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We consider statistical methods based on finite samples of locally randomized measurements in order to
certify different degrees of multiparticle entanglement in intermediate-scale quantum systems. We first introduce
hierarchies of multiqubit criteria, satisfied by states which are separable with respect to partitions of different
size, involving only second moments of the underlying probability distribution. Then, we analyze in detail the
statistical error of the estimation in experiments and present several approaches for estimating the statistical
significance based on large deviation bounds. The latter allows us to characterize the measurement resources
required for the certification of multiparticle correlations, as well as to analyze given experimental data in detail.
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I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) devices involv-
ing a few dozen qubits are considered a stepping stone towards
the ultimate goal of building a fault-tolerant quantum com-
puter. While impressive achievements have been made in this
direction, e.g., in terms of the precision of the individual qubit
architectures [1–3], the common challenge is to scale up the
considered devices and, at the same time, maintain the estab-
lished accuracy [4,5]. In particular, the collective performance
of the whole system of interacting qubits is of central concern
in this respect.

Several approaches aimed at a verification of correlation
properties of such multiparticle quantum systems have been
discussed in the literature [6]. On the one hand, there are
efficient protocols in terms of the required measurement re-
sources if the experiment is expected to result in specific
states, e.g., entanglement witnessing [7], self-testing [8], or di-
rect fidelity estimation [9,10]. On the other hand, approaches
which rely on few or no expectation about the underlying
quantum state are usually very resource intensive and thus
do not scale favorably with increasing system sizes, e.g.,
quantum state tomography [11,12]. Furthermore, intermediate
strategies exist which do not aim for a full mathematical
description of the system but rather focus on specific statistical
properties. The latter can reduce the required measurement
resources considerably at the expense of a nonvanishing sta-
tistical error and do not assume any prior information about
the state [13–17].

Recently there has been much attention on protocols based
on statistical correlations between outcomes of randomized

*Present address: Fraunhofer Institute for Applied Solid State
Physics (IAF), Tullastr. 72, 79108 Freiburg, Germany.

measurements [18–37] (see Fig. 1). The latter allow one to
infer several properties of the underlying system, ranging
from structures of multiparticle entanglement [23,24,36], over
subsystem purities [29,30], to fidelities with respect to certain
target states or even another quantum device [13,33]. At the
core of all those approaches is the idea to perform measure-
ments in randomly sampled local bases leading to ensembles
of measurement outcomes whose distributions provide a fin-
gerprint of the system’s correlation properties. Concerning
resources required for statistically significant tests, scaling
properties have been derived for the case of bipartite entan-
glement [28,34].
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FIG. 1. Characterization of a noisy intermediate-scale quantum
(NISQ) device through locally randomized measurements. (a) A
measurement of N qubits in random local bases defined through the
set of local unitary transformations {Ui}N

i=1 resulting in a correlation
sample X . (b) Repetition of the measurement protocol presented in
(a) for M sets of randomly sample measurement bases and, respec-
tively, K individual projective measurements yields an estimate of
the moments (2).
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In this work we present detailed statistical methods to
certify multiparticle entanglement structures in systems con-
sisting of many qubits. First, we derive criteria in terms of
second moments of randomized measurements for different
forms of multiparticle entanglement allowing one to infer
the entanglement depth. Second, we present several rigorous
approaches for the analysis of the underlying statistical errors,
based on large deviation bounds, which are of great relevance
for practical experiments. As we will see, our results may
directly be used in current experiments using Rydberg atom
arrays or superconducting qubits [38–40].

II. MOMENTS OF RANDOM CORRELATIONS

We consider a mixed quantum state of N qubits described
by the density matrix ρ. In order to characterize this state we
follow a strategy based on locally randomized measurements.
Each random measurement is characterized through a set
of random bases {(|u(0)

n 〉 = Un|0n〉, |u(1)
n 〉 = Un|1n〉)}n=1,...,N ,

with {Un}n=1,...,N picked from the unitary group U (2)
according to the Haar measure. Further on, we can associate
to each element (|u(0)

n 〉 = Un|0n〉, |u(1)
n 〉 = Un|1n〉), with n ∈

{1, . . . , N}, a direction un on the unit sphere S2 with compo-
nents [un]i = tr[σunσi], with i ∈ {x, y, z}, and σun = UnσzU †

n
[see Fig. 1(a)]. One such random measurement then leads to
the correlation function

E (u1, . . . , uN ) = 〈σu1 ⊗ . . . ⊗ σuN 〉ρ, (1)

which provides a random snapshot of the correlation prop-
erties of the output state ρ. In order to get a more complete
picture we consider the corresponding moments

R(t ) = 1

(4π )N

∫
S2

du1 . . .

∫
S2

duN [E (u1, . . . , uN )]t , (2)

where t is a positive integer and dui = sin θidθidφi denotes
the uniform measure on the sphere S2. The moments (2) are
by definition invariant under local unitary transformation and
thus good candidates for the characterization of multiparticle
correlations.

III. MULTIPARTICLE ENTANGLEMENT
CHARACTERIZATION

In a multiparticle system one defines k-separable states,
with k ∈ {2, . . . , N}, as those states which can be written as
a statistical mixture of k-fold product states |� (k)〉 = |φ1〉 ⊗
. . . ⊗ |φk〉. Hence, by disproving that a state belongs to the
above separability classes, one can infer different degrees of
multiparticle entanglement, with the strongest form given by
states which are not even 2 separable, i.e., genuinely multi-
particle entangled (GME). The concept of k separability is a
widely used approach to benchmark experiments [41–44] and
also has been identified as a resource in quantum metrology
applications [45–48].

To begin with we note the well-known criterion R(2) �
1/3N which holds for all N-separable (i.e., fully separable)
states [21,22,49–52]. Furthermore, biseparability bounds on
combinations of second moments of marginals of three-qubit
systems can be formulated [36,53,54]. However, so far no use-
ful bounds on the full N-qubit moments (2) for the detection

of GME have been found. Here we close this gap and prove
in Sec. I.D of the Supplemental Material (SM) [55] that all
k-separable mixed states fulfill the bounds

R(2) � 1

3N−k+1
×

{
2N−(2k−1), N odd,

2N−(2k−1) + 1, N even,
(3)

with k = 2, . . . , �(N − 1)/2�. Equation (3) thus provides a
hierarchy of entanglement criteria whose violation for fixed k
implies that the given state is at most (k − 1) separable. This
implies that it has an entanglement depth [63,64] of at least
�N/(k − 1)	, but possibly stronger bounds for the depth can
be derived based on the concept of producibility; see SM [55],
Sec. I.E. In any case, only states which are GME can reach the
maximum value of the second moment R(2), which is known
to be attained by the N-qubit GHZ states [65,66]:

R(2)
|GHZN 〉 = 1

3N
×

{
2N−1, N odd,

2N−1 + 1, N even,
(4)

with |GHZN 〉 = (|0〉⊗N + |1〉⊗N )/
√

2. Note that in systems
consisting of larger local dimensions it is in general not true
that states which maximize the corresponding generalized
second moment R(2) are GME [36,65,66].

In the following we study the performance of the cri-
teria (3) by considering the noisy N-qubit GHZ states
ρ

(N )
GHZ(p) := p1/2N + (1 − p)|GHZN 〉〈GHZN |, which yields

R(2)
GHZ(p, N ) = (1 − p)2R(2)

|GHZN 〉 and thus minimizes (maxi-
mizes) R(2) for p = 1 (p = 0). We note that in practical
situations where errors occur locally one can estimate the
global depolarization probability p by combining local de-
polarization rates corresponding for instance to average gate
errors (see [55], Sec. III.B). The threshold value of p up to
which (3) is violated as a function of N and k thus reads

p∗ = 1 − f (N, k)

(
3

4

) k−1
2

, (5)

where f (N, k) = 1 for odd N and f (N, k) =√
(4k + 2N+1)/(4 + 2N+1) for even N (see Fig. 2). As

is clear from Eq. (5), the threshold p∗ is independent
of N , for odd N , and coincides with the asymptotic
threshold in the limit N → ∞, where f (N, k) → 1. The
latter is strictly smaller than 1, which shows that Eq. (3)
can be applied also in systems consisting of a large
number of parties. Furthermore, our methods also work
in the regime of low fidelities, i.e., large p∗′

s, where
fidelity-based witnesses fail (see Fig. 2). Furthermore, in
the lower panel of Fig. 2 we analyze the performance of
the criteria (3) for GHZ states with unequal amplitudes, i.e.,
|GHZ(N )

α 〉 = √
(1 + α)/2|0〉⊗N + √

(1 − α)/2|1〉⊗N , with
0 � α � 1 (see also Sec. I.C of [55]). Lastly, we note that the
criteria (3) become useful only for a certain minimum number
of qubits depending on the value of k, e.g., GME detection is
only possible for N > 4.

IV. ESTIMATION OF THE MOMENTS

In the following we assume that a finite sample of
M random measurement bases is taken, each of which
undergoes K individual projective measurements. We thus
denote the outcomes of a single random measurement on N
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FIG. 2. Threshold values p∗ (top) and α∗ (bottom) up to which
the noisy and the asymmetric GHZ state, ρ

(N )
GHZ(p) and |GHZ(N )

α 〉,
respectively, are detected to be not 2 (violet, bottom), 4 (blue), 6
(green), 10 (yellow), and 20 separable (red, top) as a function of the
number of qubits N . In the upper panel dots connected by solid lines
represent values of p∗ for even N ; dashed lines correspond to the
case of odd N . Plots in the right column show the asymptotic values
of p∗ and respectively α∗ in the limit N → ∞ as a function of the
parameter k. The exemplary values corresponding to the left plot are
highlighted by colored markers.

qubits by {r1, . . . , rN }, with ri = ±1, and define the corre-
sponding correlation sample as X = ∏N

i=1 ri [see Fig. 1(a)].
Given a fixed measurement basis we can thus model the bi-
nary outcomes of X through a binomially distributed random
variable Ỹ with probability P, i.e., the probability that an even
number of the measurement outcomes ri result in −1, and K
trials. The corresponding unbiased estimators P̃k of P and its
kth powers, respectively, are then given by P̃k = P̃k−1[KP̃1 −
(k − 1)]/[K − (k − 1)], with P̃1 = Ỹ /K (see Sec. II.B of the
SM [55]).

Further on, the unbiased estimators of the respective t th
powers of Eq. (1) read

Ẽt = (−1)t
t∑

k=0

(−2)k

(
t

k

)
P̃k, (6)

which, in turn, allows us to define faithful estimators of the
moments (2), resulting from M sampled measurement bases:

R̃(t ) = 1

M

M∑
i=1

[Ẽt ]i. (7)

Given Eqs. (6) and (7), our goal is now to gauge the statistical
error of an estimation R̃(t ) as a function of the number of sub-
systems N . More precisely, we aim for lower bounds on the
total number of required measurement samples Mtot = M × K
needed in order to estimate R(t ) with a precision of at least δ

and confidence γ , i.e., such that Prob(|R̃(t ) − R(t )| � δ) � γ

for Mtot � M(γ , t ).
In order to achieve this goal we exploit concentration in-

equalities which provide deviation bounds on the probability
1 − Prob(|R̃(t ) − R(t )| � δ), i.e., the probability that the es-

timator deviates from the mean value by a certain margin.
In Sec. II of the SM [55] we discuss three such approaches
which differ in their assumptions on the random variable R̃(t ),
based on the Chebyshev-Cantelli and Bernstein inequality, as
well as a more general approach using Chernoff bounds [67].
For instance, for the Chebyshev-Cantelli inequality this leads
to a minimal two-sided error bar of R̃(t ) that guarantees the
confidence γ :

δerr(γ ) =
√

1 + γ

1 − γ
Var(R̃(t ) ), (8)

where Var(R̃(t ) ) denotes the variance of the estimator (7)
which can be evaluated using the properties of the binomial
distribution. For instance, in the case of the second moment
R(2) we find that the variance reads

Var(R̃(2) ) = 1

M
[A(K )R(4) + B(K )R(2)

+ C(K ) − (R(2) )2], (9)

with A(K ) = (K − 2)(K − 1)C(K )/2, B(K ) = 2(K −
2)C(K ), and C(K ) = 2/[K (K − 1)], which are determined
through the properties of the binomial distribution (see
Sec. II.B of the SM [55] for a derivation).

Hence the precision of an estimation of the second moment
is determined through Eqs. (8) and (9) and thus depends on the
state under consideration. However, by bounding the variance
(9) from above we can consider a worst-case scenario and
determine the required values of M and K in order to reach
a precision of at least δ with confidence γ [55]. To do so, we
use the conjecture that the maximum of the fourth moment
R(4), for N > 4, is attained by the N-qubit GHZ states. While
this assumption is backed by numerical evidence we leave its
proof for future investigations.

In Fig. 3(a) we present the scaling of the required number
of random measurement bases M with the number of subsys-
tems N for different values of K . First, we note that the present
statistical treatment allows for an improvement over the 3N

measurement settings that are required in order to evaluate
the second moment exactly using a quantum design [21–24],
at the expense of a nonzero statistical error from the unitary
sampling. Second, the required number of random measure-
ment settings M depends strongly on the chosen number of
projective measurements per random unitary. More precisely,
the curves in Fig. 3(a) scale as O(1.2N ) up to a threshold
value that depends on K ; beyond that the scaling changes to
O(2.25N ).

The minimum of Mtot = M × K is reached for an optimal
ratio between M and K which can be obtained analytically
(see SM [55]) leading to M (opt)

tot = M(K (opt) ) × K (opt), as pre-
sented in Fig. 3(b). We thus find that the total measurement
budget follows the overall scaling law O(1.5N ). Furthermore,
while the required measurement resources increase slightly
with higher precision, i.e., smaller δ, the asymptotic scaling
remains the same. As comparison, we present in the same
figure the value M (opt)

tot obtained from the Bernstein inequality.
The latter avoids the additional assumption about the upper
bound on the variance (9) but scales worse with the system
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FIG. 3. (a) Number M of sampled measurement bases required to estimate R(2) with an accuracy of at least 10% and confidence γ = 90%
as a function of the number of subsystems N for K = 10, 102, . . . , 106 (solid curves from top to bottom), based on Chebyshev-Cantelli
inequality. The black dashed line indicates the required measurement settings in order to exactly determine R(2). (b) Total measurement budget
M (opt)

tot required for an estimation of R(2) with accuracy δ = 1% (blue curve) and 10% (red curve) as a function of N obtained from Chebyshev-
Cantelli (solid) and Bernstein (dashed) inequality. (c) M (opt)

tot as a function of γ for N = 10 and δ = 10% obtained from Chebyshev-Cantelli
(solid) and Bernstein (dashed) inequality. (d),(e) Measurement budget M (opt)

tot obtained from Chebyshev-Cantelli inequality required to certify
with confidence γ = 90% that ρ

(N )
GHZ(p) is entangled (solid lines) or not in the W class (dashed lines) for N = 6 (blue), N = 10 (yellow), and

N = 60 (red) qubits as a function of the p. (e) Zoom in of (d) for 0 � p � 0.3. (f) Same plot as in (d) but for the violation of the k-separability
criteria (3), with k = 2 (violet, left), 4 (blue), 6 (green), 10 (yellow), and 14 (red, right), for N = 30.

size. On the other hand, for fixed N , the scaling of M (opt)
tot with

the confidence γ is improved, as illustrated in Fig. 3(c).

V. FINITE STATISTICS ENTANGLEMENT
CHARACTERIZATION

In order to certify the violation of the k-separability bounds
(3) one has to ensure that the statistical error δ of R̃(2) does
not exceed the amount of the observed violation. This can
be ensured by choosing the total number of measurements
appropriately according to the previously discussed methods.
Even more, since we aim to exclude the hypothesis that the
state is, e.g., k separable, we can improve our procedure by
invoking upper bounds on the variances (9) for k-separable
states, respectively, instead of the overall upper bound used in
Figs. 3(a)–3(c). As this can only be done using the Chebyshev-
Cantelli inequality we will focus on this approach in the
following.

We demonstrate the above procedure using the state
ρ

(N )
GHZ(p) and first determine the total number of measurements

M (opt)
tot required to certify that it is not fully separable (i.e.,

R(2) � 1/3N ) and not in the class of W states [21–24] [see
Figs. 3(d) and 3(e) and also Sec. I.C of [55]]. We find that
already moderate numbers of M (opt)

tot � 2000 are enough to
certify their violation for up to N = 60 qubits. Divergences
displayed in Fig. 3(d) are due to the asymptotically decreasing
difference between the true value of R(2) and the respective
bound of the targeted criterion. A similar behavior is ob-
served for the violation of different degrees of k separability
[see Fig. 3(f)]. In this case M (opt)

tot is generally on a higher
level due to the increasing tightness of the bounds (3) for
smaller k.

VI. EXPERIMENTAL IMPLICATIONS

Lastly, in order to demonstrate the applicability of our
framework, we refer to recent experiments producing GHZ
states with limited fidelity [38–40,68]. For instance, in
Ref. [38] a GHZ state of 11 qubits was produced with fidelity
F ≈ 0.75. By applying our formalism we can thus show that
the state contains at least five- or seven-particle entanglement
by performing in total of the order of 105 or 106 measure-
ments, respectively (see Sec. III.A of the SM [55]). Note that
these numbers are still moderate as compared to a full state
tomography. Furthermore, we show that the 20 qubit GHZ
state of fidelity F ≈ 0.44 (see Ref. [38]) contains at least four-
or five-particle entanglement by performing in total of the
order of 107 measurements. We emphasize that such insights
cannot be reached in terms of the fidelity, since fidelities up to
1/2 can be reproduced by fully separable states.

VII. CONCLUSIONS

We have discussed statistical methods allowing for the
characterization of multiparticle quantum systems based on
randomized measurements. In particular, we presented criteria
for the detection of different types of multiparticle corre-
lations of N qubit systems, including genuine multiparticle
entanglement, based on the lowest nonvanishing moment
only. Furthermore, we carried out a detailed analysis of the
involved statistical errors enabling an estimation of the sta-
tistical significance of our methods. Lastly, we applied the
developed framework in order to certify different types of
multiparticle entanglement based on finite statistics and dis-
cussed applications to experiments in the noisy intermediate
regime.

L010402-4



STATISTICALLY SIGNIFICANT TESTS OF … PHYSICAL REVIEW A 106, L010402 (2022)

ACKNOWLEDGMENTS

We thank L. Knips for discussions. A.K. acknowl-
edges support by the Georg H. Endress foundation. S.I.
acknowledges funding from the DAAD. N.W. acknowledges
support by the QuantERA grant QuICHE and the Ger-

man ministry of education and research (BMBF, Grant No.
16KIS1119K). This work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), Projektnummern 447948357 and 440958198, and the
ERC (Consolidator Grant No. 683107/TempoQ).

[1] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,
Appl. Phys. Rev. 6, 021314 (2019).

[2] F. Arute et al., Nature (London) 574, 505 (2019).
[3] M. Kjaergaard et al., Annu. Rev. Condens. Matter Phys. 11, 369

(2020).
[4] D. Gottesman, Phys. Rev. A 57, 127 (1998).
[5] J. Preskill, Introduction to Quantum Computation (World Sci-

entific, Singapore, 1998), pp. 213–269.
[6] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R.

Parekh, U. Chabaud, and E. Kashefi, Nat. Rev. Phys. 2, 382
(2020).

[7] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
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Phys. Rev. A 84, 062305 (2011).

[53] F. Mintert, M. Kus, and A. Buchleitner, Phys. Rev. Lett. 95,
260502 (2005).

[54] F. Mintert, A. R. R. Carvalho, M. Kuś, and A. Buchleitner, Phys.
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