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Superradiant transfer of quantized orbital angular momentum
between light and atoms in a ring trap
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The orbital angular momentum (OAM) from a laser beam can be coherently transferred to a Bose-Einstein
condensate in a ring trap, in quantized units of h̄. The light-matter coupling allows for the superradiant transfer of
the atoms between the discrete OAM states. Tuning the ring parameters and winding number of the pump light,
specific angular momentum states can be populated. This in turn allows control of the emission to generate light
with OAM different from that of the pump, as the atomic ring imprints its contribution on the scattered light.
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Introduction. Photons possess both translational and spin
angular momentum, where the latter is associated with differ-
ent polarization states of the light wave [1]. Light may also be
prepared in states with well-defined orbital angular momen-
tum (OAM), such as in Laguerre-Gaussian (LG) beams [2].
Coherent control of the interaction between light and matter
facilitates the macroscopic transfer of those quantities from
one medium to another, opening up exciting and novel possi-
bilities for quantum information engineering, such as storing
and transferring light in ensembles of atoms [3].

The spatial modes of the matter field possessing orbital
angular momentum are associated with a discrete infinite-
dimensional (because of the quantization of the OAM) Hilbert
space. Transferring orbital angular momentum from light to
a Bose-Einstein condensate provides a route to entanglement
that involves many orthogonal quantum states, rather than
just two [4,5]. Multidimensional entangled states could be of
considerable importance in the field of quantum information,
enabling, for example, a more efficient use of communication
channels in quantum cryptography [6].

Recently, it has been shown that cold atoms trapped in
a ring trap and driven by a laser beam carrying OAM are
set in rotation and acquire bunching in phase [7]. Depending
on the pump winding number � and on the ring radius, dif-
ferent harmonics of the phase become bunched, similarly to
the longitudinal configuration of light-matter instabilities [8].
However, a classical treatment of the azimuthal motion of the
atoms means that their OAM is not quantized.

We here investigate the collective coupling between the
ring of atoms and light within a quantized approach, so the
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OAM of the trapped condensate evolves through states with
integer numbers of h̄. The light-mediated dipole-dipole inter-
action between the atoms results in a “superradiant” coupling
with the light, in analogy with the coupling achieved in cigar-
shaped matter waves and linear-momenta states [9], yet here
promoting the transfer of the atoms toward different OAM
states. The nonlinear nature of this light-atom dynamics leads
to the population of higher OAM states for the atoms and,
consequently, for the scattered photons. This population of
higher OAM states stems from the presence of higher har-
monics in the potential experienced by the atoms. We show
that this in turn enables the creation of superposition states
and the emission of light with OAM different from the pump.

Modeling the light-atom interaction. Let us consider that
the atoms are driven resonantly by an OAM laser beam in the
mode LG0�, with electric field

E0(ρ, φ, z) = A0R(ρ)ei(k0z+�φ−ω0t ) + c.c., (1)

with R(ρ) = (
√

2ρ/w)� exp(−ρ2/w2) using cylindrical coor-
dinates, w the beam waist, and � the pump winding number.
The atoms rotate in a ring trap in the plane perpendicular to the
pump propagation axis z [see Fig. 1(a)], and they are described
by the matter wave function �(φ, τ ), where φ refers to the
azimuthal angle. Their dynamics is given by [7,10]

i
∂�(φ, τ )

∂τ
= −∂2�(φ, τ )

∂φ2

+ γ

2

∫ 2π

0
dφ′V (φ − φ′)|�(φ′, τ )|2�(φ, τ ),

(2)
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FIG. 1. (a) Scheme of the atomic ring pumped with OAM light,
so the atoms acquire phase bunching. (b) Growth rate |Re(λm )| for
the modes m, as a function of the ring radius k0ρ. The mode with
the strongest rate corresponds to m ≈ kρ. Simulations realized with
γ = 0.2 and ε = 0.1.

with τ = ωφt the dimensionless time, ωφ = h̄/2Mρ2 the an-
gular recoil frequency, M the atom mass, and ρ the ring radius.
The light-atom coupling is characterized by the parameter
γ = N (/ωφ )(�0/2�0)2R2(ρ), where N is the atom number,
�0 = dA0/h̄ the pump Rabi frequency,  the atomic decay
rate for the two-level transition at frequency ωa, d the as-
sociated dipole moment, and �0 = ωa − ω0 the pump-atom
detuning. The potential V reads

V (ϕ) = −cos[2k0ρq(ϕ) − �ϕ]

k0ρq(ϕ)
, (3)

where q(ϕ) =
√

sin2(ϕ/2) + ε2 and ε is a cutoff parameter.
The potential V has a finite range due to the multimode
emission in vacuum [11], and it decreases as 1/r jm with the
distance r jm between the pair of atoms ( j, m). Since the atoms
are set on a ring of radius ρ, we have r jm = 2ρ| sin[(φ j −
φm)/2]|. The phenomenological cutoff ε in q(φ j − φm) has
been added to avoid the singularity in the denominator and
can be chosen arbitrarily small.

The wave function � describes the atoms in a BEC
state, with the normalization condition

∫ 2π

0 |�(φ, τ )|2dφ =
1. This wave function can be expanded on the ba-
sis of the angular momentum states |m〉 as �(φ, τ ) =
(1/

√
2π )

∑
m cm(τ ) exp(imφ), while the potential is ex-

panded as a Fourier series: V (ϕ) = ∑
k Vk exp(ikϕ), with

Vk = (1/2π )
∫ 2π

0 V (ϕ) exp(−ikϕ)dϕ. By projecting Eq. (2)
on the state |m〉, we obtain the dynamical equations for the
probability amplitudes cm(τ ),

dcm

dτ
= −im2cm − i

γ

2

∑
k

Vkcm−k

∑
n

c∗
n−kcn, (4)

where the normalization condition now reads
∑

m |cm(τ )|2 =
1. The radiated intensity emitted by the atoms is I (θ, φ) =
I1R2(ρ)N2|M(θ, φ)|2, where [10]

M(θ, φ) =
∫ 2π

0
e−ik0ρ sin θ cos(φ−φ′ )+i�φ′ |�(φ′)|2 dφ′

2π
(5)

is the dimensionless electric field, θ is the polar angle, I1 =
(h̄ω0/8πr2)(�0/2�0)2, and r is the distance from the de-
tector. Introducing the mth azimuthal bunching coefficient

�m(τ ) =
+∞∑

n=−∞
c∗

n−m(τ )cn(τ ), (6)

the electric field rewrites as the sum of different OAM
components, composed by photons with angular momentum
h̄�′ = h̄(� + m),

M(θ, φ) =
∑

m

(−i)�+mJ�+m(k0ρ sin θ )�m(τ )ei(�+m)φ, (7)

where Jn(x) is the Bessel function of the first kind and of order
n. The rescaled intensity averaged over the azimuthal angle is
Ī (θ ) = ∑

m J2
�+m(k0ρ sin θ )|�m|2.

Linear stability analysis. Let us now discuss the atom
dynamics. We observe that the cubic nonlinearity in Eq. (4)
couples state m with the states m ± k provided that a kth
Fourier component Vk of the potential and a kth azimuthal
bunching �k are present. More quantitatively, the dynamical
growth of the azimuthal bunching at harmonic m is obtained
by a linear stability analysis of Eq. (4) around the equilib-
rium point �(0)

m = δm,0, which describes uniformly distributed
phases. This leads to the complex eigenvalues [10]

λm = ±im
√

m2 + γVm, (8)

where the mth azimuthal bunching �m grows exponentially
as exp[Re(λm)τ ]. Hence, the exponential growth of the az-
imuthal bunching �m requires a finite imaginary part of the
mth Fourier component of the potential Vm. For � = 0 the
potential V (ϕ) is an even function of ϕ and Vm is real, hence
the system is unstable only in the presence of OAM light, with
� �= 0. Intuitively, the OAM pump exerts on the atoms a torque
forcing them to rotate. Since the atomic angular momentum is
quantized, the atoms rotate with a discrete angular momen-
tum, whose value is determined by the anharmonicity of the
potential V .

When uniformly distributed in phase, all the atoms rotate
with the same angular velocity and no macroscopic rotation
is visible. However, in the presence of an OAM beam, the
combined effect of the pump and scattered beam creates a self-
consistent potential which modulates the azimuthal atomic
phases. As a result, atoms are coupled by the scattered pho-
tons, recoiling in phase as angular momentum is transferred
from the light. Because the beam-matter coupling grows with
the bunching in phase, an instability develops and both the
bunching in phase and the scattered intensity grow exponen-
tially until the moment when the atoms are transferred to a
new OAM state |m〉. In the case of a subwavelength trap, the
ring of atoms essentially behaves as a pointlike dipole and the
matter is transferred to the state |�〉, where h̄� is the angular
momentum of the pump photons. However, increasing the ring
radius ρ, the potential presents higher harmonics and is able
to transfer the atoms to OAM states with m larger than �.

According to Eq. (8), the system admits two different
regimes: A classical regime when γ |Vm| 	 m2 and thus
λm ≈ ±im

√
γVm, which is characterized by an exponential

growth rate proportional to
√

N , and a quantum regime, when
γ |Vm| 
 m2 so that λm ≈ ±i(m2 + γVm/2), which presents
a rate proportional to N [12]. In the classical regime, both
the states |m〉 and | − m〉 become populated almost simulta-
neously. Differently, in the quantum regime, the dynamical
term exp(±im2τ ) corresponds to a phase shift proportional to
the rotational energy L2

z /2Mρ2 = h̄ωφm2, with orbital angular
momentum Lz = h̄m. This energy shift, which stems from en-
ergy and angular momentum conservation in the photon-atom

L011304-2



SUPERRADIANT TRANSFER OF QUANTIZED ORBITAL … PHYSICAL REVIEW A 106, L011304 (2022)

FIG. 2. (a) Populations Nm and (b) average angular velocity 〈ω〉, in units of ωφ , as a function of the dimensionless time τ . (c) Dimensionless
scattered intensity |M(θ, φ)|2 and (d) Ī (θ ) vs θ for k0ρ = 1, � = 1, and γ = 0.05. The dashed-dot blue line is the component with �′ = 0, the
continuous red line is the component with �′ = 1, and the dashed black line is the total intensity. for γ = 0.05, k0ρ = 1, and � = 1. The inset
in (b) presents the rate coefficients gk (in a.u.) as a function of k, showing that the dominant transition is for k = 1.

scattering process, hinders the occupation of one of the two
states | ± m〉 [which one is populated depends on the sign of
Im(Vm)]. This leads to the scaling of the growth rate as N for
the quantum regime [12].

The scattering of the pump light into different OAM states
can be deduced from the eigenspectrum, whose real part
|Re(λm)| is presented in Fig. 1(b) for the quantum regime
(γ = 0.2), as a function of the radius k0ρ and of m. The fact
that for increasing k0ρ the maximum occurs at values of m
which scales linearly with k0ρ implies that larger rings are
able to populate higher OAM states of the condensate. This
is a notable difference with the case of the one-dimensional
quantum collective atomic recoil lasing (CARL) [8,13,14],
where only transitions between adjacent linear momentum
states are possible. This is due to the fact that CARL is
characterized by a sinusoidal potential at the light wavelength,
which results from the interference between the pump and the
backward scattered modes. In the ring trap, the presence of
higher harmonics in potential (3) allows the atoms to bunch
at higher OAM states but also, as we shall see later, to scatter
photons of different OAM in different directions.

Rate equations. In the quantum regime, when γ |Vm| 
 m2,
the atoms are transferred to OAM states |m〉 through a super-
radiant cascade which involves, essentially, only two states at
the time. Then, Eqs. (4) are approximated by the following
rate equations for the state populations Nm = |cm|2,

dNm

dτ
=

[
m∑

k=1

gkNm−k −
+∞∑
k=1

gkNm+k

]
Nm, (9)

where gk = γ |Im(Vk )| are the rate coefficients, and with the
normalization condition

∑
m Nm = 1. These coupled equa-

tions generalize the superradiant transition between two states
N0 and Nk when only a single coefficient gk is present, and it
solves as N0,k (τ ) = (1/2){1 ∓ tanh[gk (τ − τ0)/2]}, with τ0 =
(1/gk ) ln[2/

√
Nk (0)] the delay time. In the superradiant cas-

cade the coherence of the matter wave function is preserved
and the phases of the complex amplitudes cm = √

Nmeiφm are
determined by the equations

dφm

dτ
= −(m2 + γV0) −

[
m∑

k=1

αkNm−k +
+∞∑
k=1

αkNm+k

]
,

(10)
with αk = (γ /2)Re(Vk ).

For a small ring radius, k0ρ 
 1, the atoms are transferred
sequentially through the OAM states by steps of �m = �.
This is illustrated in Fig. 2, which depicts the temporal evo-
lution of the populations Nm for the first OAM states [see
Fig. 2(a)] and the average angular velocity 〈ω〉 = ∑

m mNm

[see Fig. 2(b)]. The angular distribution of the scattered field
intensity |M(θ, φ)|2 is plotted in Fig. 2(c) at the time when the
bunching is maximum (|�1| ≈ 1/2), while Fig. 2(d) shows
the total average intensity Ī (θ ) as a function of the polar
angle θ (dashed line), together with the main OAM compo-
nents. In this case the field (5) is approximated by M(θ, φ) ≈
−iJ1(k0ρ sin θ ) exp(iφ) + �∗

1J0(k0ρ sin θ ), with |�1| ≈ 1/2
and where we have neglected the term proportional to
J2(sin θ ). The average intensity is Ī (θ ) ≈ J2

1 (k0ρ sin θ ) +
|�1|2J2

0 (k0ρ sin θ ). In Fig. 2 we can observe the component
�′ = 1 (red line), the component �′ = 0 (blue line), and the
total intensity (dashed black line). The light with the same
orbital angular momentum of the pump � = 1 is emitted in
the perpendicular direction, whereas the light with � = 0 is
emitted forward and backward within a large diffraction angle.
The total intensity is almost isotropic, as expected for a small
ring.

Populating higher OAM states. Atomic rings larger than
the wavelength are able to populate directly atomic states
with large OAM, taking advantage of the higher harmonics
of the potential V . In Fig. 3 we illustrate how by choos-
ing parameters such that the potential favors the coupling

FIG. 3. Populations Nm as a function of the dimensionless time
τ . Simulations realized for k0ρ = 5.605, � = 2, and γ = 1. The inset
presents the rate coefficients gk (in a.u.) as a function of k, showing
that the dominant transitions are for k = 5 and k = 6.
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FIG. 4. (a) Population of the state m = 0 and m = 5 as a function of the dimensionless time τ . The inset shows the coefficients gk .
(b) Angular distribution of the radiation intensity |M(θ, φ)|2, at time τ = 800. (c) Dimensionless intensity Ī (θ ) averaged over the azimuthal
angle φ, as a function of the polar angle θ , at time τ = 800. The dashed black line stands for the total intensity, the dashed-dotted blue line
for the component �′ = 2, and the continuous red line for the component �′ = −3: The latter is the only component present at θ = π/2.
Simulations realized for k0ρ = 5, � = 2, and γ = 0.2.

to several higher OAM states, the system can be cast in a
macroscopic superposition. The pump with � = 2 transfers
most of the atomic population from m = 0 to m = 6, and
to m = 5 to a lesser extent, due to the set of coefficients
gk among which g6 and g5 are highest (the parameters have
been chosen so g1 = 0, so transitions with �m = 1 are sup-
pressed). The first transition sees a transfer of population
from m = 0 to m = 6 (N6 = 91%) and to m = 5 (N5 = 9%).
During the next transitions, the atoms are transferred to m =
12 and m = 11, then to m = 18 and m = 17, and so on,
since the specific set of parameters favors transitions with
�m = 6. Thus, after two transition channels are open (that
is, with �m = 5 and 6), a macroscopic superposition of two
rotational states is created. Throughout the successive tran-
sitions toward higher phase bunching states, superpositions
of two states persist. The possibility that these superposi-
tion states are Schrödinger cat states will be investigated
elsewhere.

Tailoring the light emission. The dynamical evolution to
higher OAM atomic states in turn results in the emission of
light whose angular momentum differs from the pump one.
This can be a tool either for reading the atomic state, or for
producing light with a specific OAM. In particular, one may
choose the ring radius such that no photons with the same
OAM of the pump are emitted in a particular direction, so
light with a different OAM can be collected more efficiently.
As an example, we show in Fig. 4(a) how an atomic ring with
radius k0ρ = 5, along with a pump of winding number � = 2,
is transferred to the OAM state m = 5.

This bunching in phase leads to a five-lobe radiation pattern
in the azimuthal direction [see Fig. 4(b)]. Because the Bessel
function J2(k0ρ sin θ ) vanishes for k0ρ = 5 and θ = π/2, no
photons with �′ = � = 2 are emitted in the transverse direc-
tion. At this angle, only the component with �′ = l + m = −3
of the scattered light is present. Thus, in this specific direction,
light with a well-defined OAM, which is different from that of
the pump, can be collected.

In conclusion, we have demonstrated how orbital angu-
lar momentum can be transferred coherently from a single
Laguerre-Gaussian to a Bose-Einstein condensate in a ring
trap. The spontaneous formation of the azimuthal bunching
of ultracold atoms in the ring trap is at the core of the process.
The process is similar to the quantum regime of collective

atomic recoil lasing [8,13,14] and to the superradiant Rayleigh
scattering [9], but with transfer of orbital angular momen-
tum in units of h̄ instead of linear momentum in units of
h̄k. Differently from these linear configurations, the many
harmonics of the potential here allow one to promote the
atoms to one or more higher OAM states. This mechanism
is particularly promising for the creation of states of mat-
ter with tailored OAM [15–17]: In the present scheme, the
choice of the ring radius, by tuning the trap frequencies,
allows one to manipulate the relative populations of differ-
ent angular momentum states. The emission of photons with
angular momentum different from that of the pump and with
a specific spatial pattern offers the possibility to either use
this light to read the atomic state, or to use the atomic ring
to produce light with a new OAM. The atomic ring may
also be used as a beam splitter, dividing the light into two
or more topological states, so robust phase qubits can be
generated. In this context, one may take advantage of the
complete orthonormal basis formed by the OAM states to de-
sign more elaborate quantum states for quantum information
processing [18].

The proposed setup corresponds to ring traps with radii
of a few optical wavelengths, or subwavelengths for the
case ρ < λ (yet this latter case does not produce efficiently
higher OAM light). Recent advances in the control of quan-
tum gases have seen the development of atom ring traps
formed from both magnetic and optical dipole potentials,
and more recent implementations using hybrids of both,
down to ρ = 9 μm ring traps [19,20]. Although much more
challenging, nanometer-scale traps are also currently under
investigation [21].
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