
PHYSICAL REVIEW A 106, L011303 (2022)
Letter Editors’ Suggestion

Asymmetry and nonlinearity of current-bias characteristics in superfluid–normal-state junctions of
weakly interacting Bose gases
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We uncover current-bias characteristics of superfluid-normal state junctions with weakly-interacting Bose
gases. It is shown that in the presence of a chemical potential bias the characteristics can strongly be asymmetric
for origin. The salient feature that is absent in the fermionic counterpart arises from a tunneling process
associated with a condensate and a bosonic Andreev reflection process. It turns out that such processes are
intrinsically nonlinear and therefore do not obey Ohm’s law even at a low bias. In addition, the remaining
processes are found to obey Ohm’s law and become dominant for transport driven by a temperature bias.
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Recent years have witnessed spectacular development of
atomtronics [1,2], where quantum transport phenomena with
ultracold atomic gases have been studied under various ge-
ometries such as quantum point contact [3], planar junction
[4,5], and junction on spin space [6]. Owing to controlla-
bility of ultracold atomic gases, one can utilize quantum
states whose realizations are elusive with typical condensed
matter systems including metals, semiconductors, and super-
conductors. A weakly-interacting Bose-Einstein condensate
(BEC) is the stellar example in that our understanding on
it has significantly deepened since the first realization with
ultracold atomic gases [7,8]. When it comes to quantum trans-
port of the BECs, Josephson and dissipative currents passing
through barriers [9–13] and tubes [14,15] have already been
measured.

In quantum transport, it is known that junction systems
in which different quantum states are attached play a crucial
role in condensed matter physics. A celebrated example is
the p-n junction, which has a direct relevance to electron-
ics and has been applied for semiconductor devices such as
diodes and transistors [16]. Another famous example, which
is related to the present paper, is the superconductor-normal
metal (or semiconductor) junction [17]. In this system, one
can observe the current-bias characteristics that originate
from suppression of the quasiparticle transport process [18]
and presence of the effective pair transport process due to
the Andreev reflection [19]. Especially, the latter process is
associated with the conversion between particle and hole,
which is imprinted as particle-hole mixing in superconduc-
tors described by Bogoliubov-de-Gennes Hamiltonian. Since
weakly-interacting BECs at low temperature are described
by the Bogoliubov Hamiltonian that has the 2 × 2 matrix
structure analogous to one in superconductors, the existence
of bosonic Andreev reflections in such BECs is expected
[20–22]. However, transport characteristics of a superfluid-
normal state (SN) junction composed of weakly-interacting
bosons and the role of the bosonic Andreev reflection process
in terms of mesoscopic transport have yet to be understood.

In this paper, we microscopically investigate transport
characteristics of SN junctions made of weakly-interacting
Bose gases [Fig. 1(a)]. By analyzing typical situations
such as planar junction and point contact via the tunnel-
ing Hamiltonian formalism, we demonstrate that unlike the
superconductor-normal metal junctions, the current-chemical
potential bias characteristics show an asymmetry for origin
[Fig. 1(b)], which is significant in the vicinity of the critical
temperature of a BEC. This notable feature of the bosonic
junction is ascribed by presences of a tunnel coupling between
condensate and normal boson and bosonic Andreev reflection
process, both of which remarkably do not obey Ohm’s law.
Due to chemical potential bias (�μ) and tunnel-coupling
dependencies, the former is found to be more dominant than
the latter over a low-bias regime in which �μ is close to the
chemical potential of noninteracting bosons. We also show
that the remaining processes that appear in the corresponding
fermionic system are conventional in that an Ohmic response
is obtained in the presence of a chemical potential bias and
become dominant in transport induced by a temperature bias.

We consider a two-terminal configuration where the left
(right) reservoir is filled by normal (superfluid) bosons and
the coupling between reservoirs can be captured with the
following tunneling term:

HT =
∑
p,k

tp,kb†
p,Rbk,L + H.c. (1)

Here tp,k is the tunneling amplitude, and bk,L(b†
p,R) the an-

nihilation (creation) operator of a boson with momentum k
(p) in the left (right) reservoir. In order to obtain comparable
results with superconductor-normal metal junctions in which
the Bogoliubov-de-Gennes approach is applicable, we focus
on a situation that an interaction between bosons in each reser-
voir is short range and weakly repulsive. In such a situation,
the superfluid reservoir at low temperature and the normal
reservoir can be described by the Bogoliubov theory and the
Hartree-Fock (HF) theory [8], respectively.
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FIG. 1. (a) Superfluid-normal state junction of a weakly-
interacting Bose gas. We focus on a situation that the transport
properties can be described by the tunneling Hamiltonian formalism.
(b) Typical particle current behavior as a function of a chemical
potential bias �μ in the corresponding junctions (solid-red curve).
The characteristic deviates from symmetric one (dashed line) due
to presences of tunneling process associated with a condensate and
bosonic Andreev reflection process, both of which emerge for �μ <

μ0 with chemical potential of noninteracting bosons μ0.

With these understandings, we now evaluate the particle
current in SN junctions of bosons. By taking the convention
that a particle flow from left to right reservoir is positive, the
particle current at time τ is expressed as

IN = 2
∑
p,k

Re[tp,kG<
k,p,LR(τ, τ )], (2)

where G<
k,p,LR(τ, τ ′) = −i〈b†

p,R(τ ′)bk,L(τ )〉 is lesser Green’s
function [23]. We are especially interested in mesoscopic
transport induced by chemical potential or temperature bias
between reservoirs. Therefore, we turn to adapt the Keldysh
formalism [24,25], which provides an efficient program for
calculation of mesoscopic currents. In addition, since in the
SN system an AC component is absent in the presence of
a static bias unlike superfluid-superfluid junctions [26,27], it
is also convenient to work in the frequency space, where the
current is expressed as

IN =
∫ ∞

−∞
dωIN (ω), (3)

with the integrand IN (ω) with respect to frequency ω. By
solving the Dyson equation for lesser Green’s function with
the help of the Langreth rule [24], we find that the current
including all processes up to infinite order in tunneling ampli-
tude is obtained as [28]

IN = Ic + I1 + I2 + I3 + IA. (4)

The expression above shows that the particle current consists
of five different processes. First, Ic is unique to the present
system being absent in the superconducting junction case
and describes a process in which a particle in the normal
phase is converted into a condensate in the superfluid phase.
We point out that this process resembles a conversion pro-
cess between condensate and Bogoliubov mode appearing in
the superfluid-superfluid junction [4,26,27,29–31]. In such a
superfluid junction, the presence of the conversion process
between condensate and normal boson (Bogoliubov mode)
is inevitable for tunneling where the momentum conversation
is broken. In addition, I1, I2, and I3 are processes, which are
also present in the fermionic case, describe normal particle
transfer between reservoirs, transfer of a particle with creation
or annihilation of pairs, and a process in which a particle in

the normal phase is converted into a hole in the superfluid
phase, respectively [32,33]. Finally, IA is the bosonic Andreev
reflection process where a particle in the normal phase is
reflected as a hole.

In order to see a qualitative difference between bosonic and
fermionic systems in a simple manner, we first look at the
planar junction case in which the current analysis up to second
order in tunneling amplitude is reasonable. In this case, the
particle current passing through the junction is expressed as

IN ≈ Ic + I1. (5)

Here, I2, I3, IA are extinguished, since these are composed
of the higher-order processes in tunneling amplitude [28].
Whereas I1 is the only contribution in the tunneling junction of
the fermionic system, the contribution of Ic also appears in the
present bosonic system. The presence of the additional contri-
bution and the difference of quasiparticle excitations between
bosons and fermions give rise to a nontrivial current response.
To demonstrate this, we focus on the particle current in a low
chemical-potential bias (�μ) regime where the low-energy
excitations play dominant roles [26,27]. In this case, we find
that I1 in the bosonic junction obeys Ohm’s law and therefore
its differential conductance G1 is independent of �μ. This
implies that I1 component in the current-bias curve is sym-
metric for origin in a similar manner to the corresponding
fermionic junction. We also point out that G1 shows a pe-
culiar temperature dependence depending on the temperature
regime of the normal bosons in which the chemical potential
of noninteracting bosons μ0 is a key parameter within the HF
theory; G1 is proportional to T 7/2 near the critical tempera-
ture of BECs Tc where μ0 → 0−, whilst at high temperature
where μ0/T → −∞ it is suppressed by an exponential factor
whose argument is proportional to μ0/T [28]. Especially,
the fractional temperature dependence near Tc reflects on the
density of states in normal bosons ρN (ω) ∝ √

μ0 + ω. Such a
behavior in I1 is different from the fermionic junction in which
the quasiparticle current as a function of �μ is suppressed
by the factor e−�/T below the superconducting gap � and
shows the abrupt enhancement near � [17]. The difference
between bosonic and fermionic junctions arises from facts that
the quasiparticle excitation in the fermions has the gap while
that in the bosons is gapless, and frequency dependence of
density of states in normal fermions is ignorable owing to the
Fermi level while that in normal bosons is non-negligible.

On the other hand, Ic being inherent to the bosonic junction
shows an asymmetric behavior in �μ, since it vanishes for
�μ > μ0. This property arises from the fact that Ic is propor-
tional to ρN (−�μ), which becomes zero unless μ0 − �μ >

0. Physically, this means that for μ0 − �μ < 0 the conver-
sion between the condensation element and normal boson
does not occur, as a particle in the normal phase cannot find
the corresponding condensation element. Notice that for the
low-�μ regime Ic is absent at high temperature where μ0

takes a large negative value. In addition, the appearance of
the factor ρN (−�μ) implies that Ic is intrinsically nonlinear
and has a square root dependence in �μ. The presence of the
nonlinear curve due to Ic is peculiar to the bosonic SN junction
and is absent in the superfluid-superfluid junction of bosons
[4,26,27,29–31].
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Now that the particle current in the tunneling regime
has been demonstrated, we turn to look at the higher-order
tunneling effects. To see this, we consider the single-mode
point-contact system in which tunneling occurs between
the single points in each reservoir [6,27,28,33–35]. For the
point-contact system, higher-order tunneling processes are
generated by controlling the gate potential applied to con-
striction [3] or increasing an atom-impurity potential via the
Feshbach resonance [6], and therefore, all the contributions
in the right-hand side of Eq. (4) are facilitated. The detailed
calculation based on the Keldysh formalism reveals that the
qualitative change of Ic compared to the planar junction case
does not occur in that Ic is proportional to ρN (−�μ), whereas
the higher-order tunneling processes give an impact on its
proportional coefficient [28]. Thus, it follows that as in the
planar junction case Ic in the point contact case is relevant
near Tc. In addition, we find I1 ≈ G1�μ for low �μ, where
G1 is independent of �μ similar to the planar junction.
Due to the difference in tp,k between the planar junction and
the point contact, however, G1 in the point contact is found to
be proportional to T 3/2 near Tc, which is different from one in
the planar junction [28]. With increasing the coupling between
reservoirs, I2 and I3 whose leading order contributions are
respectively proportional to fourth order and sixth order in tp,k
are generated. By performing an explicit calculation for low
�μ, we find that I2 and I3 also obey Ohm’s law where the cor-
responding conductances G2 and G3 are proportional to T 3/2

near Tc and are exponentially suppressed at high temperature
as in G1 [28].

In contrast, IA whose leading contribution is proportional
to the fourth order in tp,k turns out to possess a non-Ohmic
character. To see this, we point out that the integrand in IA

contains the product of densities of states in particle and hole
branches of normal bosons, that is,

ρN (ω − �μ)ρN (−ω − �μ). (6)

Thus, it follows that in order for IA to be nonzero, there must
be frequencies that simultaneously satisfy μ0 + ω − �μ > 0
and μ0 − ω − �μ > 0. This indicates that IA can be nonzero
for �μ < μ0 and contribute to low-energy transport near Tc

similar to Ic. In addition, the fact that a particle is reflected
as a hole in the Andreev reflection process implies that the
integrand in IA also contains the factor

nL(ω − �μ) − nL(ω + �μ), (7)

where nL is the Bose distribution function in (normal) reser-
voir L. Equation (7) is linear in �μ for the low-bias regime.
However, Ohm’s law is prohibited in IA due to the dependence
in densities of states [Eq. (6)], which introduces an additional
�μ dependence in the integrand of IA. An explicit numerical
analysis shows that IA ∝ (�μ − μ0)2θ (μ0 − �μ) for small
�μ and μ0 [28]. This is in sharp contrast to the Andreev re-
flection contribution in the superconductor where the Andreev
current obeys Ohm’s law for the low-bias regime [32,33]. We
also point out that up to this order of the expression, IA has no
temperature dependence as in Ic. Since the leading order con-
tribution in Ic is the second order in tp,k and Ic ∝ √

μ0 − �μ,
however, Ic is more dominant than IA over the low-bias regime.

Besides transport induced by a chemical potential bias, we
can discuss one induced sorely by a temperature bias between

reservoirs �T . Regarding the particle current, it turns out that
both Ic and IA become zero. The former contribution is absent
since the density of states in the normal bosons vanishes at
zero frequency. On the other hand, the latter one is absent
due to the fact that the Andreev reflection process contains
the factor Eq. (7) in the integrand, which trivially vanishes at
�μ = 0. In other words, the remaining processes I1, I2, and I3

are generated by �T . It is then straightforward to show that in
the presence of small �T these contributions are proportional
to �T . Furthermore, we discuss the heat current IQ induced
by �T . By using lesser Green’s function, it is expressed as

IQ = 2
∑
p,k

lim
τ ′→τ

Re[itp,k∂τ G<
k,p,LR(τ, τ ′)]. (8)

As in the case of the particle current, the heat current can
efficiently be calculated in the frequency space. Then, i∂τ in
Eq. (8) is replaced by ω in the frequency representation and
the integrand of Eq. (8) is given by one of Eq. (2) multi-
plied by ω, i.e., IQ = ∫ ∞

−∞ dωωIN (ω). The direct evaluation of
IQ shows that the contributions coming from the conversion
process between condensate and normal boson and the An-
dreev reflection process vanish, and the remaining processes
corresponding to I1, I2, and I3 in the particle current become
dominant. In addition, we can show that for the low-�T
regime, IQ is proportional to �T , implying the presence of
Fourier’s law.

We now discuss possible realizations of the bosonic SN
junctions with ultracold atomic gases. Unlike condensed-
matter setups where superconductor and normal metal consist
of different materials, junction systems in cold-atom exper-
iments are made of an atomic gas originally trapped in one
[3]. By considering that the critical temperature of the BEC
depends on an atomic density, in order to verify the predic-
tions discussed in this paper, one has to make a two-terminal
system where the chemical potential difference between reser-
voirs is small and density difference between reservoirs is
sufficiently large such that the thermodynamic properties of
the left and right reservoirs are described by the HF and
the Bogoliubov theories, respectively. To achieve this, one
can use a repulsive external potential, which is only added
in the left reservoir and compensates the chemical potential
difference arising from the large density difference between
reservoirs [36]. Another way to make the similar system is
to use the synthetic-reservoir technique available in ultracold
atomic gases with internal degrees of freedom. There, the
hyperfine or nuclear spin index of each atom is regarded as
the reservoir index, and tunneling and chemical-potential shift
between reservoirs can be introduced as coupling and energy-
level shift between spins, respectively. Such a technique has
already been implemented to confirm the Josephson effect
[37] and point contact transport [6].

For realizations of the SN junctions, it is instructive to point
out that due to the critical fluctuation the HF theory is broken
down in the very vicinity of Tc, where μ0 approaches to zero.
By using the Ginzburg criterion, such a fluctuation is impor-
tant around the critical chemical potential μc = (4πa)2MT 2

c
with the mass of an atom M and the s-wave scattering length a
[8]. In order to see the existence of the regime where the theo-
retical analysis addressed in this paper is justified in a concrete
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way, we consider a system of 87Rb atoms and assume that
the atomic densities in the normal and superfluid reservoirs
are respectively of the order of 1011 cm−3 and 1013 cm−3.
In this case, Tc ∼ 10−9 K and μc ∼ 10−11 K in the normal
reservoir, while Tc ∼ 10−8 K in the superfluid reservoir. Thus,
if the temperature of the system is T ∼ 10−9 K, we can reach
the regime in which the superfluid reservoir is described by
the Bogoliubov theory and normal reservoir is done by the
HF theory while avoiding the critical fluctuation.

To summarize, we addressed the current-bias character-
istics of the bosonic SN systems. Owing to the presence
of the tunneling process inherent to the bosonic systems and
the excitation properties, the transport characteristics turn out
to be drastically different from the fermionic counterparts.
Especially, we revealed that in the vicinity of the critical
temperature of a BEC, the current-chemical potential bias
characteristics can be nonlinear due to the conversion pro-
cess between condensate and normal boson and the bosonic
Andreev process. At the same time, such processes yielding
the nonlinear character are found to be irrelevant for transport
induced by a temperature bias.

The results shown in this paper may encourage a vari-
ety of related works. An analysis in terms of the scattering
formalism with the Bogoliubov equation is an interesting
direction for future research. Such an analysis may play a

key role in connecting the tunneling process such as the
conversion process discussed in this paper with the so-called
quantum condensation and evaporation [38–42]. In addi-
tion, the formalism explored in this work can be applied to
various BEC systems discussed in ultracold atomic gases.
Weakly-interacting Bose gases with spin could be one of
the systems. There, the current-bias characteristics may fur-
ther be nontrivial, since such BECs possess a variety of
Bogoliubov excitations depending on the phases realized
[43]. Similarly, junction systems of the binary mixtures with
or without spin-orbit coupling are promising in terms of
comparable superconducting systems [44]. Furthermore, the
SN junction in two-component Fermi gases may be inter-
esting in terms of Bardeen-Cooper-Schrieffer (BCS)-BEC
crossover [45]. There, questions would be how evolution of
the transport characteristics as a function of the s-wave scat-
tering length and crossover between fermionic and bosonic
Andreev reflections are. Another promising direction may
be to look at optical lattice systems in which an effect
of commensurability is significant near the Mott-insulator
transition [46].
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