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Apart from the Bell nonlocality, which deals with the correlations generated from the local input-output
statistics, quantum theory exhibits another kind of nonlocality that involves the indistinguishability of the
locally preparable set of multipartite states. While Bell-type nonlocality cannot be activated from a given local
correlation via local operations and shared randomness, it is already reported that the latter kind of nonlocality
can be activated from a “local,” i.e., locally distinguishable set of states. However, recently it is shown that a
stronger notion of such a nonlocality, which deals with elimination instead of discrimination, can be activated
from locally preparable bipartite states of dimension 7×8. The present work observes that the same notion can
be demonstrated even in lower dimensional multipartite systems. Importantly, the possibly strongest version of
such an activation is further depicted here, where none of the transformed product states can be eliminated, even
if all but one of the parties come together.
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Introduction. The celebrated notion of Bell nonlocality
[1,2] excludes any local-realistic description to substitute
multipartite quantum correlations. This, in turn, identifies
quantum correlations to be advantageous over its classical
counterpart in several practical applications [3–16]. However,
quantum theory admits a more elegant nonclassicality in ques-
tion of state discrimination. While given a single copy every
pure classical preparation can be distinctively identified from
the others, only the orthogonal quantum states are perfectly
distinguishable with a single copy. The volume of such dis-
tinguishable states for the multipartite scenario gets further
decreased under the limited measurement setting, like local
operations and classical communication (LOCC) [17–23].
Unlike most of the nonclassical aspects of quantum corre-
lations obtained from the entangled quantum states, Bennett
et al. [24] first reported that the LOCC indistinguishability
holds even for orthogonal product quantum states and coined
the term quantum nonlocality without entanglement for such
a phenomenon. Consequently, a series of important results
have been carried out in this direction [25–35] which have
significant importance to understand the complex topology of
quantum state space structure [36–41].

Limits on state discrimination in quantum theory further
give rise to several interesting questions in the context of
state elimination [42–45], where instead of identification the
main goal is to rule out one or more quantum states from an
ensemble of consideration. Now, if the performed measure-
ment preserves the orthogonality of the remaining states after
elimination, then it is further helpful in the context of the state
discrimination. Motivated by this fact, recently Halder et al.
have introduced a stronger notion of quantum nonlocality

for product states which forbids elimination of any of the
product states of a set under orthogonality preserving local
measurements (OPLMs or local OPMs) [40]. Consequently,
these fueled a plethora of interesting studies in the recent past
from the stronger perspective of state indistinguishability, i.e.,
irreducibility under OPLM [23,46–49].

Apart from revealing the elegant intricacies of state space
structure, local indistinguishability and irreducibility of quan-
tum states also indicate the prospect of locking of information
such that unlocking requires entangled resources. This charac-
teristic certainly has a crucial significance in various quantum
cryptographic schemes, viz., secret sharing and data hiding
[50–54]. However, in the practical settings, the complexity
to retrieve a hidden information should depend on their mu-
tual trustworthiness. Also, it might be important for one of
those agents to manipulate the complexity should their mutual
trustworthiness change after they have shared the secret with
each other. For instance, consider three agents Alice, Bob, and
Charlie who agree to share a LOCC distinguishable quantum
secret at first. However, in time, Charlie may distrust others
and want to update the complexity of the secret, upon which
the revealing of the secret must demand all of them to be in
the same laboratory. This motivates one to propose another
version of quantum nonclassicality, which deals with the acti-
vation of quantum nonlocality from the locally distinguishable
quantum states. The framework has recently been reported
in [55] for initially distinguishable entangled states and in
[56] for product states. Note that the task can be trivially
accomplished if the agents flag the indistinguishable ensemble
with a distinguishable one and according to the trust update
Charlie can discard his distinguishable share. This redundancy
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is termed as activation of nonlocality from a locally redundant
set [55].

In the present work, we have dealt with the activation of
a stronger nonlocality from a set of locally distinguishable
product states, which are also free from local redundancy.
Precisely speaking, besides the nonlocal aspects of state dis-
crimination, we have further considered a stronger version,
which is related to the impossibility of state elimination in-
stead of state discrimination. Notably, the authors in [56] have
introduced a similar notion for bipartite product states, how-
ever with a higher dimensional quantum state. In contrast, we
have shown that such a feature is generic even in the smaller
dimensional quantum systems. Further, we have extended this
activation phenomenon in the multipartite scenario and have
come up with the possibly strongest nonlocality activation. In
particular, performing OPLMs on a C6⊗3

we transform the
set to tripartite orthogonal product qutrits, which is locally
irreducible even if all but one player come together. Lastly,
motivated by the practical situation of trust-updated secret
sharing we propose a set of states in C3⊗2 ⊗ C6, which can
be used to activate the possibly strongest form of nonlocality
by performing an OPLM only at the third party’s possession.
In addition, our results also draw a significant difference be-
tween the two types of quantum nonlocality—while the Bell
nonlocality cannot be activated from a shared local correlation
[57,58], the stronger version of nonlocality related to state
identification can be activated from locally distinguishable
product states. Importantly, our last example activates the
possibly strongest version of nonlocality without involving
any communication between the parties.

Genuine activation of strong quantum nonlocality without
entanglement. We will start our exploration of genuinely ac-
tivable sets by showing that a locally distinguishable set of
bipartite product states can be transformed to a set of locally
irreducible orthogonal states via local orthogonality preserv-
ing measurements. Let us begin with a precise definition for
local irreducibility, which is a stronger version of state indis-
tinguishability.

Definition 1. A set of multipartite states is said to be
locally irreducible, if, given an unknown state from the set,
there is no LOCC implementable measurement to eliminate
the possibility of an element of the set, keeping the others
mutually orthogonal to each other.

Notably, the absence of nontrivial OPLMs for each of
the individual parties sufficiently characterizes the set to be
locally irreducible [40].

Now, consider the set G1 ≡ {|ψi〉AB}5
i=1(⊂ C3 ⊗ C6),

where

|ψ1〉AB = |0〉A|0 − 1 + 4 − 5〉B, (1a)

|ψ2〉AB = |2〉A |1 − 2 + 5 − 3〉B, (1b)

|ψ3〉AB = |1 − 2〉A |0 − 4〉B, (1c)

|ψ4〉AB = |0 − 1〉A |2 − 3〉B, (1d)

|ψ5〉AB = |0 + 1 + 2〉A |0 + 1 + 2 + 3 + 4 + 5〉B. (1e)

Proposition 1. The set G1 is locally distinguishable and
free from local redundancy.

Proof. It is quite straightforward to prove that the set
G1 is without local redundancy. Here, Bob’s system can be
considered to be the composition of qubit and qutrit sub-
systems. Precisely, |0〉B := |00〉b1b2

, |1〉B := |01〉b1b2
, |2〉B :=

|02〉b1b2
, |3〉B := |10〉b1b2

, |4B〉 := |11〉b1b2
, |5〉B := |12〉b1b2

.
Take two states, |ψ3〉AB and |ψ4〉AB. When any of the subparts
(qubit or qutrit) of Bob’s system for both states is discarded
the reduced states will be nonorthogonal.

Furthermore, G1 can also be shown to be locally distin-
guishable. The players pursue the following distinguishability
protocol. First Bob performs a measurement NB ≡ {N1 :=
P[|0 − 4〉B], N2 := P[|2 − 3〉B], N3 := P[|0 + 1 + 2 + 3 + 4
+ 5〉B], N4 := I − (N1 + N2 + N3)}. Here, P[(|i〉, | j〉)#] :=
(|i〉〈i| + | j〉〈 j|)#, and # denotes the party. When N1 clicks, the
given state must be |ψ3〉. Similarly, for the click N2, the state
is |ψ4〉, and for N3 it is |ψ5〉. Whenever N4 clicks the given
state can be either |ψ1〉 or |ψ2〉. However, in that case, Alice
can perform a measurement to distinguish between these two
[17,59]. This concludes the local distinguishability protocol
for the set G1. �

In the following, we will demonstrate a protocol to activate
the strong nonlocality without entanglement from the set G1.

Theorem 1. The locally distinguishable set G1 can be
transformed deterministically to a locally irreducible set via
OPLM.

Proof. Consider that Bob performs a local OPM on
the subsystem B: KB ≡ {K1 := P[(|0〉, |1〉, |2〉)B], K2 :=
P[(|3〉, |4〉, |5〉)B]}. If K1 clicks they end up in one of

⎧⎪⎨
⎪⎩

|0〉A|0 − 1〉B, |2〉A|1 − 2〉B,

|1 − 2〉A|0〉B, |0 − 1〉A|2〉B,

|0 + 1 + 2〉A|0 + 1 + 2〉B.

⎫⎪⎬
⎪⎭

On the other hand, if Bob gets K2, they are then left with one
of the following five states:

⎧⎪⎨
⎪⎩

|0〉A|4 − 5〉B, |2〉A|5 − 3〉B,

|1 − 2〉A|4〉B, |0 − 1〉A|3〉B,

|0 + 1 + 2〉A|3 + 4 + 5〉B.

⎫⎪⎬
⎪⎭

It is clear that the five updated states when K1 clicks form
the celebrated unextendable product basis (UPB) [36,37] in
C3 ⊗ C3. The states in the case of the K2 outcome also
form the same UPB where {|3〉B, |4〉B, |5〉B} span Bob’s three-
dimensional Hilbert space. It has been well established that
this orthogonal set of product states is locally indistinguish-
able [24,37], and also locally irreducible (see Supplemental
Material [60]). �

This is certainly an example of genuine activation of bi-
partite quantum nonlocality without entanglement. However,
orthogonal sets of bipartite product states that show activable
nonlocality have already been reported [56]. But in some
of the protocols, mentioned there, a different outcome of a
single local OPM provides different dimensional sets of non-
local product states. Moreover, the dimension requirement to
activate such nonlocality in [56] is minimum 7×8 for bipar-
tite systems, while our elegant example shows that such an
activation is possible even with lower dimensional quantum
systems.
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The question of genuine activation of multipartite quantum
nonlocality from orthogonal sets of product states also has
not been explored yet. In the following, we delve into this
question and answer in the affirmative with an explicit ex-
ample. Consider the orthogonal set of tripartite product states
G2 ≡ {|φi〉ABC}4

i=1(⊂ C2 ⊗ C2 ⊗ C4) where

|φ1〉ABC = |0〉A |0 − 1〉B |1 + 2〉C, (4a)

|φ2〉ABC = |0 − 1〉A |1〉B |0 + 3〉C, (4b)

|φ3〉ABC = |1〉A |0〉B |0 − 1 + 2 − 3〉C, (4c)

|φ4〉ABC = |0 + 1〉A |0 + 1〉B |0 + 1 + 2 + 3〉C . (4d)

Proposition 2. The set G2 is free from local redundancy
and discriminable under LOCC.

Proof. It is straightforward to show that the set G2 is
free form local redundancy. Here, Charlie’s system can
be considered as two composite qubits. Let us denote
those subsystems by c1 and c2: |0〉C := |00〉c1c2

, |1〉C :=
|01〉c1c2

, |2〉C := |10〉c1c2
, |3〉 := |11〉c1c2

. Consider the states
|φ1〉 and |φ2〉. Note that discarding the subsystem ci we will
have ρk

c j
:= Trci |φk〉〈φk|, for i, j, k ∈ {1, 2}. It is quite evident

that ρ1
c j

and ρ2
c j

are nonorthogonal for j = 1, 2.
We will now show that the set G2 is locally distinguishable.

The distinguishability protocol is as follows. First, Charlie
performs a measurement KC ≡ {K1 := P[|0 + 3〉C], K2 :=
P[|0 − 3〉C], K3 := P[|1 + 2〉C], K4 := P[|1 − 2〉C]}. If K1

clicks the given state must be one of {|φ2〉ABC, |φ4〉ABC} which
are perfectly locally distinguishable [17,59]. If K2 clicks, the
given state must be |φ3〉ABC . When K3 clicks, the given state
is one of {|φ1〉ABC, |φ4〉ABC} which can always be perfectly
distinguished via LOCC. For the click K4, the given state is
certainly |φ3〉ABC . �

Now, we are in a position to show that the set G2 can be
transformed, with certainty, to a set of orthogonal states which
are impossible to distinguish locally.

Theorem 2. The set G2 can be converted to a set of tripartite
locally irreducible product states, a.k.a, the SHIFTS UPB [36]
using local OPM.

Proof. Let us consider that Charlie performs a local
OPM on the subsystem C: RB ≡ {R1 := P[(|0〉, |1〉)C], R2 :=
P[(|2〉, |3〉)C]}. If R1 clicks they end up in one of

{|0〉A|0 − 1〉B|1〉C, |0 − 1〉A|1〉B|0〉C,

|1〉A|0〉B|0 − 1〉C, |0 + 1〉A|0 + 1〉B|0 + 1〉C}.
On the other hand, if R2 clicks, they will be left with one of

{|0〉A |0 − 1〉B |2〉C, |0 − 1〉A|1〉B|3〉C,

|1〉A|0〉B|2 − 3〉C, |0 + 1〉A|0 + 1〉B|2 + 3〉C}.
It is evident that both the above sets are basically equivalent to
the SHIFTS UPB in C2 ⊗ C2 ⊗ C2 [24,36,37]. Furthermore,
states belonging to SHIFTS UPB are known to be perfectly
indistinguishable via LOCC [37]. In the Supplemental Mate-
rial [60] it is shown that these states are locally irreducible
if all the parties perform local operations on their respective
individual subsystems and communicate classically amongst
themselves. This completes our proof. �

Notably, any orthogonal multipartite set of product states
that can be thought of as a bipartition of C2 ⊗ Cd with d � 2,

can always be shown as locally distinguishable [37]. As a
consequence, the above-mentioned SHIFTS UPB is distin-
guishable and hence reducible under LOCC, whenever two of
the parties come together. This motivates us to activate even
a stronger (possibly the strongest) notion of nonlocality in the
following.

Genuine activation of possibly strongest quantum nonlocal-
ity without entanglement. After demonstrating the activation
of genuine nonlocality without entanglement in the multipar-
tite scenario, the pertinent question is whether or not there
exists any orthogonal set which can show genuine activa-
tion of the possibly strongest form of quantum nonlocality
without entanglement as demonstrated in [40]. While the
stronger version of quantum nonlocality without entangle-
ment characterizes the set of locally irreducible states (see
Definition 1), the possibly strongest version identifies those
multipartite states, none of which can be eliminated even if all
but one party perform a joint measurement. Note that strong
quantum nonlocality without entanglement [40] cannot be ob-
tained in mere three-qubit systems. The minimum dimension
required to show such phenomena is at least three qutrit. In
the following, we provide a set which answers this question
in affirmation. Consider the orthogonal set G3 that con-
tains the following of 27 tripartite product states1 |ξ±

i 〉 , i ∈
{1, . . . , 4, 6, . . . , 9, 11, . . . , 14} and |ξ j〉 , j ∈ {5, 10, 15} in
C6 ⊗ C6 ⊗ C6.

|ξ±
1 〉 = |0 − 4〉 |1 − 5〉 |0 ± 1 + 4 ± 5〉, (5a)

|ξ±
2 〉 = |0 − 4〉 |2 − 3〉 |0 ± 2 + 4 ± 3〉, (5b)

|ξ±
3 〉 = |1 − 5〉 |2 − 3〉 |0 ± 1 + 4 ± 5〉, (5c)

|ξ±
4 〉 = |2 − 3〉 |1 − 5〉 |0 ± 2 + 4 ± 3〉, (5d)

|ξ5〉 = |0 − 4〉 |0 − 4〉 |0 − 4〉, (5e)

|ξ±
6 〉 = |1 − 5〉 |0 ± 1 + 4 ± 5〉 |0 − 4〉, (5f)

|ξ±
7 〉 = |2 − 3〉 |0 ± 2 + 4 ± 3〉 |0 − 4〉, (5g)

|ξ±
8 〉 = |2 − 3〉 |0 ± 1 + 4 ± 5〉 |1 − 5〉, (5h)

|ξ±
9 〉 = |1 − 5〉 |0 ± 2 + 4 ± 3〉 |2 − 3〉, (5i)

|ξ10〉 = |1 − 5〉 |1 − 5〉 |1 − 5〉, (5j)

|ξ±
11〉 = |0 ± 1 + 4 ± 5〉 |0 − 4〉 |1 − 5〉, (5k)

|ξ±
12〉 = |0 ± 2 + 4 ± 3〉 |0 − 4〉 |2 − 3〉, (5l)

|ξ±
13〉 = |0 ± 1 + 4 ± 5〉 |1 − 5〉 |2 − 3〉, (5m)

|ξ±
14〉 = |0 ± 2 + 4 ± 3〉 |2 − 3〉 |1 − 5〉, (5n)

|ξ15〉 = |2 − 3〉 |2 − 3〉 |2 − 3〉. (5o)

Proposition 3. The set G3 is not locally redundant and is
distinguishable under LOCC, even when all the parties are
separated.

Proof. We first provide a brief outline of the proof that
the above set of states are free from local redundancy. The
detailed proof is given in the Supplemental Material [60].
Note that the quantum system possessed by each individ-
ual can only be composed of a qubit and qutrit subsystem.

1For the sake of better readability, here we drop the party notation
(A, B,C) in the subscripts.
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Therefore, for each player we can write |0〉 := |00〉 , |1〉 :=
|01〉 , |2〉 := |02〉 , |3〉 := |10〉 , |4〉 := |11〉 , |5〉 := |12〉. First
consider the players discard their subsystems in such a way
that they ultimately get the dimension of the whole tripartite
system below 27. This is possible when more than one player
discards their qutrits (i.e., C2 ⊗ C2 ⊗ C2, or, C2 ⊗ C2 ⊗ C6,
or, C2 ⊗ C3 ⊗ C3, etc.). In this case, it is clear that all the
states in Eq. (5) will not retain their orthogonality. Other
possible cases of discarding the subparts are as follows: any
one player discards their qutrit, any one player discards their
qubit, and more than one player discards their qubits. Though
cumbersome, it is quite straightforward to show that in all
these cases the reduced states’ set will not be orthogonal
anymore. Therefore, we can conclude that the set G3 does not
have local redundancy.

Now, we move to the proof that the set G3 can be distin-
guished with the help of LOCC alone. Due to the symmetries
present in the set G3, each player may need to perform any
of the following three measurements at different steps of the
protocol.

M1 ≡ {P1 := P[|0 − 4〉], P2 := P[|1 − 5〉], P3 := P[|2 − 3〉],
P4 := I − (P[|0 − 4〉] + P[|1 − 5〉] + P[|2 − 3〉])},

M2 ≡ {Q1 := P[|0 + 1 + 4 + 5〉], Q2 := P[|0 − 1 + 4 − 5〉],
Q3 := I − (P[|0 + 1 + 4 + 5〉] + [|0 − 1 + 4 − 5〉])},
M3 ≡ {R1 := P[|0 + 2 + 4 + 3〉], R2 := P[|0 − 2 + 4 − 3〉],

R3 := I − (P[|0 + 2 + 4 + 3〉] + P[|0 − 2 + 4 − 3〉])}.
The detailed protocol is pictorially described in the Supple-
mental Material [60]. �

Theorem 3. The set G3 can be deterministically trans-
formed via local OPMs to an orthogonal set of tripartite
product states which are locally irreducible even if all but one
player come together.

Proof. Suppose each player performs a specific or-
thogonality preserving local measurement: K ≡ {K1 :=
P[|0〉 , |1〉 , |2〉], K2 := P[|3〉 , |4〉 , |5〉]}. Here, the notation we
follow is as follows: Ki

j is the jth projector (Kj) that clicks
when the ith player performs the measurement K. Therefore,
after the measurement a total of eight possibilities can occur
as each player can get any one of two possible outcomes Ki

1 or
Ki

2. In each of these eight cases it is straightforward to see that
the updated set of 27 states will be of the following generic
form.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|p〉 |q〉 |η±〉, |q〉 |η±〉 |p〉, |η±〉 |p〉 |q〉,
|p〉 |r〉 |κ±〉, |r〉 |κ±〉 |p〉, |κ±〉 |p〉 |r〉,
|q〉 |r〉 |η±〉, |r〉 |η±〉 |q〉, |η±〉 |q〉 |r〉,
|r〉 |q〉 |κ±〉, |q〉 |κ±〉 |r〉, |κ±〉 |r〉 |q〉,

|p〉 |p〉 |p〉, |q〉 |q〉 |q〉, |r〉 |r〉 |r〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6)

Here, |η±〉 := (|p〉 ± |q〉)/
√

2 and |κ±〉 := (|p〉 ± |r〉)/
√

2. In
each of the eight outcomes, for all 27 states p, q, and r will
have some specific values from p ∈ {0, 4}, q ∈ {1, 5}, and r ∈
{2, 3}. For example, if for all the players the outcomes are K1

throughout, then the reduced set of states will be of the above
form with p = {0}, q = {1}, and r = {2}.

Note that the above set of states is basically the orthogonal
set that manifests strong quantum nonlocality without entan-
glement [40]. �
At this end, one may be further curious to activate such a
possibly strongest genuine quantum nonlocality without en-
tanglement by performing a measurement on the possession
of a single party. This has vivid importance in the frame-
work of data hiding and secret sharing between all but one
untrusted party. Precisely speaking, in such a scenario the
particular trusted agent (personified as Charlie) has full au-
thority to judge how trustworthy are the other parties and
depending upon that he may compel others to meet him in
person to decode a hidden secret. As an example consider the
following set G4 of 27 orthogonal product states |ζ±

i 〉 , i ∈
{1, . . . , 4, 6, . . . , 9, 11, . . . , 14} and |ζ j〉 , j ∈ {5, 10, 15} in
C3⊗2 ⊗ C6,

|ζ±
1 〉 = |0〉 |1〉 |0 ± 1 + 4 ± 5〉, (7a)

|ζ±
2 〉 = |0〉 |2〉 |0 ± 2 + 4 ± 3〉, (7b)

|ζ±
3 〉 = |1〉 |2〉 |0 ± 1 + 4 ± 5〉, (7c)

|ζ±
4 〉 = |2〉 |1〉 |0 ± 2 + 4 ± 3〉, (7d)

|ζ5〉 = |0〉 |0〉 |0 − 4〉, (7e)

|ζ±
6 〉 = |1〉 |0 ± 1〉 |0 − 4〉, (7f)

|ζ±
7 〉 = |2〉 |0 ± 2〉 |0 − 4〉, (7g)

|ζ±
8 〉 = |2〉 |0 ± 1〉 |1 − 5〉, (7h)

|ζ±
9 〉 = |1〉 |0 ± 2〉 |2 − 3〉, (7i)

|ζ10〉 = |1〉 |1〉 |1 − 5〉, (7j)

|ζ±
11〉 = |0 ± 1〉 |0〉 |1 − 5〉, (7k)

|ζ±
12〉 = |0 ± 2〉 |0〉 |2 − 3〉, (7l)

|ζ±
13〉 = |0 ± 1〉 |1〉 |2 − 3〉, (7m)

|ζ±
14〉 = |0 ± 2〉 |2〉 |1 − 5〉, (7n)

|ζ15〉 = |2〉 |2〉 |2 − 3〉. (7o)

Proposition 4. The set G4 is distinguishable under LOCC
and free from local redundancy.

Proof. The proof that the set G4 does not have redundancy
is quite straightforward. One may consider that the subsystem
of Charlie (C6) consists of a qubit and qutrit. Now, if we
discard any of the qubit or qutrit, not all pairs that remain
would be orthogonal. The proof is quite evident from the proof
of Proposition 3.

We will now move to describe a local discrimination pro-
tocol of the set G4. We will provide here a brief outline of the
protocol.

Charlie first performs a measurement

MC
1 ≡ {P1 := P[|0 − 4〉C], P2 := P[|1 − 5〉C],

P3 := P[|2 − 3〉C],

P4 := I − (P[|0 − 4〉C] + P[|1 − 5〉C] + P[|2 − 3〉C])}.
Now, depending upon different outcomes, Bob and Charlie
will perform some suitable measurements at their local sites to
distinguish the set. A step by step detailed analysis is provided
in the Supplemental Material [60]. �
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Theorem 4. The set G4 can be deterministically trans-
formed, via a single local OPM at Charlie’s site, to an
orthogonal set of tripartite product states which is locally
irreducible in every bipartition.

Proof. Consider that Charlie performs a local OPM, KC ≡
{KC

1 := P[|0〉 , |1〉 , |2〉C], KC
2 := P[|3〉 , |4〉 , |5〉C]}. For dif-

ferent outcomes of KC , the post measurement state will turn
out to be any of the following set:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|0〉|1〉|ν̃±〉, |1〉 |ν±〉 |p〉, |ν±〉|o〉|q〉,
|0〉|2〉|τ̃±〉, |2〉|τ±〉|p〉, |τ±〉|o〉|r〉,
|1〉|2〉|ν̃±〉, |2〉|ν±〉|q〉, |ν±〉|1〉|r〉,

|2〉|1〉|τ̃±〉, |1〉|τ±〉|r〉, |τ±〉 |2〉 |q〉,
|0〉 |0〉 |p〉, |1〉 |1〉 |q〉, |2〉 |2〉 |r〉,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where here, |ν±〉 := (|0〉 ± |1〉)/
√

2, |τ±〉 := (|0〉 ± |2〉)/
√

2,
|ν̃±〉 := (|p〉 ± |q〉)/

√
2 and |τ̃±〉 := (|p〉 ± |r〉)/

√
2. p, q,

and r can have any value {0, 4}, {1, 5}, and {2, 3}, respectively.
Now, when KC

1 clicks, the post measurement state can be
any of the set Eq. (8) with (p, q, r) = (0, 1, 2). Otherwise,
if KC

2 clicks, they are left with any of set Eq. (8) where
(p, q, r) = (4, 5, 3). It is evident that the set Eq. (8) shows
strong quantum nonlocality without entanglement [40,46].
This completes our proof. �

Conclusion. In summary, we have studied the genuine
activation of nonlocality from several sets of local states.
However, the phrases “local” and “nonlocal” have been used
from the state discrimination perspective. More precisely, we
have dealt with two different sets of locally distinguishable
multipartite product states in C3 ⊗ C6 and C2⊗2 ⊗ C4, which
can be transformed to the set of locally indistinguishable

states in C3⊗2
and C2⊗3

, respectively, by choosing an ap-
propriate measurement in possession of one of the parties.
Furthermore, we have considered a stronger notion of the state
discrimination problem, namely, the orthogonality preserving
reducibility and have shown to activate such a notion from a
set of multipartite locally distinguishable product states of di-
mension C6⊗3

. It is observed that under LOCC, the set can be
transformed deterministically to a set of states in C3⊗3

, which
is even irreducible in all possible bipartitions. Further, we have
moved to a stricter notion of such activation where the trans-
formation is achieved by a single agent only. Such an example
is demonstrated to transform a locally distinguishable set of
states of C3⊗2 ⊗ C6 to a strongly irreducible one in C3⊗3

. The
elegance of state construction and the transformation protocol
makes it trivial to extend in any arbitrary higher dimensional
set of product states exhibiting nonlocality in terms of local
discrimination and orthogonality preserving elimination. Be-
sides its foundational interest to understand the topology of
the state spaces of composite quantum systems, our work de-
serves significant importance from the practical perspective. It
has mimicked an interesting framework of secured data hiding
between several parties, where the distributor is flexible to
update the distinguishability of the secured data hidden in
the correlation of the given states. Recently, this approach
of genuinely activating quantum nonlocality has also been
extended [61] to show generation of some stronger resources,
for example, local quantum state unmarkability [62].
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