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Nested-open-quantum-systems approach to photonic Bose-Einstein condensation
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The photonic Bose-Einstein condensate is a recently observed collective ground state of a coupled light-matter
system. We describe this quantum state based on macroscopic quantum electrodynamics in dispersing and
absorbing environments. To model the coupled photon-dye dynamics, we derive a master equation using a
nested-open-quantum-systems approach yielding all parameters essential to describe the condensation process.
This approach allows us to describe photon condensates of arbitrary shapes because all geometry-dependent
decay constants can be expressed in terms of the Green’s tensor. In particular, we obtain the cavity mode
absorption and emission rates of the dye molecules.
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I. INTRODUCTION

Photonic Bose-Einstein condensation is a phenomenon
where photons reach thermal equilibrium with a well-defined
effective temperature and macroscopically occupy the lowest
energy state possible in the system. It is analogous to an
atomic Bose-Einstein condensate (BEC), but the conditions
for photons to achieve this state are different. The first BECs
were observed with atoms [1–4], and since then experiments
have demonstrated BECs of magnons, polaritons, and exci-
tons [5–10].

For a long time, it was assumed that photons cannot form a
BEC because of their noninteracting nature and because they
disappear in the cavity walls when decreasing the temperature,
as described in the blackbody radiation model. It turns out that
photon condensate is possible if one uses a dye-filled micro-
cavity with highly reflective mirrors [11–14]. The dye allows
for the photons to reach thermal equilibrium through multiple
absorption-emission cycles. The thermalization time must be
much faster than the rate at which photons are lost from cavity
modes due to spontaneous or cavity decay. When the photons
reach thermal equilibrium, their effective temperature is equal
to the temperature of the dye whose absorption-emission spec-
trum must obey the Kennard-Stepanov relation [15].

The mirrors provide a trapping potential that endows the
photons with an effective mass and prevents them from escap-
ing the cavity before reaching thermalization. Condensation
can be achieved at room temperature when a critical number
of photons in the system is reached.

Recent reports demonstrate photon condensation with 68
photons [16] and even as few as 7 photons [17]. Other work
has demonstrated the condensation of photons inside a one-
dimensional fiber cavity [18]. Here, the thermalization of
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photons was achieved by many interaction cycles of photons
and Er and Yb. One of the recent reports demonstrates the
coupling of condensate through tunneling by exploiting two
minima in a mirror potential where symmetric and antisym-
metric eigenstates of the condensate have been formed [19].

The BEC is a promising candidate for many applications,
e.g., atomic and photonic lasers [20–25], atomic interferom-
etry [26,27], and in quantum information processing [14].
Despite being a quantum phenomenon, condensation has also
been theoretically predicted and observed for classical light,
allowing applications in imaging [28,29].

On the theory side, one of the first works [30] has shown
that a photon BEC can be achieved if the grand canonical
ensemble can be applied for photons. Some of the theoret-
ical work has assumed that photons are already in thermal
equilibrium [31,32], while other work has focused on the
nonequilibrium dynamics describing the condensation from
laser theory by considering two-level atom interaction with
photons [33]. The latter does not take into account the rovi-
brational coupling of dye molecules which is an important
ingredient for the thermalization of photons. One of the recent
papers demonstrates that photon condensation can occur in
three dimensions with thermalization mechanisms other than
dye [25].

So far, the most in-depth work is the microscopic model
developed by Keeling and Kirton [34,35], which provides the
nonequilibrium dynamics of the photons and can describe
fluctuations and correlations of the condensate. It allows for
predicting the photon condensation threshold by consider-
ing multiple parameters important in the experiment. Two
of them, namely, absorption and emission rates of the dye
molecules, are derived using an open quantum systems de-
scription while others, namely, spontaneous and cavity decay
rate and incoherent pumping rate, are included phenomeno-
logically. The theory has been further developed to describe
the spatial profile of the photon BEC with respect to the spot
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size of the laser pump and polarization dynamics in the con-
densate [36,37]. The extended version of this model has also
been used to study the transition between BEC, multimode
condensation, and lasing [38].

In this paper, we develop a first-principles theory of
photonic Bose-Einstein condensation by combining open
quantum systems and macroscopic quantum electrodynamics
(QED) [39,40]. There are three advantages to our approach.
First, we derive all dynamic equations of condensate from first
principles. Second, this approach allows us to calculate all the
necessary parameters which is particularly useful for planning
new experiments. Third, it is formally possible to calculate the
condensate dynamics for arbitrary geometries since we use
Green’s tensor formalism. It could be applied, for example, for
cascaded mirrors with two dimples [19], periodic structures
[16], or even arbitrarily shaped potentials [41].

The theoretical model consists of multiple systems and
baths interacting with each other. In Sec. II we give a short
introduction to nested open quantum systems. In Sec. III we
start the development of the theory by constructing the Hamil-
tonian of the photon-molecule interaction inside the cavity.
Next, we exploit the concept of nested open quantum systems:
In step 1 (see Sec. IV), we derive the master equation in
Lindblad form for the cavity and molecular decay and pump-
ing constants. Then, in step 2 (see Sec. V), we separate the
remaining system Hamiltonian into the new system, bath, and
interaction parts and derive the master equation for absorption
and emission rates, which are now influenced by the previ-
ously derived rates from step 1. Along with the derivation, we
demonstrate that spontaneous molecular decay and absorption
and emission rates are proportional to Green’s tensor and the
dipole moment of the dye molecule.

II. NESTED OPEN QUANTUM SYSTEMS

Figure 1 shows the concept of a nested open quantum
system. The goal of this approach is to describe the interaction
of a system (here S1) with two baths (B and S2) where the
second bath itself is subject to dissipative dynamics due to
the influence of the first bath. This is achieved in a two-step
process. First, we have two Hamiltonians ĤS1 and ĤS2 describ-
ing two systems S1 and S2 interacting with each other via
interaction term ĤS1S2. They both are immersed in a common
bath described by ĤB. For simplicity, we assume that only S1
is directly interacting with the bath via the term ĤS1B.

Starting from the unitary evolution of the total density
matrix ρ (top of figure), we trace out ĤB. This leads to the
dissipative dynamics of the density matrix ρS1+S2, where DB

is the dissipator in Lindblad form (middle of the figure). Next,
we trace out ĤS2 as the new bath. This results in an additional
dissipative term DS2(DB) which is a function of DB. Thus, the
nested-systems approach allows us to capture the influence of
DB on DS2.

III. HAMILTONIAN

Figure 2 shows a schematic illustration of a model to
describe a photon BEC. It consists of a cavity made of two
highly reflective mirrors where in between there are dye
molecules. Photons from the laser enter the cavity via the

FIG. 1. Schematic representation of a nested-open-quantum-
systems approach. We have two systems described by ĤS1 and ĤS2

embedded into an environment described by HB. In step 1 we trace
out HB to obtain the master equation for density matrix ρS1+S2 where
DB is the Markov approximated Lindblad dissipator. In step 2 we
treat HS2 as an environment and trace it out to obtain the master
equation for ρS1 with an additional Lindblad dissipator DS2(DB)
which is now a function of (influenced by) DB.

dye molecules by being absorbed (with a pumping rate �↑)
and emitted into the cavity mode ν [with a rate �(−δν )].
Molecules can also absorb the photons from the cavity mode
[with a rate �(δν )]. There are two ways photons are lost from
the cavity: they may leak from the cavity mirrors (with a
rate κ) or spontaneously decay into a noncavity mode (with
a rate �↓). A photon BEC is formed once a critical number of
photons (or the pumping rate �↑) is exceeded inside the cavity,
which is illustrated in Fig. 2 as a bright yellow line around the
optical axis.

The starting point is a well-known macroscopic QED de-
scription of molecules, photons, and their interaction [42].
Here we employ a model of identical molecules i as two-level
systems where each level is dressed by rovibrational states.
Electronic levels of the molecule are represented by Pauli
matrices σ̂i with the electronic molecular transition frequency
being ω10. The rovibrational (phonon) modes are described
by harmonic oscillators with mode operators b̂i and b̂†

i and
the transition frequency between modes 	. Here, ω10 and
	 are assumed to be the same for all molecules. Note that
	 � ω10. We assume that the molecule is described by only
one rovibrational mode. In principle, it is possible to include
multiple electronic and phononic modes that would give rise
to multiple peaks in the absorption or emission spectrum of
the molecule. However, the simplified model is sufficient to
describe the photon BEC dynamics. The two-level system
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FIG. 2. Photon BEC setup. Dye molecules inside a cavity are pumped with a laser at a rate �↑. The molecules can emit photons into a
cavity mode ν with a rate �(−δν ) and absorb them with a rate �(δν ). Excitations are lost from the cavity by spontaneous emission from the
molecule with a rate �↓ or by a cavity decay with a rate κ .

and rovibrational states couple with each other with coupling
strength given by the Huang-Rhys parameter S. The Hamilto-
nian for a total of N molecules then reads

ĤM =
N∑

i=1

[
h̄

2
ω10σ̂

z
i + h̄	b̂†

i b̂i + h̄	
√

Sσ̂ z
i (b̂i + b̂†

i )

]
. (1)

This description of rovibrational excitations is known as the
polaron model [43]. Related harmonic-oscillator models for
phonon-induced damping have been used in a variety of con-
texts such as quantum dots [44], optomechanics [45], and
quantum transport [46,47].

To describe cavity-assisted photons, we quantize the field
in media and obtain the fundamental field operators f̂λ(r, ω)
and f̂†

λ (r, ω) at position r and frequency ω. They are related
to the polarization and magnetization of the medium [40]
and obey the commutation relation [f̂λ(r′, ω′), f̂†

λ′ (r, ω)] =
δλλ′δ(ω − ω′)δ(r − r′). The total photon field can then be ex-
pressed as the sum of electric and magnetic excitations (e, m)
and the integral of f̂λ(r, ω) and f̂†

λ (r, ω) over the entire space
in position and frequency:

ĤF =
∑

λ=e,m

∫
d3r

∞∫
0

dω h̄ω f̂†
λ (r, ω) · f̂λ(r, ω). (2)

Interactions between the molecules and photons take
place when a photon gets absorbed (emitted) from a ground
(excited) state of a two-level system. The molecule-field in-
teraction is then taken in dipole approximation to be

ĤMF = −
∑

i

(d01σ̂i + d10σ̂
†
i ) · Ê(ri ), (3)

where d10 is the dipole moment and Ê(ri ) is the electric field
operator at a molecule’s position ri. The electric field can be

expressed in terms of the Green’s tensor Gλ and operators f̂λ
[40]:

Ê(ri ) =
∑

λ=e,m

∫
d3r

∞∫
0

dω
{
Gλ(ri, r, ω) · f̂λ(r, ω)

+ f̂†
λ (r, ω) · G∗

λ
T(ri, r, ω)

}
, (4)

where Ge and Gm are defined as

Ge(r, r′, ω) = i
ω2

c2

√
h̄

πε0
Imε(r′, ω)G(r, r′, ω),

Gm(r, r′, ω) = i
ω

c

√
h̄

πε0

Imμ(r′, ω)

|Imμ(r′, ω)|2 [∇′×G(r′, r, ω)]T,

(5)

with ε(r, ω) and μ(r, ω) being the electric permittivity and
magnetic permeability of the medium, ε0 being vacuum per-
mittivity, and c being the speed of light.

As we have now stated the Hamiltonian describing pho-
tons, molecules, and their interactions, we will identify
different parts of the Hamiltonian responsible for different
dissipation processes. As described in the Introduction and
Sec. II, we will use a nested-open-quantum-systems approach.
Figure 3 shows a schematic diagram of a nested open quantum
system for our model. In step 1, there are baths responsible for
cavity and spontaneous decay and laser pumping. The system
Hamiltonians Ĥa

S and Ĥσ
S are coupled to the bath Hamilto-

nians Ĥκ
F , Ĥ�↓

F , and Ĥ�↑
F through the respective interaction

Hamiltonians Ĥκ
I , Ĥ�↓

I , and Ĥ�↑
I . Once we derive the master

equation for the corresponding system, in step 2, we separate
the remaining system Hamiltonian again into the system, bath,
and interaction Hamiltonians. Then we trace out the bath and
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FIG. 3. Schematic representation of a nested-open-quantum-
systems approach for our model. In step 1 we derive the rates κ , �↓,

and �↑ from baths (B1) Ĥ κ
F , Ĥ

�↓
F , and Ĥ

�↑
F and their interaction (I1)

with systems (S1) Ĥa
S [see Eq. (17)] and Ĥσ

S [see Eq. (23)]. Here,

Ĥ
κ,�↓
F ≡ ĤRF = ĤF (r /∈ VL ) [(see Eqs. (19) and (18)], and Ĥ

�↑
F =

ĤF (r ∈ VL ) [see Eq. (9)]. Also, Ĥ
�↓
I = ĤMF (r /∈ VL ) [see Eq. (24)],

and Ĥ
�↑
I = ĤMF (r ∈ VL ) [see Eq. (22)]. There are additional terms

Ĥ�(±δν )
F and Ĥ�(±δν )

I which we treat as part of the system (S1) in step
1. In step 2, they take on the roles of bath (B2) and system-bath (I2)
interaction and from their interaction with the remaining system (S2)
Ha

S and Hσ
S we derive �(±δν ).

obtain the emission and absorption rates for the photons in the
cavity modes �(±δν ). In Fig. 3 we denote the corresponding
partition of the Hamiltonian with B1, I1, and S1 as bath, inter-
action, and system parts for step 1. Correspondingly, B2, I2,
and S2 represent partition into bath, interaction, and system in
step 2.

The main reason why we exploit this approach is that in
general, both �(±δν ) are influenced (broadened) by inco-
herent processes in the cavity, in this case, κ , �↓, and �↑.
Exploiting the nested approach allows us to capture this in-
fluence.

To derive the master equation with dissipative constants
of interest, the first step is to perform a separation of the
total photon field into different fields which we will treat as
baths responsible for dissipative processes. Thus, we separate
ĤF into the laser field (responsible for �↑; see Appendix C),
resonant cavity modes, the remaining field responsible for
spontaneous decay (�↓), and cavity leakage (κ).

Within the laser source region VL there is a coherent field
and everywhere else there are vacuum fluctuations. Thus, we
can separate the total field state as follows [48]:

|ψ〉F = |{f̂λ(r, ω}
r∈VL

〉 ⊗ |{0}〉
r/∈VL

. (6)

If we act with an annihilation operator on this state
we obtain the number instead of an operator at the laser
source:

f̂λ(r, ω)|ψ〉F =
{

fλ(r, ω)|ψ〉F, r ∈ VL,

0, r /∈ VL.
(7)

We can then separate Eq. (2) as follows:

ĤF = ĤF (r /∈ VL) + ĤF (r ∈ VL)

=
∑

λ=e,m

∫
r/∈VL

d3r

∞∫
0

dω h̄ω f̂†
λ (r, ω) · f̂λ(r, ω)

+
∑

λ=e,m

∫
r∈VL

d3r

∞∫
0

dω h̄ω f̂†
λ (r, ω) · f̂λ(r, ω). (8)

Next, we assume that the laser field is independent of the
position r. Because the laser field is pumping molecules, it
works as an amplifier in the open-quantum-systems context;
thus, we redefine the second part of Eq. (8) in terms of inverted
oscillator operators ĥ(ω′′) and define it to be [49]

ĤF (r ∈ VL) ≡ Ĥ�↑
F = −

∫
dω′′ h̄ω′′ ĥ(ω′′)ĥ†(ω′′). (9)

Note that the inverted oscillator operator ĥ(ω′′) and its Hermi-
tian conjugate are exactly opposite to the photon field operator
f̂λ(r, ω) and it obeys the commutation relation

[ĥ(ω), ĥ†(ω′)] = −δ(ω − ω′). (10)

The average values are given the opposite of usual photon
occupation number,

〈ĥ†(ω)ĥ(ω)〉 = (N (ω) + 1)δ(ω − ω′), (11)

〈ĥ(ω)ĥ†(ω)〉 = N (ω)δ(ω − ω′), (12)

where N (ω) is the Bose-Einstein distribution with a negative
laser temperature, Tlaser < 0:

N (ω) = 1

e−h̄ω/kBTlaser − 1
. (13)

The next step is to separate the field of the Hamiltonian
ĤF (r /∈ VL) into that of the cavity modes and that of the
remaining field. The cavity modes are described by operators
âmζ and â†

mζ , where the cavity resonance has a Lorentzian
shape. They can destroy (create) a photon of a cavity mode
with labels m, ζ . As an example for the planar cavity, m deter-
mines the number of standing-wave modes along the cavity
axis, while ζ is the mode by the transversal wave number
k‖, which has an expression k‖2 = k2 − (mπ/d )2 where d is
the length of the cavity and k is the total wave number. The
annihilation operator reads [50]

âmζ =
√

γmζ

2π

∞∫
−∞

dω
â(ω, ζ )

ω − ωmζ + iγmζ /2
, (14)

where â(ω) ≡ â(ri, ω) at a molecule’s position ri is defined
through the Green’s tensor [see Eq. (5)] Gλ [42]:

â(ω, ζ ) = − 1

h̄g(ri, ωmζ , ζ )

×
∑

λ=e,m

∫
d3r′

∞∫
0

dω d10 · Gλ(r, r′, ω) · f̂λ(r′, ω),

(15)
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with the interaction strength between photons and molecules
being

g2(r, ωmζ , ζ )

= μ0

π h̄
ω2

mζ d10 · ImG(r, r, ωmζ , ζ ) · d01 = 	2
R

2πγmζ

, (16)

where 	R =
√

2
h̄μ0γmζω

2
mζ d10 · ImG(r, r, ωmζ , ζ ) · d01 is the

Rabi frequency, γmζ is the width of the resonance at the
resonant frequency ωmζ , and μ0 is the magnetic permeability.
Note that

G(r, r′, ω) =
∫

dζG(r, r′, ω, ζ ).

For notation convenience, we subsume the two mode labels
within a multi-index ν, i.e., mζ ≡ ν. We separate the first part
of Eq. (8) into the Hamiltonian of the resonant cavity modes
and a remaining field bath by adding and subtracting Ĥa

S =∑
h̄ων â†

ν âν :

ĤF (r /∈ VL) = ĤRF + Ĥa
S , (17)

where the remaining field (RF) reads

ĤRF =
∑

λ=e,m

∫
r/∈VL

d3r

∞∫
0

dω h̄ω f̂†
λ (r, ω) · f̂λ(r, ω)

−
∞∑

ν=1

h̄ων â†
ν âν . (18)

ĤRF is responsible for the spontaneous decay of the
molecules; thus, we label it as ĤRF ≡ Ĥ�↓

F .
To account for the cavity leakage, we need to add another

bath Hamiltonian. It turns out that the remaining field Hamil-
tonian can account not only for the spontaneous decay but also
for the leakage of the cavity modes. But, for the interaction
Hamiltonian with cavity modes to be well defined, it has to be
recast into a different form, which we define as

Ĥκ
F = ĤRF =

∞∫
0

dω′ h̄ω′ â†(ω′)â(ω′). (19)

Now that we have separated the total field into multiple
baths of interest, we do a similar procedure for the molecule-
field interaction term (3). For the setup of interest, the laser
frequency is near resonant, ω ≈ ω10; thus, we can perform the
rotating-wave approximation and the interaction Hamiltonian
(3) reads

ĤMF = −
N∑
i

∑
λ=e,m

∫
d3r

∞∫
0

dω

×
{

d10 · Gλ(ri, r, ω, ζ ) · f̂λ(r, ω)σ̂ †
i

+ f̂†
λ (r, ω) · G∗

λ
T(ri, r, ω, ζ ) · d01σ̂i

}
. (20)

Now we proceed in a similar manner as we did for the
photon field by separating the interaction term. First, we split
ĤMF into

ĤMF = ĤMF (r /∈ VL) + ĤMF (r ∈ VL). (21)

The interaction part ĤMF (r ∈ VL) for the laser is semiclassical
as can be obtained if Ê(ri ) is applied to the state in Eq. (6)
[48]. The explicit expression is given by Eq. (C1). But to
employ the open-quantum-systems context, similarly as in
Eq. (9), we redefine ĤMF (r ∈ VL) to be a quantized interaction
between Ĥ�↑

F and Ĥσ
S :

ĤMF (r ∈ VL) ≡ Ĥ�↑
I

=
∑

i

∞∫
0

dω′′ h̄μ(ω′′)(ĥ(ω′′)σ̂ †
i + ĥ†(ω′′)σ̂i ),

(22)

with the coupling strength μ(ω′′). In Appendix C we demon-
strate how the pumping term �↑ is related to the laser
parameters. The Hamiltonian of N two-level molecules from
Eq. (1) is identified as

Ĥσ
S =

N∑
i=1

h̄

2
ω10σ̂

z
i . (23)

Treating the interaction term ĤMF (r /∈ VL), in the same
manner as we did for the field in Eq. (17), we add and subtract
the resonant interaction term

∑
ν,i

1
2 h̄	R(ri, ων, ζ )[âν σ̂

†
i +

â†
ν σ̂i] which is analogous to the Jaynes-Cummings model.

Then we define the remaining-field interaction (RI) term as

ĤRI = −
∑

λ=e,m

N∑
i

∫
d3r

∞∫
0

dω
{

d10 · Gλ(ri, r, ω) · f̂λ(r, ω)σ̂ †
i

+ f̂†
λ (r, ω) · G∗

λ
T(ri, r, ω) · d01σ̂i

}
−

∑
ν,i

1

2
h̄	R(ri, ων, ζ )[âν σ̂

†
i + â†

ν σ̂i]. (24)

The remaining-field interaction Hamiltonian ĤRI is related
to the spontaneous decay; thus, we define it to be the interac-
tion Hamiltonian between Ĥ�↓

F and Ĥa
S , ĤRI ≡ Ĥ�↓

I .
The other resonant interaction term together with the third

part of Eq. (1) we define as

Ĥ�(±δν )
I =

∑
ν,i

1

2
h̄	ν[âν σ̂

†
i + â†

ν σ̂i]

+
∑

i

h̄	
√

Sσ̂ z
i (b̂i + b̂†

i ), (25)

where 	ν ≡ 	R(ri, ων, ζ ).
To account for the cavity leakage, we need to add the

interaction between the remaining field from Eq. (19) with the
cavity modes from the second part of Eq. (18):

Ĥκ
I =

∑
ν

∞∫
0

dω′ h̄λ(ω′)[â(ω′)â†
ν + â†(ω′)âν], (26)

with the coupling strength λ(ω′). In Appendix A we demon-
strate that the cavity leakage κ is related to the width of the
cavity resonance γν .
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Finally, the rovibrational states Hamiltonian from Eq. (1)
in the open-quantum-systems context we define as

Ĥ�(±δν )
F =

∑
i

h̄	b̂†
i b̂i. (27)

We treat it as a system term in step 1 and as a bath term in step
2, respectively.

The complete Hamiltonian describing the model is
Ĥ = Ĥa

S + Ĥσ
S + Ĥκ

F + Ĥ�↓
F + Ĥ�↑

F + Ĥκ
I + Ĥ�↓

I + Ĥ�↑
I +

Ĥ�(±δν )
F + Ĥ�(±δν )

I (see Fig. 3).

IV. INTERMEDIATE MASTER EQUATION

A. Transforming into the interaction picture

As we have separated the system of interest in the re-
spective bath, interaction, and system Hamiltonians, we are
ready to derive the dynamics of the reduced system of photons
and electronic transitions of molecules with all the relevant
constants.

The first step is to transform interaction Hamiltonians to
the interaction picture, which read

Ĥκ
I (t ) =

∑
ν

∞∫
0

dω′ h̄λ(ω′)[â(ω′)e−iω′t â†
νeiων t + â†(ω′)eiω′t âνe−iων t ], (28)

Ĥ�↓
I (t ) = −

∑
λ=e,m

N∑
i

∫
d3r

∞∫
0

dω[ d10 · Gλ(ri, r, ω) · f̂λ(r, ω)e−iωt σ̂
†
i eiω10t + f̂†

λ (r, ω)eiωt · G∗
λ

T(ri, r, ω) · d01σ̂ie
−iω10t ]

−
∑
ν,i

1

2
h̄	R(ri, ων, ζ )

[√
γmζ

2π

∞∫
−∞

dω
â(ω, ζ )e−iωt

ω − ωmζ + iγmζ /2
σ̂

†
i eiω10t +

√
γmζ

2π

∞∫
−∞

dω
â†(ω, ζ )eiωt

ω − ωmζ − iγmζ /2
σ̂ie

−iω10t

]
,

(29)

Ĥ�↑
I (t ) =

∑
i

∞∫
0

dω′′ h̄μ(ω′′)[ĥ(ω′′)e−iω′′t σ̂
†
i eiω10t + ĥ†(ω′′)eiω′′t σ̂ie

−iω10t ]. (30)

We have used two approximations: the rovibrational ener-
gies are typically much smaller than the electronic and photon
energies, 	 � ων, ω, ω′, ω′′, and assuming that the interac-
tion between atoms and photons is not ultrastrong, 	ν �
ων, ω, ω′, ω′′. On this basis, we can neglect the interaction
picture contribution from Ĥ�(±δν )

F and Ĥ�(±δν )
I .

B. Constructing the master equation

We start with the usual Markov-approximated density ma-
trix equation in the interaction picture [39]:

˙̃ρS (t ) = 1

h̄2

∞∫
0

dτ
{
trF κ

[
Ĥκ

I (t ),
[
Ĥκ

I (t − τ ), ρ̃S (t )ρF κ

]]

+ tr
F

�tot↓

[
Ĥ�↓

I (t ),
[
Ĥ�↓

I (t − τ ), ρ̃S (t )ρ
F

�tot↓

]]
− tr

F
�r↓

[
Ĥ�↓

I (t ),
[
Ĥ�↓

I (t − τ ), ρ̃S (t )ρ
F

�r↓

]]
+ trF�↑

[
Ĥ�↑

I (t ),
[
Ĥ�↑

I (t − τ ), ρ̃S (t )ρF�↑
]]}

, (31)

where ρ̃S (t ) is the system density matrix in the interaction
picture. Here, trF κ [, ] means that the trace has been taken with
respect to the bath coming from Hamiltonian Ĥκ

F , and in the
same fashion other traces have been taken with respect to their
respective baths. It has been shown [51] (Appendix B2) that
if the interaction between baths is weak, then for each bath
there is one Lindbladian superoperator and we can neglect
cross terms between different baths. Thus, we split the double
commutator and its trace into three parts for each bath. Since
for bath F�↓ we have separated the resonant photon modes
from the total field in the Hamiltonian Ĥ�↓

F , we need to also

account for that when calculating the bath density matrix.
Thus, we split the density matrix by writing ρF�↓ = ρ

F
�tot↓ −

ρ
F

�r↓ , where ρ
F

�r↓ and ρ
F

�tot↓ account for the cavity-photon and
total bath density matrices, respectively.

To expand the double commutator in Eq. (31), we identify
the system Ai(t ) and bath Bi(t ) operators by writing the inter-
action Hamiltonian in the form

∑
α Aα (t ) ⊗ Bα (t ). In this way

Ĥκ
I leads to

A1(t ) =
∑

ν

â†
νeiων t ,

A2(t ) =
∑

ν

âνe−iων t ,
(32)

B1(t ) =
∞∫

0

dω′h̄λ(ω′)â(ω′)e−iω′t ,

(33)

B2(t ) =
∞∫

0

dω′h̄λ(ω′)â†(ω′)eiω′t ,

whereas Ĥ�↓
I implies

A3(t ) =
∑

i

σ̂
†
i eiω10t ,

A4(t ) =
∑

i

σ̂ie
−iω10t ,

(34)
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B3(t ) = −
∑

λ=e,m

∫
d3r

∞∫
0

dω d10 · Gλ · f̂λe−iωt ,

B4(t ) = −
∑

λ=e,m

∫
d3r

∞∫
0

dω f̂†
λ · G∗

λ
T · d01eiωt ,

(35)

and

A3′ (t ) =
∑

i

σ̂
†
i eiω10t ,

A4′ (t ) =
∑

i

σ̂ie
−iω10t ,

(36)

B3′ (t ) = −
∑

ν

1

2
h̄	R(ri, ων, ζ )

×
√

γmζ

2π

∞∫
−∞

dω
â(ω, ζ )e−iωt

ω − ωmζ + iγmζ /2
,

B4′ (t ) = −
∑

ν

1

2
h̄	R(ri, ων, ζ )

×
√

γmζ

2π

∞∫
−∞

dω
â†(ω, ζ )eiωt

ω − ωmζ − iγmζ /2
, (37)

and finally, from Ĥ�↑
I we deduce

A5(t ) =
∑

i

σ̂
†
i eiω10t ,

A6(t ) =
∑

i

σ̂ie
−iω10t ,

(38)

B5(t ) =
∞∫

0

dω′′ h̄μ(ω′′)ĥ(ω′′)e−iω′′t ,

B6(t ) =
∞∫

0

dω′′ h̄μ(ω′′)ĥ†(ω′′)eiω′′t .

(39)

Note that A3(t ) = A3′ (t ) = A5(t ) and A4(t ) = A4′ (t ) = A6(t ).
The correlation functions read, for example, for the first bath
F κ ,

C12(τ ) = trF κ {B1B2(−τ )ρF κ }, (40)

C21(τ ) = trF κ {B2B1(−τ )ρF κ }. (41)

Because the baths are independent from each other, all corre-
lations between different baths yield zero: C13 = C23 = C14 =
C35 = · · · = 0. Note that all correlations with the same index
yield zero as well, i.e., C11 = C22 = · · · = 0, since the average
of the product of the same bath operators vanishes. Trans-
forming back to the Schrödinger picture and by expanding
the double commutator in the integral we obtain the master
equation,

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )] − 1

h̄2

∞∫
0

dτ

{ ∑
ν

[â†
ν, âνeiωντ ρS (t )]C12(τ ) + [ρS (t )âνeiωντ , â†

ν]C21(−τ )

+ [âν, â†
νe−iωντ ρS (t )]C21(τ ) + [ρS (t )â†

νe−iωντ , âν]C12(−τ )

+
∑

i

[σ̂ †
i , σ̂ie

iω10τ ρS][C34(τ ) − C3′4′ (τ )] + [ρS (t )σ̂ie
iω10τ , σ̂

†
i ][C43(−τ ) − C4′3′ (−τ )]

+ [σ̂i, σ̂
†
i e−iω10τ ρS (t )][C43(τ ) − C4′3′ (τ )] + [ρS (t )σ̂ †

i e−iω10τ , σ̂i][C34(−τ ) − C3′4′ (−τ )]

+
∑

i

[σ̂ †
i , σ̂ie

iω10τ ρS (t )]C56(τ ) + [ρS (t )σ̂ie
iω10τ , σ̂

†
i ]C65(−τ )

+ [σ̂i, σ̂
†
i e−iω10τ ρS (t )]C65(τ ) + [ρS (t )σ̂ †

i e−iω10τ , σ̂i]C56(−τ )

}
, (42)

where ρS (t ) is the system density matrix in the Schrödinger
picture and the system Hamiltonian reads

ĤS = Ĥa
S + Ĥσ

S + Ĥ�(±δν )
F + Ĥ�(±δν )

I . (43)

C. Evaluating environmental correlation functions

Assuming the thermal excitations to be much smaller than
the electronic and photonic cavity excitations in the system
[11], i.e., ω,ων, ω

′ � kBT/h̄ and ω′′ � kBTlaser/h̄, we can
neglect the respective thermal occupation numbers, n(ω) =
n(ων ) = n(ω′) = N (ω′′) ≈ 0.

We present the calculation of the first bath correlation
functions in detail, which read

C12(τ ) = 〈B1B2(−τ )〉 ≈
∞∫

0

dω′ h̄2λ2(ω′)e−iω′t , (44a)

C21(τ ) ≈ 0. (44b)

Next, we use the relation

∞∫
0

dτe±iωτ = πδ(ω) ± iP 1

ω
(45)
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to evaluate time-frequency integrals with δ(ω) being the Dirac
delta function and P being the Cauchy principal value. For
example, the time integral of the coefficient C12(τ ) is given
by

1

h̄2

∞∫
0

dτ C12(τ )eiωντ = 1

h̄2

∞∫
0

dτ

∞∫
0

dω′ h̄2λ2(ω′)e−i(ω′−ων )τ

= πλ2(ων ) − iP
∞∫

0

dω′

ω′ − ων

λ2(ω′).

(46)

Finally, we define the cavity decay rate κ and the Lamb shift
�κ as

κ

2
= πλ2(ων ), (47a)

�κ = P
∞∫

0

dω′

ω′ − ων

λ2(ω′). (47b)

For instance, for a planar cavity, the cavity decay rate is
given by [52]

κ = 2δc

d
, (48)

where δ, d , and c are mirror transmission, spacing between
mirrors, and the speed of light, respectively.

The correlation functions from the second bath read
(derivation in Appendix B)

C34(τ ) ≈
∞∫

0

dω
h̄μ0

π
ω2d10 · ImG(ri, ri, ω) · d01e−iωτ ,

(49)

C43(τ ) ≈ 0. (50)

Again, we evaluate the time-frequency integral using Eq. (45):

1

h̄2

∞∫
0

dτ C34(τ )eiω10τ

= μ0

h̄
ω2

10d10 · ImG(ri, ri, ω10) · d01

− iP
∞∫

0

dω

ω − ω10

μ0

h̄π
ω2d10 · ImG(ri, ri, ω) · d01. (51)

Similarly as before, we define the spontaneous decay rate of
all photon modes �tot

↓ and the shift ��tot
↓ as

�tot
↓
2

= μ0

h̄
ω2

10d10 · ImG(ri, ri, ω10) · d01, (52a)

��tot
↓ = P

∞∫
0

dω

ω − ω10

μ0

h̄π
ω2d10 · ImG(ri, ri, ω) · d01. (52b)

For instance, the spontaneous decay rate in a spherical
microcavity has been derived in Ref. [53].

For the resonant correlation functions we have a sum of
interaction strength over modes ν:

C3′4′ (τ ) =
∑

ν

1

4
h̄2	2

R

γν

2π

∞∫
−∞

dω
e−iωt

(ω − ων )2 + γ 2
ν /4

,

(53)

C4′3′ (τ ) ≈ 0. (54)

Then we evaluate the time-frequency integral:

1

h̄2

∞∫
0

dτC3′4′ (τ )eiω10τ

=
∑

ν

γν

2π

∞∫
0

dτ

∞∫
−∞

dω
1

4

	2
R

(ω − ων )2 + γ 2
ν /4

e−i(ω−ω10 )t

=
∑

ν

	2
R

2

γν/4

(ω10 − ων )2 + γ 2
ν /4

− i
∑

ν

P
∞∫

−∞

	2
R

2π

dω

ω − ω10

γν/4

(ω − ων )2 + γ 2
ν /4

= �r
↓

2
− i��r

↓ , (55)

where we have defined the resonant decay rate �r
↓ and shift

��r
↓ as

�r
↓

2
=

∑
ν

	2
R

2

γν/4

(ω10 − ων )2 + γ 2
ν /4

, (56a)

��r
↓ =

∑
ν

P
∞∫

−∞

	2
R

2π

dω

ω − ω10

γν/4

(ω − ων )2 + γ 2
ν /4

. (56b)

For the third bath the correlation values read

C56(τ ) ≈ 0, (57)

C65(τ ) ≈
∞∫

0

dω′′ h̄2μ2(ω′′)eiω′′τ . (58)

By evaluating the time-frequency integral with the coefficient
C65(τ ) we obtain

1

h̄2

∞∫
0

dτ C65(τ )e−iω10τ

= 1

h̄2

∞∫
0

dτ

∞∫
0

dω′′ h̄2μ2(ω′′)eiω′′τ e−iω10τ

= πμ2(ω10) + iP
∞∫

0

dω′′

ω′′ − ω10
μ2(ω′′). (59)
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We define the laser pumping rate �↑ and the shift ��↑ as

�↑
2

= πμ2(ω10), (60a)

��↑ = P
∞∫

0

dω′′

ω′′ − ω10
μ2(ω′′), (60b)

with the coupling constant μ2(ω) being

μ2(ω) = d2
01I (ω)

2cε0 h̄2 . (61)

We find μ2(ω) in Appendix C, where we derive the expression
of the parameter �↑ related to the laser output intensity I (ω)
and demonstrate that it does not depend on the frequency
distribution of the light source in the broadband limit. Ad-
ditionally, we find the frequency shift induced by the laser
source ��↑ .

D. Resulting master equation

Now we can write the master equation in shorter form,
retaining only the nonvanishing correlation functions:

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )] − 1

h̄2

∞∫
0

dτ

{∑
ν

[â†
ν, âνeiωντ ρS (t )]C12(τ ) + [ρS (t )â†

νe−iωντ , âν]C12(−τ )

+
∑

i

[σ̂ †
i , σ̂ie

iω10τ ρS (t )][C34(τ ) − C3′4′ (τ )] + [ρS (t )σ̂ †
i e−iω10τ , σ̂i][C34(−τ ) − C3′4′ (−τ )]

+
∑

i

[ρS (t )σ̂ie
iω10τ , σ̂

†
i ]C65(−τ ) + [σ̂i, σ̂

†
i e−iω10τ ρS (t )]C65(τ )

}
. (62)

Using all the rate parameters defined above, the master equation reads

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )] −

{∑
ν

[â†
ν, âνρS (t )]

[
κ

2
− i�κ

]
+ [ρS (t )â†

ν, âν]

[
κ

2
+ i�κ

]

+
∑

i

[σ̂ †
i , σ̂iρS (t )]

[[
�tot

↓
2

− i��tot
↓

]
−

[
�r

↓
2

− i��r
↓

]]
+ [ρS (t )σ̂ †

i , σ̂i]

[[
�tot

↓
2

+ i��tot
↓

] −
[
�r

↓
2

+ i��r
↓

]]

+
∑

i

[ρS (t )σ̂i, σ̂
†
i ]

[
�↑
2

− i��↑

]
+ [σ̂i, σ̂

†
i ρS (t )]

[
�↑
2

+ i��↑

]}
. (63)

Note that for the last bath correlation the shifts ��↑ have the opposite sign as compared to ��tot
↓ , ��r

↓ , and �κ .

After using the Lindblad superoperator definition L[X̂ ]ρ = X̂ †X̂ρ + ρX̂ †X̂ − 2X̂ρX̂ † for a generic operator X̂ and collecting
all Lamb shifts we obtain the master equation describing cavity and spontaneous decay and laser pump rate:

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )] − i

∑
ν,i

{
�κ [â†

ν âν, ρS (t )] + ��↓ [σ̂ †
i σ̂i, ρS (t )] − ��↑ [σ̂iσ̂

†
i , ρS (t )]

}

−
{∑

ν,i

κ

2
L[âν]ρS (t ) + �↓

2
L[σ̂i]ρS (t ) + �↑

2
L[σ̂ †

i ]ρS (t )

}
, (64)

where �↓ = �tot
↓ − �r

↓ and ��↓ = ��tot
↓ − ��r

↓ . Absorbing
the Lamb shifts into a redefined system Hamiltonian, the
master equation reads

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )]

−
∑
ν,i

{
κ

2
L[âν] + �↓

2
L[σ̂i] + �↑

2
L[σ̂ †

i ]

}
ρS (t ).

(65)

The new frequencies in the system Hamiltonian ĤS coming
from the Lamb shift we redefine to be

ω10 + ��↓ + ��↑ → ω10

and

ων + �κ → ων.

V. NESTED OPEN QUANTUM SYSTEMS

We have now derived the master equation for spontaneous
and cavity decay and accounted for laser pumping. Now we
treat the remaining system Hamiltonian as the total Hamilto-
nian of the subsystem ĤS ≡ Ĥ [see Eq. (43)].

Also, we define the new system Hamiltonian to be Ĥa
S +

Ĥσ
S ≡ ĤS , whereas Ĥ�(±δν )

I and Ĥ�(±δν )
F remain unchanged.

For notational convenience, we will now drop the super-
scripts �(±δν ) from the field and interaction Hamiltonians.
If the coupling between rovibrational states, electronic transi-
tions, and photons is strong, it is convenient to transform the
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Hamiltonian using the polaron transformation Ĥ → Û †ĤÛ ,
where the polaron operator Û reads

Û = e
∑

i

√
Sσ̂ z

i (b̂i−b̂†
i ). (66)

The Hamiltonian after applying the polaron transformation
can be written as

Ĥ =
∑
ν,i

1

2
h̄ω10σ̂

z
i + h̄ων â†

ν âν + h̄	b̂†
i b̂i (67)

+ h̄	ν[âν σ̂
†
i D̂i + â†

ν σ̂iD̂
†
i ], (68)

with the interaction Hamiltonian being

ĤI =
∑
ν,i

h̄	ν[âν σ̂
†
i D̂i + â†

ν σ̂iD̂
†
i ] (69)

and the displacement operator D̂ = e2
√

S(b̂†
i −b̂i ).

To obtain the master equation for ĤI , here we use a more
general treatment, called the projection operator technique
[49]. Because now ĤI in the interaction picture will not only
evolve unitarily but will also exhibit an exponential decay
coming from κ , �↓, and �↑. We start with the master equa-
tion from the previous section:

ρ̇ = − i

h̄
[Ĥ, ρ]

−
∑
ν,i

{
κ

2
L[âν] + �↓

2
L[σ̂i] + �↑

2
L[σ̂ †

i ]

}
ρ. (70)

Note that we have redefined the density matrix of the subsys-
tem as ρS ≡ ρ.

Let us redefine commutators and Lindblad dissipators into
Liouville superoperator form:

LF,S,I ρ = − i

h̄
[ĤF,S,I , ρ] (71)

and

Dρ = −
∑
ν,i

{
κ

2
L[âν] + �↓

2
L[σ̂i] + �↑

2
L[σ̂ †

i ]

}
ρ. (72)

The master equation then reads

ρ̇ = (LF + LS + LI + D)ρ = Lρ. (73)

The goal is to derive the master equation for the subsystem
of interest (photon number and molecular excitations), which
can be achieved by projecting on the relevant part of the
density matrix Pρ = trF [ρ] ⊗ ρF = ρS ⊗ ρF and tracing out
the bath (phonon modes of molecules). The irrelevant part
reads as Qρ = (1 − P )ρ.

As for step 1, this step is based on the rotating-wave and
Markov approximations and we assume that the rovibrational
level spacing is smaller than the frequency of the electronic
transition under consideration, 	 � ω10. In this step (step 2),
the rovibrational levels of all molecules act as a thermal bath
for the coupled dynamics of electronic molecular transitions
and cavity modes. This requires that the rovibrational levels

reach thermal equilibrium on time scales that are short with
respect to decay by electronic transitions and the mode leak-
age outside the cavity. The former condition is equivalent to
the validity of the Kennard-Stepanov relation. We follow the
derivation along the lines of Ref, [49] (Chap. 5.1.2) and obtain

ρ̇S = (LS + D)ρS (t )

− 1

h̄2 trF [HI ,

∞∫
0

d e(LF +LS+D)s[HI , ρS (t − s) ⊗ ρF ]].

(74)

Up to second-order expansion in coupling g from ĤI it can be
shown that Eq. (74) can be written as [54]

ρ̇S = (LS + D)ρS (t )

− 1

h̄2 trF [HI ,

∞∫
0

ds [e(L†
F +L†

S+D† )s(HI ), ρS (t ) ⊗ ρF ]],

(75)

where e(L†
F +L†

S+D† )s is acting only on ĤI and the adjoint Lind-
bladian superoperator for an arbitrary operator Â is defined as

L†[X̂ ]Â = X̂ †X̂ Â + ÂX̂ †X̂ − 2X̂ †ÂX̂ . (76)

The interaction Hamiltonian now corresponds to the dissipa-
tive interaction picture.

Calculating the Liouville superoperator for all interaction
Hamiltonian operators, we obtain the following relations:

â(t ) = e(L†
F +L†

S+D† )t â = e(L†
S+D† )t â = âe−iων t− κ

2 t , (77)

â†(t ) = â†eiων t− κ
2 t , (78)

σ̂ (t ) = σ̂e−iω10t− �↓+�↑
2 t , (79)

σ̂ †(t ) = σ̂ †eiω10t− �↓+�↑
2 t , (80)

D̂(t ) = ei
∑

i h̄	b̂†
i b̂t D̂e−i

∑
i h̄	b̂†

i b̂t = e2
√

S(b̂†
i ei	t −b̂ie−i	t ),

(81)

D̂†(t ) = e2
√

S(b̂ie−i	t −b̂†
i ei	t ), (82)

where the last two expressions are obtained by using the
Baker-Campbell-Hausdorff formula. We have used the fol-
lowing relations to obtain â(t ) and σ̂ (t ) and their conjugates:

L†[â]1̂ = L†[σ̂ ]1̂ = L†[σ̂ †]1̂ = 0, (83)

L†[â]â = â, (84)

L†[â]â† = â†, (85)

L†[σ̂ ]σ̂ † = L[σ̂ †]σ̂ † = σ̂ †, (86)

L†[σ̂ ]σ̂ = L[σ̂ †]σ̂ = σ̂ . (87)

We are now in a position to write the master equa-
tion by evaluating the double commutator under the integral
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in Eq. (75), which reads

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )] + DρS (t )

−
∞∫

0

dτ
∑
ν,i

{
[âν σ̂

†
i , â†

ν σ̂ie
iδντ ρS (t )]C78(−τ )

+ [ρS (t )â†
ν σ̂ie

iδντ , âν σ̂
†
i ]C87(τ )

+ [â†
ν σ̂i, âν σ̂

†
i e−iδντ ρS (t )]C87(−τ )

+ [ρS (t )âν σ̂
†
i e−iδντ , â†

ν σ̂i]C78(τ )
}
, (88)

where δν = ων − ω10.
To cast this result into a simpler form, we define the quan-

tities K (δν ), K (−δν ), K∗(δν ), and K∗(−δν ):

K (δν ) =
∞∫

0

dτ C87(−τ )e−iδντ

= h̄2	2
ν

∞∫
0

dτ 〈D̂†
i D̂i(τ )〉e−iδντ e− �

2 τ , (89)

K (−δν ) =
∞∫

0

dτ C78(−τ )eiδντ

= h̄2	2
ν

∞∫
0

dτ 〈D̂†
i D̂i(τ )〉eiδντ e− �

2 τ , (90)

K∗(δν ) =
∞∫

0

dτ C87(τ )eiδντ

= h̄2	2
ν

∞∫
0

dτ 〈D̂†
i D̂i(−τ )〉eiδντ e− �

2 τ , (91)

K∗(−δν ) =
∞∫

0

dτ C78(τ )e−iδντ

= h̄2	2
ν

∞∫
0

dτ 〈D̂†
i D̂i(−τ )〉e−iδντ e− �

2 τ , (92)

with � = κ + �↓ + �↑. We have used the relation

〈D̂i(τ )D̂†
i 〉 = 〈D̂†

i (τ )D̂i〉, (93)

which follows from the relations D̂†(α) = D̂(−α) and
〈n,−α|n,−β〉 = 〈n, α|n, β〉. With these definitions, the mas-
ter equation reads

ρ̇S (t ) = − i

h̄
[ĤS, ρS (t )] + DρS (t )

−
∑
ν,i

[âν σ̂
†
i , â†

ν σ̂iρS (t )]K (−δν ) + [ρS (t )â†
ν σ̂i, âν σ̂

†
i ]K∗(δν )

+[â†
ν σ̂i, âν σ̂

†
i ρS (t )]K (δν ) + [ρS (t )âν σ̂

†
i , â†

ν σ̂i]K
∗(−δν ). (94)

Separating the coefficients K (δ) into real and imaginary parts,
we can define constants for absorption and emission out of or
into the cavity modes:

�(±δν ) = 2K ′(±δν ), (95)

where K ′(±δν ) ≡ ReK (±δν ). With these definitions and col-
lecting terms in Eq. (94) into Lindbladian forms, we obtain a
final master equation that describes the dye-photon dynamics
in a photon-BEC setup:

ρ̇S = − i

h̄

[
Ĥ ′

S, ρS
] −

∑
ν,i

{
�↓
2
L[σ̂i] + κ

2
L[âν] + �↑

2
L[σ̂ †

i ]

+ �(δν )

2
L[âν σ̂

†
i ] + �(−δν )

2
L[â†

ν σ̂i]

}
ρS. (96)

The modified system Hamiltonian Ĥ ′
S has absorbed the Lamb

shifts and reads

Ĥ ′
S = h̄

∑
ν,i

[ω10 + K ′′(−δν )]σ̂ †
i σ̂i + [ων + K ′′(δν )]â†

ν âν

+ [K ′′(−δν ) − K ′′(δν )]â†
ν âν σ̂

†
i σ̂i, (97)

where K ′′(±δν ) denotes the imaginary part of K (±δν ).

VI. CONCLUSIONS

We have constructed a general theory and derived the nec-
essary parameters to describe photon Bose-Einstein conden-
sation in a dye-filled cavity using a microscopic description
of the molecule-photon interaction. Adding to the previous
dissipative studies, we have derived parameters �↑, �↓, and
κ , where the last two depend on the geometry of the system.
Also, we have demonstrated that all the rates (except �↑) are
related to the Green’s tensor, which is essentially related to the
geometrical setup. Furthermore, we have shown how �(±δν )
are influenced by �↑, �↓, and κ since molecule rovibrational
states are influenced by cavity and spontaneous decay and
laser pumping.

The next step will be to apply this technique to different
geometries and calculate the threshold of the condensate.
The simplest geometry for which the Green’s tensor can be
analytically calculated is the planar cavity. For example, the
spontaneous emission rate �↓ would then be calculated from
the imaginary part of the Green’s tensor multiplied by the
dipole moment of the molecule, as demonstrated in the main
section. If the cavity mirrors are highly reflective, it is rela-
tively easy to calculate the cavity decay κ . It can be obtained
from the Green’s tensor intrinsic structure by taking a Taylor
expansion of the denominator in the Green’s tensor, which is
responsible for multiple reflections from mirrors. For the laser
pump rate �↑ one needs to know the laser intensity and dipole
moment of the molecule.

For a more realistic setup, mirrors with a spherical curva-
ture even including two dips [19] can be considered, which are
used in real experiments. Naturally, the complexity of calcu-
lating the Green’s tensor for such a system largely increases.
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APPENDIX A: CAVITY DECAY DEMONSTRATION

Here we demonstrate that photons decay with the same rate
as Lorentzian linewidth describing the quality of the cavity γ .
We have defined the creation and annihilation operators in the
cavity to be [50]

â†
ν =

√
γν

2π

∞∫
−∞

dω
â†(ω)

ω − ων − iγν/2
,

âν =
√

γν

2π

∞∫
−∞

dω
â(ω)

ω − ων + iγν/2
.

(A1)

As we will show, the effective dynamics of these non-
monochromatic narrow-band operators will be nonunitary and
decay with a rate γν for mode ν. We start from Heisenberg
equations of motion for â(ω) and their conjugate:

˙̂a†(ω) = iωâ†(ω),

˙̂a(ω) = −iωâ(ω).
(A2)

Taking the time derivative of Eqs. (A1) and using Eqs. (A2),
we obtain

˙̂a†
ν =

√
γν

2π

∞∫
−∞

dω
iωâ†(ω)

ω − ων − iγν/2
,

˙̂aν =
√

γν

2π

∞∫
−∞

dω
−iωâ(ω)

ω − ων + iγν/2
.

(A3)

These equations can be rewritten in the form

˙̂a†
ν = iF̂ † +

(
iων − γν

2

)
â†

ν,

˙̂aν = −iF̂ +
(

− iων − γν

2

)
âν,

(A4)

with F̂ =
√

γν

2π

∫
dωâ(ω). To find the equation of motion of

the number operator 〈â†
ν âν〉, we use Eqs. (A4) and the chain

rule. We start by taking derivative of the expectation value:

d

dt
〈â†

ν âν〉 = −γν〈â†
ν âν〉 − i〈â†

νF̂ 〉 + i〈F̂ †âν〉. (A5)

Let us evaluate the last two terms:

−i〈â†
ν F̂ 〉 = −i

γν

2π

∞∫
−∞

dω
n(ω)

ω − ων − iγν/2
, (A6)

i〈F̂ †âν〉 = i
γν

2π

∞∫
−∞

dω
n(ω)

ω − ων + iγν/2
, (A7)

where we have used the fact that 〈â†(ω)â(ω′)〉 = n(ω)δ(ω −
ω′). Summing these terms,

i〈F̂ †âν〉 − i〈â†
ν F̂ 〉 = γ 2

ν

2π

∞∫
−∞

dω
n(ω)

(ω − ων )2 + (γν/2)2
,

(A8)

the total time evolution equation reads

d

dt
〈â†

ν âν〉 = −γν〈â†
ν âν〉

+ γ 2
ν

2π

∞∫
−∞

dω
n(ω)

(ω − ων )2 + (γν/2)2
, (A9)

where n(ω) is thermal photon number following Bose-
Einstein distribution:

n(ω) = 1

e
h̄ω

kBT − 1
. (A10)

In the experimental setup the thermal excitations are much
smaller than the cavity excitations; thus, n(ω) ≈ 0. Equa-
tion (A9) then shows that the photon decay rate κ is identical
with the width of the resonance γν .

APPENDIX B: CORRELATION COEFFICIENTS FOR THE
TOTAL PHOTON FIELD BATH

In this section we demonstrate explicitly how C34(τ ) and
C43(τ ) are calculated. Before carrying out the calculation we
mention that the average value of fundamental fields reads

〈f̂λ(r, ω)f̂†
λ′ (r′, ω′)〉 = [n(ω′) + 1]δ(r − r′)δλλ′δ(ω − ω′),

(B1a)

〈f̂†
λ (r, ω)f̂λ′ (r′, ω′)〉 = n(ω′)δ(r − r′)δλλ′δ(ω − ω′), (B1b)

where n(ω) is the same as in Eq. (A10).
Note that C33 = C44 = 0, because 〈f̂λ(r, ω)f̂λ′ (r′, ω′)〉 =

〈f̂†
λ (r, ω)f̂†

λ′ (r′, ω′)〉 = 0.

The explicit calculation of the correlation coefficient
C34(τ ) is as follows: we take the average of the product of
the bath operators 〈B3B4(−τ )〉 from Eqs. (35) which is just an
average over f̂λ operators.

Simplifying the result by using the integral relation [40]

∑
λ=e,m

∫
d3s Gλ(r, s, ω) · G∗

λ′
T(r′, s, ω′)

= h̄μ0

π
ω2ImG(r, r′, ω), (B2)
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we find

C34(τ )

=
∞∫

0

dω
h̄μ0

π
ω2d10 · ImG(ri, ri, ω) · d01[n(ω) + 1]e−iωτ .

(B3)

The coefficient C43(τ ) is calculated in similar manner:

C43(τ ) = 〈B4B3(−τ )〉

=
∞∫

0

dω
h̄μ0

π
ω2d10 · ImG(ri, ri, ω) · d01n(ω)eiωτ .

(B4)

APPENDIX C: DERIVATION OF LASER
DRIVING CONSTANT

In this section, we derive the laser driving constant from
the properties of the laser. We follow a similar procedure as
Loudon (Chap. 2 of Ref. [55]). We start from the Hamiltonian
that describes the interaction of a two-level atom with an
incoherent, broad-band classical light field:

Ĥ = ĤA + ĤI = 1

2
h̄ω10σ̂z

+ d̂ ·
∞∫

0

dω [E(ri, ω)e−iωt e−iφω + E∗(ri, ω)eiωt eiφω ],

(C1)

where E(ri, ω) is the electric field at the molecule’s position
ri at frequency ω. The phase for each frequency is described
by φω and d̂ = d10|1〉〈0| + d01|0〉〈1| is the dipole moment of
the molecule. To calculate the time dynamics of the excited
atom state, we need to solve Schrödinger’s equation, Ĥ� =
ih̄�̇. We expand the wavefunction as a linear superposition of
orthonormal basis states which has a time dependence from
the atomic Hamiltonian:

|�〉 = C0(t )ei E0
h̄ t |0〉 + C1(t )ei E1

h̄ t |1〉. (C2)

Transforming to the interaction picture, Schrödinger’s equa-
tion reads

ĤI |�〉 = ih̄(Ċ0(t )|0〉 + Ċ1(t )|1〉). (C3)

Multiplying Eq. (C3) by 〈0| and 〈1| we obtain two differential
equations:

ih̄Ċ0(t ) = d01 ·
∞∫

0

dω [E(ri, ω)e−iωt e−iφω

+ E∗(ri, ω)eiωt eiφω ]e−iω10tC1(t ),

ih̄Ċ1(t ) =d10 ·
∞∫

0

dω[E(ri, ω)e−iωt e−iφω

+ E∗(ri, ω)eiωt eiφω ]eiω10tC0(t ), (C4)

where we have used the fact that the dipole operator has
odd parity, meaning d00 = d11 = 0. Using the rotating-wave

approximation and assuming that the dipole operator is real,
d01 = d10, the equations read

ih̄Ċ0(t ) = d01 ·
∞∫

0

dω E∗(ri, ω)ei(ω−ω10 )t eiφωC1(t ),

ih̄Ċ1(t ) = d01 ·
∞∫

0

dω E(ri, ω)e−i(ω−ω10 )t e−iφωC0(t ).

(C5)

To solve these equations we employ the perturbation ex-
pansion of d01 · E(ri, ω) up to the first order, since d01 ·
E(ri, ω) � h̄ω10. We pose the initial conditions, where the
atom is assumed to be initially in the ground state, namely,
C0(0) = 1 and C1(0) = 0. The solution for the first coefficient
is constant C0(t ) = 1. The solution for C1(t ) reads

C1(t ) = i

h̄
d01 ·

∞∫
0

dω E(ri, ω)
1 − ei(ω10−ω)t

i(ω10 − ω)
e−iφω . (C6)

Upon expressing the complex exponential in terms of the sine
function, we obtain

C1(t ) = −2
i

h̄
d01 ·

∞∫
0

dω E(ri, ω)e
i
2 (ω10−ω)t e−iφω

× sin
[

1
2 (ω10 − ω)t

]
ω10 − ω

. (C7)

We are interested in the excited-state probability,

|C1(t )|2 =
(

2d01

h̄

)2∣∣∣∣
∞∫

0

dω E(ri, ω)e
i
2 (ω10−ω)t

× e−iφω
sin

[
1
2 (ω10 − ω)t

]
ω10 − ω

∣∣∣∣
2

, (C8)

where for simplicity we have assumed that the dipole moment
is parallel to the electromagnetic field d01 ‖ E(ri, ω). For in-
coherent light, a phase average results in

〈ei(φω′ −φω )〉 = 0, for ω �= ω′. (C9)

Relating the electric field with the intensity of light using
the well-known relation

I = cε0E2(ri, t ) =
∞∫

0

dω I (ri, ω), (C10)

the excitation probability can be expressed as

|C1(t )|2 = 2

cε0 h̄2 d2
01

∞∫
0

dω I (ri, ω)
sin2

[
1
2 (ω10 − ω)t

]
(ω10 − ω)2

.

(C11)
The intensity of a light source typically has some frequency

distribution since it is not completely monochromatic. Thus,
it can be described with a certain line shape function L(ω)
such that I (ω) = I0L(ω) with L(ω10) = 1 and I0 = I (ω10).
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The excitation probability then reads

|C1(t )|2 = 2

cε0 h̄2 d2
01I0

∞∫
0

dω L(ω)
sin2

[
1
2 (ω10 − ω)t

]
(ω10 − ω)2

.

(C12)
When we evaluate the integrals, we assume that arbitrary

line shape is centered at ω = 0 for the convenience of the
calculations, which do not influence the physical results. First
we take L(ω) to be a rectangular constant function centered
at zero frequency, meaning that L(ω) = 1 in the interval
[−1/2γ , 1/2γ ]. We calculate the following integral in the
limit γ t � 1:

1/2γ∫
−1/2γ

dω
sin2

(
ωt
2

)
ω2

≈ πt

2
. (C13)

Second, we take L(ω) to be Gaussian centered at zero fre-

quency, L(ω) = e
− 1

2
ω2

γ 2 . This integral in the limit γ t � 1 is

∞∫
−∞

dω e
− 1

2
ω2

γ 2
sin2

(
ωt
2

)
ω2

≈ πt

2
. (C14)

Third, we evaluate the same integral with a narrow Lorentzian
profile centered at zero. This integral in the limit γ t � 1 is

∞∫
−∞

dω

γ 2

4(
ω2 + γ 2

4

) sin2
(

ωt
2

)
ω2

≈ πt

2
. (C15)

So regardless of the specific line shape, we find that in the
limit γ t � 1

|C1(t )|2 ≈ πd2
01I0

cε0 h̄2 t = �↑t, (C16)

where

�↑ = πd2
01I0

cε0 h̄2 . (C17)

Using perturbation theory, we also calculate the frequency
shift of the ground and excited states when subjected to laser
light. By expanding the second of Eqs. (C5) up to zeroth order
and solving it, we obtain the zero-order solution for C(0)

1 (t ):

C(0)
1 (t ) = d01

h̄
·

∞∫
0

dω E(ri, ω)
e−iφω e−i(ω−ω10 )t

ω − ω10
C0(t )

− d01

h̄
·

∞∫
0

dω
E(ri, ω)e−iφω

ω − ω10
C0(t ). (C18)

We disregard the last term because it will have an oscillatory
time dependence with frequency ω − ω10. Substituting this
into the first of Eqs. (C5), we obtain the differential equa-
tion for C0(t ):

iĊ0(t ) = 1

h̄2

∞∫
0

∞∫
0

dω′dω[d01 · E∗(ri, ω)][d01 · E(ri, ω
′)]

× ei(ω−ω′ )t ei(φω−φω′ )

ω′ − ω10
C0(t ). (C19)

To simplify the double integral, we once more take a phase
average and express the result in terms of light intensity to
obtain

iĊ0(t ) = d2
01

2cε0 h̄2

∞∫
0

dω
I (ri, ω)

ω − ω10
C0(t ). (C20)

This differential equation shows that the electric field induces
a frequency shift (or light shift), which is proportional to the
intensity and detuning of the laser field.
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