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Crystallization via cavity-assisted infinite-range interactions
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We study a one-dimensional array of bosons with infinite-range interactions mediated by a laser-driven
dissipative optical cavity. The cavity-mediated infinite-range interactions open up an alternative pathway to
crystallization, hitherto only known for dipolar bosons due to their long-range interactions. In parameter ranges
attainable in state-of-the-art experiments, we systematically compare observables for bosons and fermions
with infinite-range interactions. At sufficiently large laser pump powers, many observables, including density
distributions in real and momentum space, correlation functions, eigenvalues of the one-body density matrix,
and superradiance order parameters, become identical for bosons and fermions. We map out the emergence
of this cavity-induced crystallization as a function of pump power and contact interactions. We discover that
cavity-mediated interactions can compensate a reduction by several orders of magnitude in the strength of the
contact interactions needed to trigger crystallization.
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Quantum gases coupled to high-finesse optical cavities
are increasingly becoming the go-to platform to realize and
test nonequilibrium many-body phases of matter [1]. This
is due to their ability to dynamically craft strong light-
matter interactions with tunable ranges beyond conventional
solid-state implementations. After the pioneering realization
of the Hepp-Lieb superradiant phase transition of the open
Dicke model [2–14], recent developments have highlighted
supersolid states with broken continuous symmetries [15–19],
quantum crystalline phases [20–23], correlated phases with
spinor condensates [24–30], synthetic gauge potentials and
topological states [31–48], quasicrystalline order [49–51], and
dynamical instabilities [52–59].

Particularly interesting phenomena for quantum gases oc-
cur in lower-dimensional geometries, for example for bosons
with strongly repulsive contact interactions confined in one
dimension (1D). Experimentally, this can be achieved by very
tight confinement potentials along the spatial directions to be
frozen out [60,61]. Due to the reduced dimensionality, quan-
tum effects become enhanced and the repulsive interactions
lead to a so-called Tonks-Girardeau (TG) gas, where bosons
acquire certain fermionic characteristics: bosonic density dis-
tributions and two-body correlations coincide with those of
noninteracting spinless fermions in real space—but not in
momentum space. The bosonic contact interactions emulate
an effective Pauli exclusion principle, and a Bose-Fermi map-
ping between the corresponding real-space wave functions
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can be formulated [62,63]. The existence of the TG gas has
been predicted in theoretical studies [64–73] and verified
experimentally [74–76]. More recently, it was extended to
dynamical systems [77] and even used to generate topological
pumping [78].

A related phenomenon was discovered in bosons with
dipolar interactions (DIs) [68,69,73,79–88]. In this case, the
bosons are first driven into a TG-like state by the short-
distance part of the repulsions [68,79,80]. With stronger
interactions, the long-range tail of the DIs pushes the particles
into a different, strongly correlated Luttinger liquid phase
often termed the crystal state [69,81–85]. The crystal state
has additional attributes to those of the TG state: in contrast
to the case with contact interactions, in the crystal state both
the real and momentum space distributions become equal to
those of fermions, and a lack of correlation is seen in both the
diagonal and off-diagonal elements of correlation functions
[73,84,86–88].

In this Letter, we reveal an alternate pathway to crystalliza-
tion by subjecting bosons to infinite-range cavity-mediated in-
teractions (CMIs). This cavity-assisted crystallization (CAC)
occurs without a preliminary transition to a TG-like state, and
is instead driven by the infinite-range nature of the interac-
tions. Assisted by CMIs, this type of crystallization does not
require DIs either, and weak contact interactions are instead
sufficient to trigger it. Unlike in the TG-like state, in the CAC
state both real- and momentum-space density distributions
simultaneously become progressively indistinguishable from
their fermionic counterparts. Furthermore, the indistinguisha-
bility extends to density fluctuations, one-body and two-body
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FIG. 1. (a) Schematic setup of parabolically trapped ultracold
bosons placed in an optical cavity with loss rate κ and driven
transversally with a laser pump η. (b) Sketch of the sweep (red
line) in parameter space used for the simulations. The color gradient
in the self-organized phase indicates the progression towards CAC.
(c) Degree of crystallization F ≡ ∫ |ρF (x) − ρB(x)|dx as a function
of (η, g). Above the dashed line, F = 0 and CAC is fully achieved,
with bosonic and fermionic densities becoming indistinguishable.

correlations, and orbital occupation. Additionally, a complex
interplay between different types of interactions emerges: it
is possible to lower by up to one order of magnitude the
contact interaction strength needed for crystallization if the
CMIs are correspondingly increased. The advantages of the
cavity system are thus manifold. An easily tunable laser
setup can directly trigger crystallization, and we have also
the flexibility of operating with a wider range of contact
interactions. This is of practical utility, as experimental re-
alizations are often limited by density-dependent three-body
losses. Operating with smaller contact interactions allows for
lower densities. Our results extend the realm of cold-atom
quantum simulators exploiting strong light-matter coupling
to crystallization phenomena, and they illustrate the potential
of the simulators to engineer even more fascinating states
of matter.

We consider a 1D gas of N parabolically trapped ultracold
bosons in an optical cavity with a single mode of frequency
ωc and wave vector kc. The particles are in the dispersive
regime and subject to Rayleigh scattering with coherent light
of frequency ωp pumped transversally to the cavity axis.
The particles are confined by an external harmonic potential
Vtrap(x) = 1

2 mω2
x x2, and they interact repulsively through a

weak contact interaction of strength g. Figure 1(a) illustrates
a sketch of the system. The coherent part of the system in the
rotating frame can be described by the following Hamiltonian
[14,89]:

Ĥ =
∫

dx �̂†(x)

{
p2

2m
+ Vtrap(x) + g

2
�̂†(x)�̂(x)

}
�̂(x)

+ h̄
g2

0

�a
â†â

∫
dx �̂†(x)�̂(x) cos2(kcx)

+ h̄η(â + â†)
∫

dx �̂†(x)�̂(x) cos(kcx) − h̄�câ†â.

(1)

Here, �̂(x)(†) denotes bosonic field operators at position x,
and â(†) describes the light field of the cavity. The parameter η

is the two-photon Rabi frequency describing the fluctuations
of the light-atom interaction, and it drives crystallization. In
the following, we refer to η as pump power for simplicity. �c

is the detuning between the pump frequency and the cavity
resonance frequency. It is chosen to be negative to operate in
the self-organization regime [9,14]. The parameter g0 is the
atom-cavity coupling strength for a maximally coupled atom,
while �a is the atom-pump detuning. We choose �a large
enough to justify the rotating-wave approximation and neglect
input noise from the cavity (see below). (While we have per-
formed our simulations in the blue-detuned regime �a > 0,
we expect our results to be unaffected by the sign of �a as
long as we operate in the regime where |�c| � |Ng2

0/�a| and
the infinite-range interactions dominate.)

The cavity field obeys the equation of motion

∂

∂t
â = [i�c − iU0B̂ − κ]â − iη	̂, (2)

where B̂ = ∫
dx �̂†(x)�̂(x) cos2(kcx) and 	̂ =∫

dx �̂†(x)�̂(x) cos(kcx), U0 ≡ g2
0

�a
, and we have incorporated

the dissipation from the cavity with a phenomenological
decay rate κ assuming low saturation and negligible input
noise [89,90]. To capture the steady-state physics of Eq. (1),
we can adiabatically eliminate the cavity field by setting
∂t â = 0. To justify this approximation, we work in the limit
h̄κ � h̄2k2

c /2m that describes the lossy cavity as adiabatically
following the atomic motion [14,89]. The steady-state
solution of the cavity field is then [14,89]

â = η[�c − U0B̂ + iκ]−1	̂. (3)

By inserting Eq. (3) back into the Hamiltonian Eq. (1)
and considering the limit of large detuning |�c| � NU0, we
obtain an effective Hamiltonian where the cavity induces
an infinite-range two-body interaction between the particles
[14,90,91]:

Ĥ =
∫

dx �̂†(x)

{
p2

2m
+ g

2
�̂†(x)�̂(x) + Vtrap(x)

}
�̂(x)

+ h̄η2(�c − BU0)

(�c − BU0)2 + κ2

∫
dx dx′�̂†(x)�̂†(x′)

× cos(kcx) cos(kcx′)�̂(x)�̂(x′). (4)

We have approximated the operator B̂ by its expectation
value, the bunching parameter B = 〈B̂〉 [14,89]. The ground-
state properties of the effective Hamiltonian (4) describe the
steady-state solution of the cavity-atom system [90].

We first consider the ground state of the Hamiltonian (4) in
the limit where the infinite-range interactions dominate over
all other energy scales, η → ∞. The integrand of the inter-
action can be rewritten in terms of relative coordinate xrel ≡
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x − x′ and center-of-mass coordinate xcm ≡ (x + x′)/2 to
be V cos(kcx) cos(kcx′) = V

2 [cos(kcxrel ) + cos(2kcxcm)] [90].
Deep in the red-detuned cavity region −�c > N |U0|, we have
V < 0. The relative-coordinate part of the interaction is thus
minimized when the particles arrange themselves into a 1D
lattice with spacing 2π/kc. This configuration is then further
pinned by the center-of-mass-coordinate part [9,14,90,92]. In
the limit of very large CMIs, each particle is thus confined
to spatially ordered, nonoverlapping single-particle states. We
thus expect the physical attributes of bosons and fermions to
coalesce.

We now move away from the fully localized regime to
understand the pathway to crystallization when CMIs compete
with the kinetic, potential, and short-range interaction parts
of the Hamiltonian. To that end, we investigate the ground
state of the Hamiltonian (4) with the multiconfigurational
time-dependent Hartree method for indistinguishable parti-
cles software (MCTDH-X) [93–98] to obtain the steady-state
properties as a function of finite pump power η. MCTDH-X
works with an adaptive basis set of M time-dependent single-
particle states termed “orbitals.” With a single orbital M =
1, MCTDH-X is equivalent to a mean-field Gross-Pitaevskii
description, while as M → ∞ the method becomes numeri-
cally exact [99]. In the CAC state, to describe every localized
bosonic particle uncorrelated with the others, we only require
M = N orbitals [93–95,100]. To account for possible residual
correlation effects, we have utilized M = N + 4 orbitals in our
simulations. However, we have verified that the population of
these additional four orbitals is negligible.

For every value of η, we perform imaginary-time evolution
on the Hamiltonian (4) to obtain the ground state. For every
state, we calculate density distributions in position and mo-
mentum space,

ρ(x) = ρ (1)(x, x)/N (5a)

ρ̃(k) = 〈�̂(k)†�̂(k)〉/N, (5b)

as well as Glauber one-body correlation functions

g(1)(x, x′) = ρ (1)(x, x′)√
ρ (1)(x, x)ρ (1)(x′, x′)

, (6)

where ρ (1)(x, x′) is the one-body reduced density matrix in po-
sition space, which is defined as ρ (1)(x, x′) = 〈�̂†(x)�̂(x′)〉.
Similar results for Glauber two-body correlation functions
are presented in the supplemental material [99]. We present
here results from MCTDH-X simulations of N = 8 particles
with M = 12 orbitals, although we remark that the qualitative
properties of the CAC state are not affected by the number of
particles.

To better understand the emergence of crystallization,
we systematically compare our results for bosons to the
ground-state properties of the fermionic counterpart of Hamil-
tonian (4). We vary the pump power η in the interval 2π ×
[25, 1250] kHz, as shown in Figs. 1(b) and 1(c). All remaining
parameters are listed in Table I. While our results are valid for
any kind of bosonic species, we chose the system parameters
in line with possible state-of-the-art experiments with 87Rb
atoms. [Note that most experiments operate with a negative
light shift U0, while our simulations were carried out for a
positive light shift (blue-detuned regime). However, we expect

TABLE I. Parameters used in the MCTDH-X simulations.

Parameter Value

mass m 6.46 × 10−27 kg
trapping frequency ωx 2π × 252 Hz
cavity detuning �c −2π × 10.1 MHz

atomic light shift U0 ≡ g2
0

�a
2π × 2.52 kHz

cavity decay rate κ 2π × 1.30 MHz
contact interaction strength g 1.14 × [10−38, 10−41] J m
pump power η 2π × [25, 1250] kHz

our results to be unaffected by the sign of U0 as long as we
operate in the red-detuned regime where |�c| � |NU0| and
the infinite-range interactions dominate.]

Figure 2 shows the density distribution in real and mo-
mentum space of the Bose and Fermi system as a function
of the pump power η. In real space, Figs. 2(a)–2(c), both
gases first rapidly self-organize into one of the two possi-
ble Z2-symmetry-breaking configurations that minimize the
energy cost due to the CMIs [9,14]. This transition occurs
approximately around the same value η ≈ 50 [2π kHz]. In
the self-organized state, the population of the lattice sites at
intermediate values of η is strongly dependent on the quantum
statistics; compare Figs. 2(a), 2(b), and 2(c). Fermions tend to
first form pairs of states at the bottom of the trap, but then
quickly occupy the outer sites of the lattice, completely local-
izing into structures with single particles per site. The density
distribution for bosons [Fig. 2(b)], instead, expands more
slowly and undergoes more rounds of sublattice switching.
The bosons completely localize into single-particle states only
at much higher values of the pump power η ≈ 150 [2π kHz].
At this point, the bosonic density distribution becomes indis-
tinguishable from the fermionic one [Fig. 2(c)]. These density
profiles agree with single-shot simulations of the full-density
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FIG. 2. Comparison of N = 8 infinite-range interacting bosons
and fermions in terms of real-space density (left panels) and
momentum-space density (right panels) as a function of η: (a) real-
space fermionic density, (b) real-space bosonic density, (c) real-space
density difference between bosons and fermions, (d) momentum-
space fermionic density, (e) momentum-space bosonic density, (f)
momentum-space density difference between bosons and fermions.
The vertical white dashed lines indicate values of η for which corre-
lation functions are plotted in Fig. 3.
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distributions, revealing in particular the effective Pauli exclu-
sion principle that bosons obey at high pump powers [99].

Further proof of the equivalence between fermionic and
bosonic gases in the ultrastrong CMI limit is offered by the
momentum space density, illustrated in Figs. 2(d)–2(f). From
this figure, we can clearly see that the momentum distributions
for the two types of particles are different at low pump powers,
but they rapidly converge to the same Gaussian profile at
higher values of η. From around η ≈ 75 [2π kHz], the mo-
mentum density distributions coincide, unlike in the TG state
[65,74].

We now turn to the comparison of the one-body correla-
tions, presented in Fig. 3. Up to intermediate pump powers,
g(1) behaves differently for bosons and fermions. However, in
the limit of very strongly interacting particles, both systems
are described by uncorrelated single-particle states, as ascer-
tained from the completely diagonal form of g(1). As CAC
emerges, bosons and fermions also reach the same orbital
occupations [panels (g) and (h)], defined as the eigenvalues
of the one-body density matrix, ρ (1)(x, x′) [96,99]. This result
is consistent with the behavior of spinless fermions occupying
the lattice minima, and with the Pauli principle that nullifies
the many-body effects of long-range interactions. The pic-
ture that comes out consistently from all calculated quantities
is that the bosons at very high pump-rate η � 150 [2π kHz]
behave exactly like fermions in terms of density distribution
and correlations. Note that CAC can be pushed to values of
the pump power as low as η ≈ 25 [2π kHz] by decreasing the
number of particles (e.g., to N = 4), dissipation, and cavity
detuning.

We remark that the CAC state differs from the dipolar
crystal state in many ways. Whereas DIs are long- but finite-
range, CMIs are truly infinite-range. The infinite-range nature
triggers changes in both real-space and momentum-space dis-

tribution simultaneously. In contrast, in dipolar crystallization,
it is first the short-range part of the repulsion that triggers
a TG-like state, affecting only the real-space density distri-
bution. Only once the long-range part of the DIs starts to
dominate are the bosons further pushed into the full crystal
state. The energetics is also different. In CAC, the interac-
tion energy increases quadratically, while the kinetic energy
increases only linearly with the interaction strength [99]. In
dipolar crystallization, the increase in the interaction energy
is (super)exponential, while the kinetic energy increases ap-
proximately logarithmically [88]. Cavities also offer different
ways to control and manipulate interactions over a large re-
gion and thus offer more flexibility compared to DIs.

We now comment on the emergence of crystallization as a
function of both pump power and contact interactions. This is
depicted in the effective phase diagram of Fig. 1(c), by means
of an effective degree of crystallization,

F ≡
∫

dx |ρF (x) − ρB(x)|, (7)

that quantifies the difference between the fermionic real-space
density ρF (x) and its bosonic counterpart ρB(x). The black
region in the figure (delineated by the dashed white line)
indicates complete crystallization with F ≈ 0 and indistin-
guishable densities among the different quantum particles. By
mapping the continuum system to an effective Bose-Hubbard
lattice model, we have verified that crystallization occurs
when the on-site repulsion dominates over hopping and local
chemical potential [99].

As compared to standard TG physics, CMIs facilitate the
appearance of crystallization at lower values of contact in-
teraction g. As illustrated in Fig. 1(c), for a pump power
of η ≈ 1250 × 2π kHz, the contact interaction g needed to
enter the crystal state is reduced by one order of magnitude in
comparison to a smaller pump strength of η ≈ 200 × 2π kHz.
This phase diagram, besides offering a roadmap for the ex-
perimental realization of the CAC state, provides numerical
evidence of how infinite-range interactions can drastically
decrease the strength of the contact interactions needed to
achieve such a state.

In summary, we have illustrated an alternative pathway
to crystallization for ultracold bosons via cavity-mediated
infinite-range interactions driven by an external laser. As the
pump power of the driving laser is gradually increased, the
bosons become progressively indistinguishable from fermions
in terms of density distributions in both real and momentum
space, orbital occupations, and Glauber correlation functions.
We have mapped out the crystal state as a function of pump
power and contact interactions, revealing an intriguing inter-
play whereby crystallization can be achieved with one order
of magnitude smaller contact interactions by correspondingly
increasing the pump power.

For our simulations, we explicitly considered parameter
ranges consistent with the setups realized in the experiments
of Ref. [9]. Although a larger dissipation facilitates the emer-
gence of crystallization, we expect other experiments with
lower dissipation, such as the ones performed in Ref. [92],
to lead to qualitatively similar results. The use of a wider
parabolic trap is another expedient that would facilitate the
observation of the CAC state. Single-shot images should
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offer a practical way to probe crystallization experimentally
[101]. Relevant observables such as one- and two-body den-
sities could be either accessed directly via averaging over
single-shot images, or reconstructed with the help of ma-
chine learning [102]. Furthermore, single-shot images give
access to full-distribution functions [86,87], where the emer-
gent Pauli principle would manifest naturally. Our study
exemplifies the power and flexibility of cavity-mediated
interactions to achieve ultrastrong interacting regimes in ul-
tracold quantum-light matter systems, and it should pave the
way for further experimental investigation of crystallization
phenomena.

As CAC is obtained without optical lattices, they can
instead be employed to investigate other effects, such as lat-
tice incommensuration needed to realize Bose glass phases
[103,104]. A multimode cavity setup would shift the interac-
tion range from infinite towards long-range [105] and would

allow us to probe the effect of tuning the interaction range
[106]. We also anticipate that the cavity setup could be a
robust arena to investigate crystallization dynamically [77].
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