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Bridging the gap between topological non-Hermitian physics and open quantum systems

Álvaro Gómez-León ,* Tomás Ramos ,† Alejandro González-Tudela,‡ and Diego Porras §

Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain

(Received 28 September 2021; revised 1 February 2022; accepted 1 July 2022; published 25 July 2022)

We relate observables in open quantum systems with the topology of non-Hermitian models using the Keldysh
path-integral method. This allows to extract an effective Hamiltonian from the Green’s function which contains
all the relevant topological information and produces ω-dependent topological invariants, linked to the response
functions at a given frequency. Then, we show how to detect a transition between different topological phases by
measuring the response to local perturbations. Our formalism is exemplified in a one-dimensional Hatano-Nelson
model, highlighting the difference between the bosonic and the fermionic case.
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Introduction. Topological phases of matter were first dis-
covered in electronic systems [1,2] and since then, their
properties in equilibrium have been thoroughly studied [3–5].
During the past decade, the exploration of topological phases
in nonequilibrium and dissipative systems has attracted great
interest [6,7], triggered by the observation of topological
effects in photonic lattices [8–10] and quantum simula-
tors [11–13] and more lately applications in sensing [14–17]
and amplification [18–22].

Characterizing topology in out-of-equilibrium systems is
complicated by the presence of intrinsic gain and loss mech-
anisms which must be included in the dynamics. Several
approaches have been considered to partially tackle this prob-
lem. In Ref. [7], the notion of topology by dissipation was
introduced, showing that the engineering of jump operators
can lead to the dissipative preparation of topological states.
More recently, a criterion to define topological invariants
from density matrices was proposed [23,24], and an exten-
sion of topological band theory to include non-Hermitian
matrices has been introduced [25–30]. Whereas part of the
phenomenology can be explained in terms of non-Hermitian
effective Hamiltonians, this neglects quantum jumps and the
quantum noise of the dissipative dynamics and, thus, cannot
consistently describe the steady state nor the experimental
observables of the system [31,32]. Therefore, the field would
benefit from a more complete characterization of dissipative
topological phases, which accounts for gain and loss mecha-
nisms in many-body open quantum systems, describes bosons
and fermions on the same footing and links the topological
properties to measurable correlation functions.

We undertake this task by using the Keldysh path-integral
formalism [33], which we use to characterize nontrivial topo-
logical phases of quantum open lattices and to establish a
link between topological indices defined for non-Hermitian
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matrices and physical observables. (i) We establish a link
between Keldysh-Green’s functions of quantum open lattices
with gain and loss terms and non-Hermitian matrices. (ii)
We present a topological characterization of nonequilibrium
Green’s functions that leads us to define ω-dependent topo-
logical indices. Our formalism relies on a mapping from
non-Hermitian matrices to topological insulator Hamiltoni-
ans. Nontrivial topological phases correspond to directional
amplification of excitations at a particular frequency. (iii) Our
Letter leads to a definition of topological phase transition
in quantum open lattices. In that definition, the properties
of observables in the frequency domain are characterized
by a frequency-dependent topological index. Thus, the same
quantum open lattice can exhibit different topological proper-
ties, depending on the frequency of the measured excitations
(e.g., the frequency of the measured photons in the case of
a photonic lattice). (iv) We show how topological properties
can be tested by measuring the response of the system to
perturbations. (v) We illustrate our results by studying the
bosonic and fermionic realizations of the one-dimensional
(1D) Hatano-Nelson (H-N) model, and highlight the role of
particle statistics in our topological characterization..

Keldysh path integral. Consider a quantum system in a
lattice with particles described by bosonic or fermionic opera-
tors, ψ̂ j and ψ̂

†
j . The dynamics can be described by the master

equation for the density-matrix operator ρ̂ [34],

d ρ̂

dt
= −i[Ĥ , ρ̂] +

∑
j,l

γ
(d )
jl

(
ψ̂ j ρ̂ψ̂

†
l − 1

2
{ψ̂†

l ψ̂ j, ρ̂}
)

+
∑

j,l

γ
(p)
jl

(
ψ̂

†
j ρ̂ψ̂l − 1

2
{ψ̂l ψ̂

†
j , ρ̂}

)
, (1)

where Ĥ is the Hamiltonian and γ (d ), γ (p) are matrices de-
scribing decay and gain processes, respectively.

An alternative to the operator formalism is the Keldysh
path-integral method [35]. There, a time-slicing procedure
and the insertion of coherent states leads to a set of fields
{ψ j,±, ψ̄ j,±}, being ± the Keldysh contour where the fields
act. These fields are complex variables in the bosonic case
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and independent Grassman variables in the fermionic one (i.e.,
ψ̄ j,± = ψ∗

j,± in the bosonic case). From Eq. (1) one finds the
Keldysh action [33],

S =
∫ t f

−∞
dt

[∑
j

(ψ̄ j,+i ∂tψ j,+ − ψ̄ j,−i ∂tψ j,−) − iL
]

(2)

is defined in terms of the Lagrangian,

L = −i(H+ − H−)

+
∑

j,l

γ
(d )
jl

(
ψ j,+ψ̄l,− − 1

2
(ψ̄ j,+ψl,+ + ψ̄ j,−ψl,−)

)

+
∑

j,l

γ
(p)
jl

(
ψ̄ j,+ψl,− − 1

2
(ψ j,+ψ̄l,+ + ψ j,−ψ̄l,−)

)
.

(3)

Here, H± results from Ĥ acting on the ± branch of the
Keldysh contour. Remarkably, the action in Eq. (2) has
the same form, irrespective of whether it is for bosons or
fermions [35,36]. Also, note that gain γ (p) and loss γ (d ) cou-
ple different Keldysh contours in Eq. (3), a signature of the
nonequilibrium nature of the system.

From now on we focus on the steady state of quadratic
lattice models, but transient dynamics and interacting systems
can also be studied using this formalism [33,37–39]. Since
the system is time-translation invariant, it is useful to Fourier
transform the action to frequency domain and write H± =∑

jl Hjl ψ̄ j,±ψl,±. We show below that this ω dependence
translates to the observables, where ω physically corresponds
to the energy at which the steady state of the system is being
probed.

For practical calculations it is useful to perform a Keldysh
rotation. In the bosonic case it corresponds to ψ± = (ψc ±
ψq)/

√
2, and the bosonic action becomes

Sb =
∫

ω

�†

(
0 ω − HA

ω − HR i�

)
�, (4)

where we have defined
∫
ω

= ∫
dω
2π

and written the fields in

vector form � = ( �ψc, �ψq ), being �ψα = (ψ1,α, ψ2,α, . . .) and
α = c, q. The different blocks in Eq. (4) are given by HA/R =
H ± i γ (d )−γ (p)

2 and � = γ (d ) + γ (p). A key observation is that
the non-Hermitian matrix HR correspond to the effective
Hamiltonian proposed to study the short-time dynamics of
dissipative systems [30].

In the fermionic case, the Keldysh rotation is slightly dif-
ferent [40], but importantly, it changes the sign of the gain
contribution in the action. This results in the following ex-
pression for fermions:

S f =
∫

ω

�̄T

(
ω − HR i�

0 ω − HA

)
�, (5)

with blocks now given by HA/R = H ± i γ (d )+γ (p)

2 and � =
γ (d ) − γ (p). We show below that the sign change in the pump
term will have important consequences in the resulting topo-
logical phase diagram.

Finally, to turn the formalism into an effective calculation
tool we define the generating functional from which we can

obtain correlation functions by functional differentiation,

Z[Jc, Jq, J̄c, J̄q] =
N∏

l=1

∫
Dψl,cDψ̄l,cDψl,qDψ̄l,qeiS

×ei
∫
ω

( j̄l,cψl,q+ j̄l,qψl,c+ jl,cψ̄l,q+ jl,qψ̄l,c ), (6)

where we have introduced the sources Jα = ( j1,α, j2,α, . . .).
The final form of the generating functional is obtained by
Gaussian integration,

Z[J, J̄] = e−i
∫
ω

J̄T (ω)G(ω)J (ω). (7)

It is a quadratic form of the sources J = (Jc, Jq ) with G
obtained from the inverse of the action [41] [Eq. (4) for the
bosonic and Eq. (5) for the fermionic cases]. In general, G(ω)
is a 2 × 2 block matrix with entries,

GA/R = 1

ω − HA/R
, GK = G−1

R (−i�)G−1
A , (8)

being GA/R is the advanced and retarded and GK is the
Keldysh-Green’s function. From Eq. (7) it is possible to obtain
all correlation functions by functional differentiation.

Concretely, here we are interested in two-point correlation
functions of the form M jl (ω) = ∫

dτ 〈ψ†
j (t )ψl (t + τ )〉e−iωτ ,

which can be expressed in terms of Green’s functions as
M(ω) = iη

2 [GK (ω) + GA(ω) − GR(ω)], where η = ±1 for
bosons and fermions [33]. Remarkably, this expression can
be simplified in the case of gain and loss systems [see the
Supplemental Material (SM)] [42]:

M(ω) = GR(ω)γ (p)GA(ω). (9)

Note that the last term in Eq. (9) is independent of the particle
statistics and relates the two-point correlations with the non-
Hermitian matrices HA/R and with the incoherent pump of
particles in the system γ (p).

Topological properties. We address now the topological
characterization in terms of GR(ω), which has also been con-
sidered as a topological tool in different situations [27,43–45]
and is related to the electromagnetic response in topological
field theories [28,29,46].

For that, we first define the doubled Hamiltonian H̃(ω),

H̃(ω) =
(

0 ω − HR

ω − HA 0

)
, (10)

which is Hermitian by construction (note that H†
R = HA) and

has a built-in chiral symmetry due to its block structure. The
doubled Hamiltonian has been used as a formal technique
in the classification of topological phases of non-Hermitian
systems with the poing-gap criterion [19,25,26,47].

In this Letter, H̃(ω) will allow us to link Hermitian topo-
logical invariants and the nonequilibrium Green’s functions.
This is because H̃(ω) can serve us to compute the inverse
of ω − HR [21] with the advantage that its eigenvalues are
insensitive to the skin effect [27,48–51]. To see this, note
that due to the artificial chiral symmetry, the eigenstates of

H̃ can be written as H̃(
un

±vn
) = ±ε̃n(

un

±vn
) with ε̃n > 0. For

example, in 1D, if H̃(ω) is in a topologically nontrivial phase,
zero-energy states will have ε̃n ≈ 0 and the corresponding
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FIG. 1. (Left) Schematic for the H-N model. Sites in the array
coherently couple with hopping tc and auxiliary sites are dissipatively
coupled via κ and td . (Right) Complex plane plot of the eigenvalues
of HR for the bosonic (red) and the fermionic (blue) H-N model
with periodic boundary conditions (PBCs). The fermionic case never
encloses the origin and remains trivial. Red and blue dots show the
collapse of the eigenvalues due to the skin effect for open boundary
conditions (OBCs).

vectors un and vn are left and right localized edge states. By
using this observation we can easily derive (see the SM [42]),

GR(ω) jl =
∑

n

1

ε̃n
(vn) j (un)∗l , (11)

which relates the non-Hermitian Green’s function and the
eigenstates of the doubled Hamiltonian. Importantly, Eq. (11)
indicates that topological zero-energy modes of the doubled
Hamiltonian H̃(ω) dominate the correlation functions [cf.
Eq. (9)], through the inverse energy factor 1/ε̃n. This relation
between H̃(ω) and GR(ω) shows that one can perform the
topological analysis of H̃(ω) in terms of the tenfold way [52]
applied to chiral symmetric Hamiltonians and directly link
its topological phases with physical observables determined
by GR(ω). This classification results in a smaller number of
different phases than those predicted in Ref. [26] since it
is restricted to those topological properties that are directly
related to observables of the quantum open lattice.

Hatano-Nelson model. The H-N model is a well-known
example of topology induced by dissipation [25,53,54], al-
though it was originally proposed to described the flux lines
in superconductors.

In the bosonic version, the Hamiltonian Ĥ = ∑
i, j ti, j â

†
i â j

describes hopping in a lattice with a background gauge field
φ, where ti, j = ω0δi, j + tc(eiφδi, j−1 + e−iφδi, j+1) and ω0 de-
scribes the detuning from the cavity frequency. In addition,
the particle dynamics is influenced by local loss γ

(d )
i, j = κδi, j

and nonlocal gain γ
(p)

i, j = 4tdδi, j + 2td (δi, j−1 + δi, j+1) [see the
schematic in Fig. 1(left)], which lead to anisotropic dissipa-
tive hopping and nonreciprocity. The implementation of the
bosonic model can be carried out, for example, by using

reservoir engineering and Floquet techniques for inducing
synthetic gauge fields [19,55,56].

From Eq. (4) it is straightforward to write the different
blocks of the bosonic action Sb, for the case of PBCs and
OBCs, respectively). In the case of PBCs each block corre-
sponds to

HA/R = ω0 + 2tc cos(k − φ) ± i
κ − 8td cos2

(
k
2

)
2

, (12)

� = κ + 8td cos2

(
k

2

)
. (13)

According to the standard classification of non-Hermitian
matrices, HR belongs to the AI class because it lacks all
symmetries [26]. In consequence, its winding number is
nonzero when the complex eigenvalues form a point gap
which encloses the origin [see Fig. 1 (right)]. Importantly,
the classification of HR is ω independent and only
indicates the presence of a topological amplification phase,
neglecting the range of ω where states are amplified.

If we instead classify the doubled Hamiltonian H̃ using
the tenfold way, we find that it belongs to the AIII class
due to the artificial chiral symmetry. Its topological phase is
characterized by a winding number which can be written as

W1(ω) =
∫ π

−π

dk

2π i
∂k log(ω − HR). (14)

Note that its ω dependence naturally arises from the analysis
of GR(ω) and is physically motivated by its role in the be-
havior of the two-point functions in Eq. (9), which indicates
that the observation of the topology depends on the energies at
which the system is experimentally being probed. In addition,
this is in agreement with the ω-dependent topological invari-
ants predicted in dissipative systems [20,21,29]. Figure 2 (top)
shows the value of W1(ω) for different loss rates κ , which af-
fects the range of frequencies which can be amplified. Figure 2
(middle) shows the eigenvalues of H̃ for PBCs (red) with the
appearance of a pair of topological boundary modes for OBCs
(black dots). The lack of skin effect in the eigenvalues of H̃
and the match between the appearance of boundary modes
and changes in W1(ω) are obvious advantages with respect to
HR. However, the skin effect still is important for the stability
of the system and its presence in the eigenvalues, crucial to
understand the physics.

In analogy with Hermitian topology we can see in Fig. 2
(bottom) that for bosons and PBCs, the eigenvalues of H̃(ω)
vs k link a gap closure with the phase boundary.

Physically, the topological phase in the bosonic H-N model
corresponds to unidirectional amplification. The ω depen-
dence in W1(ω) is crucial as it indicates that topological
amplification happens for a finite range of frequencies only.
This is interesting to relate topology in dissipative systems
with its experimental detection. The simplest way consists of
detecting the number of particles at each site 〈a†

j a j〉, which
in the amplification phase shows an exponential dependence
with the array length [21]. This, however, does not character-
ize the ω dependence of W1(ω), even if the number of particles
is measured at different ω’s because there is not a sharp
transition as a function of ω (the gap closes continuously).
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FIG. 2. (Top) W1(ω) for different values of κ/td . In the fermionic
case W1(ω) is always zero (blue). (Middle) Eigenvalues of H̃ vs ω for
κ/td=4. The spectrum for PBCs is shown in red, whereas black dots
indicate the two boundary modes with OBCs. (Bottom) Eigenvalues
of H̃ vs k for κ/td=4 and ω/td = 2. All plots consider tc/td = 1 and
φ = π/2

An alternative approach, for example, is to measure the
response function to a perturbation of the frequency at site l
by adding the term HI = �l ψ̂

†
l ψ̂l to the Hamiltonian. Then,

we define a susceptibility as the variation in the excitation
number at frequency ω and site j, χ jl (ω) = d〈n j (ω)〉/d�l ,
where 〈n j (ω)〉 = M j j (ω), and find (see the SM [42]),

χ jl (ω) = GR
jl (ω)Ml j (ω) + M jl (ω)GA

l j (ω). (15)

Interestingly, Fig. 3 shows that plotting in the logarithmic
scale the susceptibility between different sites allows to di-
rectly detect the critical point. This is a consequence of the
topological phase transition to unidirectional amplification
where signals are exponentially amplified with the number of
sites and their scaling when measured at different sites is dras-
tically affected. Importantly, this indirect detection gives very
accurate results, even for small arrays (Fig. 3 gives identical
results for sizes of N = 10, 15, and 20 sites). Furthermore,
we have checked its resilience to disorder in the the dissipative
hopping and found that the critical point is correctly captured
until it is of the same order as the hopping.

Fermions vs bosons. The symmetry class of HR does not
depend on whether we consider a fermionic or a bosonic
lattice, however, we can show that particle statistics drasti-
cally affects topological phases. The key observation is the
sign change in the pump term in the fermionic case Eq. (5),
which physically accounts for Pauli exclusion as opposed to
bosonic amplification. The consequences of this for the H-N

FIG. 3. Logarithmic scale plot of χ jl (ω) between sites l = 1 and
j = 2, 4, 6, 8, and 10. We have considered the bosonic case for an
array with N = 10 sites, tc/td = 1 and φ = π/2. The crossing at a
certain value of ω allows to extract the position of the critical point,
indicated for the cases of κ/td = 4 and 7.

model can be derived from Eq. (12), which in the fermionic
case leads to Im(HR) ∝ −κ − 8td cos2(k/2). Since κ, td > 0,
Im(HR) does not change sign as a function of k, which is
a necessary condition for W1(ω) 
= 0 [see Fig. 1 (right)]. Its
consequences are also shown in Fig. 2, where the winding
number is always zero, and the band structure remains always
gapped. We, thus, conclude that the fermionic H-N model has
a topologically trivial phase diagram.

Formally, the limitations found in the fermionic H-N model
could be surpassed if the diagonal and nondiagonal elements
of the matrix γ (p) could be independently tuned, which would
free the model from the cos2(k/2) dependence in HR. How-
ever, from the derivation of the H-N master equation it can be
shown that γ

(p)
j j = 2γ

(p)
j, j+1 (see the SM [42]), which accounts

for the fact that dissipative couplings between sites induced by
a common bath inevitably come together with local dissipa-
tion terms. This result has a clear physical meaning since the
directional amplification that would result from a nontrivial
topological phase is not expected to occur in a fermionic
lattice.

Conclusions and outlook. We have used the Keldysh
path-integral formalism to link topological properties of non-
Hermitian matrices with the observables of open quantum
systems. We have shown that this leads to ω-dependent
topological invariants that capture certain properties of the
nonequilibrium Green’s functions. Our formalism also allows
us to obtain a unified description of bosonic and fermionic
open models, and we have unveiled fundamental differences
between the topological phases of the two cases. We have
applied our theoretical framework to the 1D Hatano-Nelson
model, and we have explicitly shown how physical observ-
ables and response functions of that model can be used to
detect nontrivial topological phases. Our theory leads to an
unambiguous definition of topological phases and topological
phase transitions in quantum open systems, based on their
experimental signatures.

Our Letter paves the way for further applications of
the Keldysh theoretical machinery [33] in the description
of topological gain and loss systems. In particular, adding
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interactions to the theoretical framework presented here
would allow us to investigate topological interacting quan-
tum open systems. One can also apply our ideas to transient
physics rather than to the steady state [57–59]. From a practi-
cal point of view, our Letter can lead to the design of quantum
metrology or sensing protocols [14,16,17] by exploiting the
extreme sensitivity of the system to input fields and perturba-
tions in nontrivial topological phases. Our results are relevant
for current experimental setups in photonic lattices where the
H-N model could be implemented using Floquet techniques
and reservoir engineering. Similar techniques may lead to

the investigation of fermionic models by using, for example,
arrays of coupled quantum dots [60,61].
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