilitate the realization of bosonic fractional QH
states. In comparison with rotating Bose-Einstein condensates
[14], the present Rydberg system realizes ideal Landau bands
for hard-core bosons without necessitating the fast-rotating
condition. Also, unlike the Hofstadter model for ultracold
atoms in an optical lattice, the present model intrinsically
reaches the strong interacting limit without suffering higher
band effects. We denote the number of hard-core bosons as Nb

and the filling factor ν = Nb/Nϕ , where Nϕ is the total mag-
netic flux threading the 2D array. As a prominent example,
we consider the filling ν = 1/2, the ground many-body wave
function of this bosonic Laughlin state reads [13,56]

g.s.(z1, . . . , zNb ) =
∏
j<k

(z j − zk )2exp

(
−

Nb∑
i=1

|zi|2
)

, (7)

where z j = x j + iy j is the coordinate in the complex plane
of the jth particle. The ν = 1/2 fractional QH state is char-
acterized by two fundamental features. First, the many-body
ground states (g.s.s) have twofold degeneracy. Second, the

FIG. 4. The bosonic 1/2-fractional quantum Hall state. The low-
energy spectra En − E0 versus the system size 1/L with L = LxLy.
The results show the twofold degeneracy of the many-body ground
states, which have a finite gap separating from the excited states.
Other parameters are taken Jx = Jy = J .

ground-state manifold is separated from excitations with a
finite gap. Below we confirm the two features based on exact
diagonlization for a finite system of LxLy sites with periodic
boundary condition.

The numerical results are shown in Fig. 4 where the hop-
ping coefficients are set as Jx = Jy = J for convenience at the
phase φy = 1.4π (1.3π ) for q = 5 (6). We compute the lowest
three many-body eigenstates of the system with energies E0–2

and plot the spectra versus system size. We find the results are
stabilized with sizes up to 5 × 10 for q = 5 and 6 × 10 for
q = 6 at filling ν = 1/2. The many-body ground states has
twofold degeneracy as E1 − E0 ≈ 0, whereas the excitation
gap Egap = E2 − E1 approaches an appreciable magnitude at
large-size limit, yielding Egap = 0.37J for q = 5 and Egap =
0.35J for q = 6 for the present fractional QH phase. For both
cases, the upper bound of correlation length can be estimated
as ξmax ∼ Ja/Egap ∼ 3a, implying that the finite-size effects
[69] are negligible for Lx,y > 6a under the open boundary
condition.

Conclusions and discussions. We have proposed a fun-
damental scheme dubbed the laser-assisted dipole-dipole
interactions for Rydberg atoms to realize synthetic magnetic
field and 2D bosonic QH states. The dipole-exchange interac-
tion along one direction of the 2D Rydberg array is suppressed
by setting an effective Zeeman splitting gradient but can be
assisted by applying a two-photon Raman coupling process
which compensates the neighboring-site Zeeman energy off-
set and generates nontrivial gauge flux for the spin-exchange
model. The highly tunable flat Chern bands of hard-core
bosons and the bosonic fractional QH states can be obtained
feasibly, with the 1/2-Laughlin state being exemplified. Being
a basic mechanism, the laser-assisted dipole-dipole interaction
can be engineered and broadly applied to various Rydberg
array configurations. For example, instead of externally con-
trolling the energy-offset gradient of the Rydberg states, our
scheme can also be applied to Rydberg superarrays consisting
of different Rydberg atoms with intrinsic neighboring energy
offsets. Thus, this mechanism can greatly expand the capa-
bility of engineering Rydberg atoms coupling to synthetic
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gauge fields and may open an avenue to realize exotic corre-
lated topological models and explore the highly sought-after
bosonic topological orders with experimental feasibility.

Note added. Recently, we were notified that a recent
preprint proposed a different interesting scheme to realize
synthetic gauge fields for Rydberg atoms through coupling to
multicolor lasers [70].

Acknowledgments. We thank S. Yu and Z.-X. Liu for fruit-
ful discussions. This Letter was supported by National Key
Research and Development Program of China (Grant No.
2021YFA1400900), the National Natural Science Foundation
of China (Grants No. 11825401 and No. 11921005), and the
Strategic Priority Research Program of Chinese Academy of
Science (Grant No. XDB28000000).

[1] K. V. Klitzing, G. Dorda, and M. Pepper, New Method for
High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494
(1980).

[2] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional
Magnetotransport in the Extreme Quantum Limit, Phys. Rev.
Lett. 48, 1559 (1982).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] B. Yan and S.-C. Zhang, Topological materials, Rep. Prog.
Phys. 75, 096501 (2012).

[6] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[7] B. Yan and C. Felser, Topological materials: Weyl semimetals,
Annu. Rev. Condens. Matter Phys. 8, 337 (2017).

[8] N. K. Wilkin, J. M. F. Gunn, and R. A. Smith, Do Attractive
Bosons Condense? Phys. Rev. Lett. 80, 2265 (1998).

[9] N. K. Wilkin and J. M. F. Gunn, Condensation of “Composite
Bosons” in a Rotating BEC, Phys. Rev. Lett. 84, 6 (2000).

[10] B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, 1
2 -Anyons in

Small Atomic Bose-Einstein Condensates, Phys. Rev. Lett. 87,
010402 (2001).

[11] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Quantum Phases
of Vortices in Rotating Bose-Einstein Condensates, Phys. Rev.
Lett. 87, 120405 (2001).

[12] T.-L. Ho, Bose-Einstein Condensates with Large Number of
Vortices, Phys. Rev. Lett. 87, 060403 (2001).

[13] A. S. Sørensen, E. Demler, and M. D. Lukin, Fractional Quan-
tum Hall States of Atoms in Optical Lattices, Phys. Rev. Lett.
94, 086803 (2005).

[14] Alexander L. Fetter, Rotating trapped bose-einstein conden-
sates, Rev. Mod. Phys. 81, 647 (2009)

[15] X.-G. Wen, Topological orders and edge excitations in frac-
tional quantum Hall states, Adv. Phys. 44, 405 (1995).

[16] X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary trans-
formation, long-range quantum entanglement, wave function
renormalization, and topological order, Phys. Rev. B 82, 155138
(2010).

[17] X. Chen, Z.-C. Gu, and X.-G. Wen, Symmetry protected topo-
logical orders and the group cohomology of their symmetry
group, Phys. Rev. B 87, 155114 (2013)

[18] Y.-M. Lu and A. Vishwanath, Theory and classification
of interacting integer topological phases in two dimen-
sions: A Chern-Simons approach, Phys. Rev. B 86, 125119
(2012).

[19] T. Senthil and M. Levin, Integer Quantum Hall Effect for
Bosons, Phys. Rev. Lett. 110, 046801 (2013).

[20] N. Gemelke, E. Sarajlic, and S. Chu, Rotating few-body
atomic systems in the fractional quantum Hall regime,
arXiv:1007.2677.

[21] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D.
Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M.
Greiner, Microscopy of the interacting Harper Hofstadter model
in the two-body limit, Nature (London) 546, 519 (2017).

[22] L. W. Clark, N. Schine, C. Baum, N. Jia, and J. Simon, Obser-
vation of Laughlin states made of light, Nature (London) 582,
41 (2020).

[23] A. Browaeys and T. Lahaye, Many-body physics with individu-
ally controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).

[24] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, An atom-by-atom assembler of defect-free arbitrary
two-dimensional atomic arrays, Science 354, 1021 (2016).

[25] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner,
and M. D. Lukin, Atom-by-atom assembly of defect-free one-
dimensional cold atom arrays, Science 354, 1024 (2016).

[26] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A.
Browaeys, Synthetic three-dimensional atomic structures as-
sembled atom by atom, Nature (London) 561, 79 (2018).

[27] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber,
N. Lang, H. P. Büchlerr, T. Lahaye, and A. Browaeys, Obser-
vation of a symmetry-protected topological phase of interacting
bosons with Rydberg atoms, Science 365, 775 (2019).

[28] S. K. Kanungo, J. D. Whalen, Y. Lu, M. Yuan, S. Dasgupta, F. B.
Dunning, K. R. A. Hazzard, and T. C. Killian, Realizing topo-
logical edge states with Rydberg-atom synthetic dimensions,
Nat. Commun. 13, 972 (2022).

[29] H. Labuhn, D. Barredo, S. Ravets, S. Léséleuc, T. Macrì, T.
Lahaye, and A. Browaeys, Tunable two-dimensional arrays
of single Rydberg atoms for realizing quantum Ising models,
Nature (London) 534, 667 (2016).

[30] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V.
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