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Computational self-testing for entangled magic states
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Can classical systems grasp quantum dynamics executed in an untrusted quantum device? Metger and Vidick
answered this question affirmatively by proposing a computational self-testing protocol for Bell states that
certifies generation of Bell states and measurements on them. Since their protocol relies on the fact that the
target states are stabilizer states, it is highly nontrivial to reveal whether the other class of quantum states,
nonstabilizer states, can be self-tested. Among nonstabilizer states, magic states are indispensable resources for
universal quantum computation. Here, we show that a magic state for the CCZ gate can be self-tested while that
for the T gate cannot. Our result is applicable to a proof of quantumness, where we can classically verify whether
a quantum device generates a quantum state having nonzero magic.
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Introduction. In device-independent quantum information
processing, we treat a quantum device as a black box and
can only access it classically. By using classical input-output
statistics obtained through interacting with the device, our
goal is to make statements about the inner workings of the
quantum device. A scheme for characterizing a quantum
device provides an approach to achieve device-independent
quantum key distribution [1–7] and delegated quantum com-
putation [8,9].

A stringent form of device-independent certification for
quantum devices is self-testing, which was introduced by
Mayers and Yao [10]. In traditional self-testing protocols (see,
e.g., [11–13]), a classical verifier certifies that computation-
ally unbounded devices, which are also called provers, have
prepared the target state up to some isometry (i.e., a change of
basis) and measured qubits with the observable as required
by the verifier. Their crucial assumption is that there are
multiple provers, and each prover is allowed to be entangled
but cannot classically communicate with others. In practice,
however, this non-communication assumption is difficult to
enforce.

Recently, a different type of self-testing called computa-
tional self-testing (C-ST) was proposed [14], which replaces
the noncommunicating multiple provers with a single com-
putationally bounded quantum prover who only performs
efficient quantum computation. To remove the noncommu-
nication assumption, their protocol relies on a standard
assumption in post-quantum cryptography where the learning
with errors (LWE) problem [15] cannot be solved by quan-
tum computers in polynomial time [16]. Since the prover is
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assumed to be computationally bounded, the probability of
solving the LWE problem is negligibly small, which we call
the LWE assumption. Here, it is important to note that unlike
in classical public-key cryptography, this LWE assumption
must hold only during execution of the self-testing protocol
[17]. The C-ST [14] has been applied to device-independent
quantum key distribution [7] and oblivious transfer [18].

The self-testing protocol [14] consists of interactions be-
tween the classical verifier and the prover, and after the
interactions the verifier decides to either “accept” or “reject”
the prover. In general, a C-ST protocol must satisfy two prop-
erties. One is completeness where the honest prover (i.e., the
ideal device) is accepted by the verifier with high probability.
The other is soundness, where, if the verifier accepts the
prover with high probability, the device’s functionality is close
to the ideal one, i.e., the device generates the target state and
executes measurements on it with high precision as required
by the verifier. So far, the C-ST protocol has been con-
structed only for Bell states (σ a

X ⊗ σ b
X )(|0〉|+〉 + |1〉|−〉)/

√
2

with a, b ∈ {0, 1} [14], which are stabilizer states, and their
protocol measures the stabilizers σZ ⊗ σX and σX ⊗ σZ to self-
test them. Here, |±〉 := (|0〉 ± |1〉)/

√
2 with {|0〉, |1〉} being

the computational basis, and σZ and σX are the Pauli-Z and
-X operators, respectively. The underlying primitives of their
protocol are the extended noisy trapdoor claw-free function
(ENTCF) families introduced in [19,20] that are constructed
from the LWE problem. The ENTCF families consist of two
families of function pairs: one used to check the Pauli-Z
operator and the other used for checking the Pauli-X operator.
Hence, it should be straightforward to extend the result in [14]
to all the stabilizer states whose stabilizers are tensor products
of the Pauli-Z and -X operators. However, for other states,
such as nonstabilizer states, constructing C-ST protocols is
nontrivial.

Among nonstabilizer states, hypergraph states [21], gen-
erated by applying controlled-controlled-Z (CCZ ) gates on
graph states [22], are useful in various quantum information
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processing tasks, such as preparing a magic state [23] for
quantum computation, decreasing the number of bases for
measurement-based quantum computation [24,25], enhancing
the amount of violation of Bell’s inequality [26], and demon-
strating quantum supremacy [27]. Experimentally, generating
hypergraph states with high fidelity is generally hard since it
requires CCZ gates. Hence, it is important to certify whether a
generated state is the target hypergraph state. Indeed, several
certification methods have been invented [28–30], where the
measurements are assumed to be trusted.

In this Letter, we construct a C-ST protocol for the entan-
gled magic state CCZ|+〉⊗3. This hypergraph state is useful
for use as a magic state or a building block of Union Jack
states [25], and for realizing the violation of Bell’s inequality
[26]. As for magic states, T |+〉 with T := |0〉〈0| + eiπ/4|1〉〈1|
is a major one, but we show that no C-ST protocol can be
constructed for it within the framework of [14].

We explain an intuitive idea of how to construct the C-
ST protocol for CCZ|+〉⊗3. This state is a simultaneous +1
eigenstate of σX,1CZ23, σX,2CZ13, and σX,3CZ12, which we
call generalized stabilizers. Here, σX,i and CZjk denote the
Pauli-X operator acting on the ith qubit and the controlled-Z
(CZ) gate acting on the jth and kth qubits, respectively. Since
these three operators are not the tensor products of Pauli Z
and X , the arguments in [14] cannot be directly applied. To
overcome this problem, we generalize the idea in [29]. This
shows that expected values of the generalized stabilizers for
a state ρ can be estimated by measuring the individual qubits
of ρ with the ideal Pauli-Z and -X measurements followed by
classical processing. Since the ideality of the measurements
is not assumed in the self-testing scenario, we generalize the
result in [29] so that it works even if the measurements are
untrusted.

In constructing C-ST protocols for n-qubit states, there are
two obstacles that must be overcome. Our construction would
overcome one of them, and we will discuss that in Discussion
section.

Recently, by exploiting the ENTCF families, various proto-
cols have been invented for the proof of quantumness [19,31–
34], verification of quantum computations [20,35–37], remote
state preparation [38,39], and zero-knowledge arguments for
quantum computations [40–42]. We show that our self-testing
protocol for the entangled magic state is applicable to another
type of proof of quantumness where the classical verifier can
certify whether the device generates a state having nonzero
magic. The magic represents the nonstabilizerness, and it is
regarded as quantumness in the sense that implementing non-
Clifford gates via injection of nonstabilizer states upgrades
classically simulatable Clifford circuits to universal quantum
circuits.

Computational self-testing of magic states. First, we show
that it is impossible to construct a C-ST protocol for the
magic state T |+〉 with the same usage of ENTCF families
in [14]. More specifically, with the current usage of these
families, the classical verifier can only check Pauli-Z and -X
measurements, but the statistics of the outcomes of these two
measurements are the same for T |+〉 and T †|+〉 [43]. There-
fore, the classical verifier accepts the prover even when the
prover generates T †|+〉, which violates the aforementioned
soundness.

Next, we turn to the C-ST protocol for the entangled magic
state. Before we describe it, we briefly introduce the main
properties of the ENTCF families [19,20], where the formal
definitions are given in Sec. I of the Supplemental Material
[44].

Let X and Y be finite sets specified by a security pa-
rameter (i.e., the value that determines the concrete hardness
of solving the underlying LWE problem). ENTCF families
consist of two families, F and G, of function pairs such
that each of the functions injectively maps an element of
X to the one of Y [45]. A function f in these families
is injective, namely f (x) �= f (x′) if x �= x′ ∈ X . A function
pair ( fk,0, fk,1) in F = {( fk,0, fk,1)}k is indexed by a key k,
which is public information specifying parameters in the LWE
problem, and fk,0 and fk,1 have the same image over X .
Hence, given y ∈ Y , there exists a claw (x0(k, y), x1(k, y))
in X satisfying y = fk,0(x0(k, y)) = fk,1(x1(k, y)). The func-
tion pair is called claw-free if it is hard to find a claw in
quantum polynomial time. For a claw (x0(k, y), x1(k, y)) and
d ∈ X , we define bit u(k, y, d ) := d · (x0(k, y) ⊕ x1(k, y)). A
function pair ( fk,0, fk,1) in the other family of function pairs
G = {( fk,0, fk,1)}k is also indexed by a key k, but fk,0 and fk,1

have disjoint images over X . Because of its disjointness, bit
b(k, y) is uniquely determined such that, given k and y, there
exists an element x satisfying y = fk,b(k,y)(x).

Depending on the family of function pairs, the verifier
generates a key k and trapdoor information tk . The trapdoor
is a piece of secret information that enables the verifier to
efficiently compute an element x from y = fk,b(x) for any
b ∈ {0, 1}.

Below, we describe Protocol 1, which consists of a
three-round interaction between the classical verifier and the
computationally bounded quantum prover (see Fig. 1). The
target state of our C-ST protocol is the Z-rotated entangled
magic state, which is defined for s1, s2, s3 ∈ {0, 1} by

∣∣φ(s1,s2,s3 )
H

〉
:= (

σ
s1
Z ⊗ σ

s2
Z ⊗ σ

s3
Z

)
CCZ|+〉⊗3. (1)

In the protocol description, x ∈R T means that the variable x
is chosen from set T uniformly at random.

Protocol 1
(1) The verifier chooses bases θ := θ1θ2θ3 ∈R B :=

{000, 001, 010, 100, 111}. The basis choices 0 and 1
correspond to the computational and the Hadamard basis, re-
spectively. We call the basis choice θ ∈ {000, 001, 010, 100}
the test case and θ = 111 the hypergraph case.

(2) For each i ∈ {1, 2, 3}, the verifier chooses the function
family G (F) if θi = 0 (θi = 1). Depending on the chosen
families, the verifier generates keys k1, k2, k3 and trapdoors
tk1 , tk2 , tk3 . Then, the verifier sends keys k1, k2, k3 to the prover
but keeps trapdoors tk1 , tk2 , tk3 secret from the prover.

(3) The verifier receives y1, y2, y3 ∈ Y from the prover.
(4) The verifier chooses a round type from

{preimage round, Hadamard round} uniformly at random
and sends it to the prover.

(i) For a preimage round, the verifier receives preim-
ages (b1, x1; b2, x2; b3, x3) from the prover with bi ∈ {0, 1}
and xi ∈ X . The verifier rejects the prover and sets a flag
f lag ← f ailPre unless all the preimages are correct [namely,
fki,bi (xi ) = yi holds for i = 1, 2, 3].
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FIG. 1. This figure shows the procedures for the honest device
that passes step (e). If the device executes the displayed state prepa-
ration, measurements, and CCZ gate operation, where the register
| fki,b(x)〉 [second register |xb(ki, yi )〉] is measured in the computa-
tional (Hadamard) basis, the entangled magic state is prepared. The
measurement with q = 100, which requests Pauli-X (-Z) measure-
ment on the first qubit (second and third qubits), corresponds to
measuring the generalized stabilizer of the entangled magic state.
Therefore, the outcomes v1, v2, v3 of this honest device pass the
check at step (e).

(ii) For a Hadamard round, the verifier receives d1, d2, d3 ∈
X from the prover. Then, the verifier sends measurement
bases q1, q2, q3 ∈R {0, 1} to the prover, and the prover returns
measurement outcomes v1, v2, v3 ∈ {0, 1}. Depending on the
bases θ, the verifier executes the following checks. If the flag
is set, the verifier rejects the prover.

(a) θ = 000: set f lag ← f ailTest if, for i ∈R {1, 2, 3},
qi = 0 and b(ki, yi ) �= vi hold.

(b) θ = 100: set f lag ← f ailTest if q1 = 1 and
u(k1, y1, d1) ⊕ b(k2, y2) · b(k3, y3) �= v1 hold.

(c) θ = 010: set f lag ← f ailTest if q2 = 1 and
u(k2, y2, d2) ⊕ b(k1, y1) · b(k3, y3) �= v2 hold.

(d) θ = 001: set f lag ← f ailTest if q3 = 1 and
u(k3, y3, d3) ⊕ b(k1, y1) · b(k2, y2) �= v3 hold.

(e) θ = 111: set f lag ← f ailHyper if one of the follow-
ing holds:

q = 100 and u(k1, y1, d1) �= v1 ⊕ v2 · v3,

q = 010 and u(k2, y2, d2) �= v2 ⊕ v1 · v3,

q = 001 and u(k3, y3, d3) �= v3 ⊕ v1 · v2,
with q := q1q2q3.

Completeness. We show in Theorem 1 that Protocol 1
satisfies the aforementioned completeness.

Theorem 1. There exists a computationally bounded quan-
tum prover that is accepted in Protocol 1 with probability
1 − negl(λ). Here, negl(λ) is a negligible function in the se-
curity parameter λ, namely a function that decays faster than
any inverse polynomial in λ.

The device is accepted in Protocol 1 if all the checks in the
preimage and Hadamard rounds are passed, whose details are
given in Sec. III of the Supplemental Material [44]. Here, we
particularly explain the procedures for the honest device that
can pass step (e). Since step (e) corresponds to the check of the

generalized stabilizers, the honest device passes this check if
it generates the entangled magic state. Figure 1 shows how
to generate this state. After returning d1, d2, d3, the state of
the honest device is close to a tensor product of three Pauli-
X basis eigenstates due to the claw-free property of function
family F , and hence applying the CCZ gate to this state results
in the entangled magic state up to Pauli-Z operators.

Soundness. We next show in Theorem 2 that Protocol 1
satisfies the aforementioned soundness. For the purpose of
self-testing, we are interested in the last round of the inter-
action [step 4(ii)] when θ = 111. Here, the verifier sends the
measurement bases q ∈ {0, 1}3 to the device and receives the
outcomes v := v1v2v3 ∈ {0, 1}3. We can model the behavior
of the device in step 4(ii) when θ = 111 by the unnormalized
state σ (s1,s2,s3 ) on the device’s Hilbert space H with s1, s2, s3 ∈
{0, 1} and projective measurements {P(v)

q }v on this state that
output v given inputs q to the device. Here, si is determined
by bit u(ki, yi, di ) for i ∈ {1, 2, 3}.

The goal of Protocol 1 is to ensure that the state
σ ′(s1,s2,s3 ) := σ (s1,s2,s3 )/tr[σ (s1,s2,s3 )] is close to the entangled
magic state defined in Eq. (1), which is the target state to
certify, and measurements P(v)

q are specific tensor products of
Pauli measurements, up to an isometry and a small error. This
error is quantified by the probabilities that the verifier rejects
the prover, namely the verifier sets a f lag to f ailPre, f ailTest,
or f ailHyper. We now present the soundness as follows, where
pa := Pr{ f lag ← f aila} with a ∈ {Pre,Test, Hyper}, || · ||1
being the trace norm, and P[|·〉] := |·〉〈·|.

Theorem 2. Consider a device that is rejected by the ver-
ifier with probabilities pPre, pTest, and pHyper, and make the
LWE assumption. Let |φ(s1,s2,s3 )

H 〉 be the target entangled magic
state to certify with s1, s2, s3 ∈ {0, 1}, state σ ′(s1,s2,s3 ) defined
above, λ the security parameter, H the device’s Hilbert space,
and H′ some Hilbert space. Then, there exists an isometry V :
H → C8 ⊗ H′, states ζ

(s1,s2,s3 )
H′ on H′, and a constant r > 0

such that, in the case of θ = 111 (hypergraph case),
∣∣∣
∣∣∣V σ ′(s1,s2,s3 )V † − |φ(s1,s2,s3 )

H 〉〈φ(s1,s2,s3 )
H | ⊗ ζ

(s1,s2,s3 )
H′

∣∣∣
∣∣∣
2

1

� O(pr
Pre + pr

Test + pr
Hyper ) + negl(λ), (2)

and, for any a, b, c ∈ {0, 1} and q1, q2, q3 ∈ {0, 1},
∣∣∣
∣∣∣V P(abc)

q1q2q3
σ ′(s1,s2,s3 )P(abc)

q1q2q3
V † − P[|aq1 , bq2 , cq3〉]

|φ(s1,s2,s3 )
H 〉〈φ(s1,s2,s3 )

H |P[|aq1 , bq2 , cq3〉] ⊗ ζ
(s1,s2,s3 )
H′

∣∣∣
∣∣∣
2

1

� O(pr
Pre + pr

Test + pr
Hyper ) + negl(λ). (3)

Here, |aq1〉 with a, q1 ∈ {0, 1} is |aq1〉 := |a〉 if q1 = 0 and
|aq1〉 := (|0〉 + (−1)a|1〉)/

√
2 if q1 = 1. |bq2〉 and |cq3〉 are

defined analogously.
Here, Eq. (2) guarantees how precisely the prover gen-

erates the entangled magic state under the isometry V , and
Eq. (3) how precisely it implements the specific single-qubit
measurements on it according to the measurement bases q.
Using V †V = I , Eq. (3) also reveals that the actual probability
distribution of the device {tr[P(abc)

q1q2q3
σ ′(s1,s2,s3 )]}a,b,c is close to

the ideal one obtained by measuring |φ(s1,s2,s3 )
H 〉 in the Pauli-Z

and -X bases. Note that Eqs. (2) and (3) are analogous to the
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statements in the traditional self-testing (see, e.g., [11–13]).
One notable difference from the traditional self-testing is that
our isometry V is allowed to be a global operation acting on
the whole device’s Hilbert space H because we do consider
the single quantum device. The proof of Theorem 2 is given
in Sec. IV of the Supplemental Material [44].

Applications to the proof of quantumness. Recently, various
protocols have been invented to enable the classical verifier
to certify the quantumness of the device [19,20,31,33,34,36].
Here, the meaning of quantumness differs depending on
the protocols. For instance, the protocols [19,33,34] verify
whether the prover has a superposed state or not, the protocols
[20,36] verify whether the prover can efficiently solve BQP
problems, and the protocol [31] verifies that the prover can
query to an oracle in superposition. Importantly, if the prover
is accepted by the verifier, then the prover has quantum capa-
bility.

Our C-ST protocol given as Protocol 1 can be used for
the proof of magic under the IID scenario where the device’s
functionality is the same for each repetition of the protocol.
To measure the magic, we focus on the max-relative entropy
of magic [46]. We adopt this measure for simplicity, but our
arguments can be applied to any reasonable measure of the
magic. Let Dmax(ρ) := log2 [1 + Rg(ρ)] be the max-relative
entropy of magic of an n-qubit state ρ, where Rg(ρ) is defined
by the minimum of t � 0 such that ρ ∈ (1 + t )STAB − tS ,
STAB ⊂ S is the convex hull of all n-qubit stabilizer states,
and S is the set of n-qubit states. If ρ is a stabilizer state,
Rg(ρ) = 0, and hence Dmax(ρ) = 0. By contraposition, if
Dmax(ρ) > 0, state ρ is a nonstabilizer state. Based on above
observations, we outline the protocol for the proof of magic as
follows [47] (see Sec. V of the Supplemental Material [44]).

Protocol 2
(1) The verifier and prover repeat Protocol 1 a constant

number of times, and the verifier estimates the error probabil-
ities pPre, pTest, and pHyper using Hoeffding’s inequality from
the numbers of set flags.

(2) If the estimated trace norm Test [the square root of the
right-hand side of Eq. (2)] is strictly less than 1/3, then the
verifier accepts the prover. Otherwise, the verifier rejects the
prover.

We first show that if our protocol is passed, with a small
significance level [48], which can be set to any value such as
10−10, the verifier can guarantee that the prover generates a
state having nonzero magic up to the isometry. If state ρ has

no magic, we have 〈φ(s1,s2,s3 )
H |ρ|φ(s1,s2,s3 )

H 〉 � 9/16 because for
any stabilizer state |ψ〉, F := |〈ψ |φ(s1,s2,s3 )

H 〉|2 � 9/16 [49].
Since F � 9/16 results in ||ρ − |φ(s1,s2,s3 )

H 〉〈φ(s1,s2,s3 )
H |||1 �

1/2 [50], Hoeffding’s inequality with precision 1/6 implies
that Test < 1/3 holds with probability 10−10. Therefore, such
a state ρ is accepted with probability of at most 10−10.

On the other hand, there is a strategy that passes this pro-
tocol with probability 1 − 10−10. This is because Theorem 1
states that there exists a prover’s strategy that achieves all of
the error probabilities pPre, pTest, and pHyper being negl(λ), and
hence, from Hoeffding’s inequality, Test � negl(λ) + 1/6 <

1/3 holds except for probability 10−10.
Discussions. In this Letter, we have constructed a com-

putational self-testing protocol for the three-qubit entangled
magic state. To generalize [14] to n-qubit states, there are two
obstacles: (1) The verifier chooses the state bases θ1 . . . θn ∈R

{0, 1}n with which the prover is requested to generate the state
for n times. Since the target state is prepared only when all
the θ ’s are 1, it takes exponential time on average to generate
the target state. (2) The verifier checks all the patterns of
measurements, namely it checks the correctness of Pauli-Z
and -X measurements for each qubit, which takes 2n times.

Our construction would solve the first problem. We have
shown for n = 3 that the number of state bases is sufficient to
be n + 2, which means the target state is prepared on average
by repeating the protocol (n + 2) times. We leave its rigorous
analysis and the second problem as future work.

Note added. Recently, we became aware of independent
related works [52] and [53] that extend the result [14] to
self-test n Bell states and n BB84 states, respectively. By ex-
ploiting these results, it could be possible to extend our result
to self-test n tensor products of CCZ magic states CCZ|+〉⊗3.
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[13] I. Šupić and J. Bowles, Quantum 4, 337 (2020).
[14] T. Metger and T. Vidick, Quantum 5, 544 (2021).

L010601-4

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevX.3.031006
https://doi.org/10.1103/PhysRevLett.113.140501
https://doi.org/10.1038/nature13132
https://doi.org/10.1038/s41467-017-02307-4
https://doi.org/10.1088/1367-2630/ac304b
https://doi.org/10.1038/nature12035
http://arxiv.org/abs/arXiv:1502.02563
https://doi.org/10.1088/1751-8113/45/45/455304
https://doi.org/10.1038/ncomms15485
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.22331/q-2021-09-16-544


COMPUTATIONAL SELF-TESTING FOR ENTANGLED … PHYSICAL REVIEW A 106, L010601 (2022)

[15] The LWE problem is to solve a noisy system of linear equations,
and so far there exists no efficient quantum algorithm to solve
this problem.

[16] O. Regev, J. ACM 56, 1(2009).
[17] Note that encrypted messages using classical public-key cryp-

tography are decrypted once it becomes technologically feasible
to break the underlying computational assumption. On the
other hand, the LWE assumption supposed in [14] is only
exploited to prevent the malicious prover from tricking the
verifier into accepting the prover as honest. Hence, as long as
the LWE assumption holds during the self-testing protocol, if
this assumption is broken after the protocol, the results already
obtained never be compromised.

[18] A. Broadbent and P. Yuen, arXiv:2111.08595.
[19] Z. Brakerski, Z. P. Christiano, U. Mahadev, U. Vazirani, and T.

Vidick, in Proceedings of the 59th Annual Symposium on Foun-
dations of Computer Science (IEEE, Piscataway, NJ, 2018), pp.
320–331.

[20] U. Mahadev, in Proceedings of the 59th Annual Symposium
on Foundations of Computer Science (IEEE, Piscataway, NJ,
2018), pp. 259–267.

[21] M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, New J.
Phys. 15, 113022 (2013).

[22] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[23] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[24] Y. Takeuchi, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585

(2019).
[25] J. Miller and A. Miyake, npj Quantum Inf. 2, 16036 (2016).
[26] M. Gachechiladze, C. Budroni, and O. Gühne, Phys. Rev. Lett.

116, 070401 (2016).
[27] M. J. Bremner, A. Montanaro, and D. J. Shepherd, Phys. Rev.

Lett. 117, 080501 (2016).
[28] T. Morimae, Y. Takeuchi, and M. Hayashi, Phys. Rev. A 96,

062321 (2017).
[29] Y. Takeuchi and T. Morimae, Phys. Rev. X 8, 021060

(2018).
[30] H. Zhu and M. Hayashi, Phys. Rev. Applied 12, 054047

(2019).
[31] Z. Brakerski, K. Venkata, U. Vazirani, and T. Vidick,

arXiv:2005.04826.
[32] G. D. Kahanamoku-Meyer, S. Choi, U. Vazirani, and N. Y. Yao,

arXiv:2104.00687.
[33] S. Hirahara and F. Le Gall, in Proceedings of the 46th Interna-

tional Symposium on Mathematical Foundations of Computer
Science (MFCS 2021) (2021), pp. 59:1–59:15.

[34] Z. Liu and A. Gheorghiu, arXiv:2107.02163.
[35] G. Alagic, A. M. Childs, A. B. Grilo, and S.-H. Hung, in Theory

of Cryptography: 18th International Conference, TCC 2020,

Lecture Notes in Computer Science, Vol. 12552 (Springer,
Cham, 2020), Part III, pp. 153–180.

[36] N.-H. Chia, K.-M. Chung, and T. Yamakawa, in Theory of
Cryptography: 18th International Conference, TCC 2020, Lec-
ture Notes in Computer Science, Vol. 12552 (Springer, Cham,
2020), Part III, pp. 181–206.

[37] K. Chung, Y. Lee, H. H. Lin, and X. Wu, arXiv:2012.04848.
[38] A. Gheorghiu and T. Vidick, in Proceedings of the 60th Annual

Symposium on Foundations of Computer Science (IEEE, Piscat-
away, NJ, 2019), pp. 1024–1033.

[39] A. Cojocaru, L. Colisson, E. Kashefi, and P. Wallden, in ASI-
ACRYPT 2019: International Conference on The Theory and
Application of Cryptology and Information Security (IACR,
Carson City, NV, 2019), pp. 615–645.

[40] T. Morimae and T. Yamakawa, arXiv:2102.09149.
[41] A. Coladangelo, T. Vidick, and T. Zhang, in CRYPTO 2020:

International Cryptology Conference (IACR, Carson City, NV,
2020), Part III, pp. 799–828.

[42] T. Vidick and T. Zhang, Quantum 4, 266 (2020).
[43] When T |+〉 is measured in the Pauli-Z basis, the outcomes 0

and 1 are obtained with equal probability. On the other hand,
if it is measured in the Pauli-X basis, they are obtained with
probabilities (2 + √

2)/4 and (2 − √
2)/4, respectively. These

statistics are the same for T †|+〉.
[44] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.106.L010601 for detailed information of
the proofs of our theorems and Protocol 2.

[45] Note that we assume for simplicity that the outputs of the
functions are elements of set Y , but, precisely, the outputs
are probability distributions over Y . The rigorous definitions
of ENTCF families are given in Sec. I of the Supplemental
Material [44].

[46] Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
[47] Note that as a related work to our proof of magic, the problem of

asking whether a given state is any stabilizer state was studied
in the device-dependent scenario [51]. Our protocol considers
its opposite problem, i.e., asking whether a given state is not
any stabilizer state, in the device-independent scenario.

[48] Note that the significant level is defined by the maximum prob-
ability of passing our protocol with a state having no magic.

[49] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and
M. Howard, Quantum 3, 181 (2019).

[50] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2010).

[51] D. Gross, S. Nezami, and M. Walter, Commun. Math. Phys.
385, 1325 (2021).

[52] H. Fu, D. Wang, and Q. Zhao, arXiv:2201.13430 (2022).
[53] A. Gheorghiu, T. Metger, and A. Poremba, arXiv:2201.13445.

L010601-5

https://doi.org/10.1145/1568318.1568324
http://arxiv.org/abs/arXiv:2111.08595
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1103/PhysRevLett.116.070401
https://doi.org/10.1103/PhysRevLett.117.080501
https://doi.org/10.1103/PhysRevA.96.062321
https://doi.org/10.1103/PhysRevX.8.021060
https://doi.org/10.1103/PhysRevApplied.12.054047
http://arxiv.org/abs/arXiv:2005.04826
http://arxiv.org/abs/arXiv:2104.00687
http://arxiv.org/abs/arXiv:2107.02163
http://arxiv.org/abs/arXiv:2012.04848
http://arxiv.org/abs/arXiv:2102.09149
https://doi.org/10.22331/q-2020-05-14-266
http://link.aps.org/supplemental/10.1103/PhysRevA.106.L010601
https://doi.org/10.1103/PRXQuantum.3.020333
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.1007/s00220-021-04118-7
http://arxiv.org/abs/arXiv:2201.13430
http://arxiv.org/abs/arXiv:2201.13445

