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Two-photon process of a single two-level atom simultaneously absorbing or emitting two photons
distributed in different cavities and its applications
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We propose an approach for achieving a two-photon process in which a single two-level atom can simultane-
ously absorb or emit two photons separately distributed in two cavities. This two-photon process is realized by
a two-level atom dispersively coupled to a classical pulse and two cavities. The main advantage of this proposal
lies in the fact that because only two levels of the atom are used, i.e., no auxiliary atomic levels are utilized,
decoherence from the higher energy levels of the atom is avoided. In addition, we find that the two-photon
process can enable the synthesis of a hybrid atom-cavity-cavity Greenberger-Horne-Zeilinger (GHZ) entangled
state. As an example, we further discuss the experimental feasibility of creating the proposed hybrid GHZ state
in a circuit QED system. This proposal is quite general and can be implemented in a wide range of physical
systems, such as a natural or artificial atom coupled to two optical or microwave cavities.
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I. INTRODUCTION

The two-photon process was predicted by Göppert-Mayer
in 1931 [1] and since then has drawn much attention in
the realms of quantum information processing and quantum
communication. The two-photon process plays a vital role in
fluorescent imaging [2], quantum light sources [3], microfab-
rication [4], etc. The two-photon maser oscillator has been
experimentally realized using a three-level atom [5]. In the
past few decades, a number of schemes have been proposed
for realizing the two-photon process [6–9]. For example,
Refs. [6,7] proposed that two-photon stimulated emission and
absorption can be obtained via a multilevel atom, which inter-
acts with a two-mode field through the adiabatic elimination
of the atomic auxiliary levels. In Refs. [6,7], the cavity fre-
quency is equal to the sum of the transition frequencies of the
two atoms. References [8,9] found that through a three-level
atom interacting with two quantized cavity modes, one can
obtain the effective two-photon coupling between the atom
and the cavity modes. On the other hand, one single photon
or atom simultaneously exciting two atoms has been widely
studied recently [10–15]. For instance, Ref. [10] showed that
two atoms can jointly absorb one photon if the two atoms
are coupled to a cavity in the ultrastrong-coupling regime. In
this proposal, the cavity frequency is equal to the sum of the
transition frequencies of the two atoms. References [11,12]
found that a single photon can simultaneously excite two
atoms without ultrastrong coupling. Moreover, Refs. [13] and
[14] proposed that a single atom can simultaneously excite
two atoms with and without ultrastrong coupling. Recently,
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Ref. [15] reported the experimental observation of simulta-
neous excitation of two atoms by a pair of photons in a
superconducting circuit.

Greenberger-Horne-Zeilinger (GHZ) entangled states play
a central role in error correction [16], quantum teleporta-
tion [17], quantum metrology [18], quantum communication
[19], entanglement swapping [20], etc. Moreover, GHZ states
can be applied to violate the Bell inequality [21]. In recent
years, a large number of theoretical proposals have been
made for preparing GHZ states in various physical systems
[22–34]. Experimentally, the creation of GHZ states with
3 nitrogen-vacancy (NV) center spins [35], 12–18 photonic
qubits [36,37], 14 ionic qubits [38], 20 atomic qubits [39],
and 3–20 superconducting qubits [40–43] has been reported.

In this paper we present an approach for realizing a
two-photon process in which a single two-level atom can
simultaneously absorb or emit two photons, which are sepa-
rately distributed in two cavities. This two-photon process is
realized by a two-level atom dispersively coupled to a classi-
cal pulse and two cavities. Since no auxiliary atomic levels are
used in our proposal, decoherence from higher energy levels
of the atom is avoided.

The regular two-photon process has shown that an atom
coupled to a single cavity can absorb and emit two photons
in one cavity mode. Different from the regular two-photon
process, in our proposal, the two photons are separately dis-
tributed in two cavity modes. We stress that this work differs
from the previous works [6–9]. In our work, the two-photon
process is realized by using only a two-level atom, while
Refs. [6–9] employed a multilevel atom to implement a two-
photon process. The present work is also different from the
previous works [10–15], which focus on a different topic, i.e.,
one single photon or atom simultaneously exciting two atoms.
In this work, we find that the two-photon process can allow the
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FIG. 1. (a) Diagram of the setup for two cavities (1 and 2) coupled to an atom. Here, the atom can be a natural atom or a solid-state artificial
atom (e.g., superconducting qubit, NV center, quantum dot, etc.) which is coupled to two optical or microwave cavities. (b) Schematic diagram
of the energy levels of the whole system. Cavities 1 and 2 are coupled to the atom with coupling strengths g1 and g2 and detunings δ1 and δ2,
respectively. In addition, a classical pulse is applied to the atom with Rabi frequency � and detuning δp. Here, ωa, ωp, ωc1, and ωc2 are the
frequencies of the atom, the pulse, cavity 1, and cavity 2, respectively. In numerical simulations of Figs. 3 and 4(a), we choose δ1 = 72g2,

δ2 = 36g2, and δp = 109.432g2. Thus, we have ωc1 = ωa − 36g2, ωc2 = ωa − 72g2, and ωp = ωa − 109.342g2.

generation of an atom-cavity-cavity (three-body) hybrid GHZ
state. As an example, we further investigate the experimental
feasibility of creating the hybrid GHZ state in a circuit QED
system. This proposal is quite general and can be applied to
a wide range of physical systems, such as a natural atom or
a solid-state artificial atom (e.g., superconducting qubit, NV
center, quantum dot, etc.) coupled to two optical or microwave
cavities.

This paper is organized as follows. Section II introduces
a method for realizing a two-photon process, in which a
single two-level atom simultaneously absorbs or emits two
photons distributed in two cavities. Section III shows that
the two-photon process can be used to create a hybrid
atom-cavity-cavity GHZ state. Section IV investigates the ex-
perimental feasibility of creating the hybrid GHZ in a circuit
QED system. A brief concluding summary is given in Sec. V.

II. TWO-PHOTON PROCESS WITH A TWO-LEVEL ATOM
SIMULTANEOUSLY ABSORBING OR EMITTING

TWO PHOTONS

Consider a system consisting of two cavities (1 and 2) and
a single two-level atom (i.e., a qubit) with the ground state
|g〉 and the excited state |e〉, as shown in Fig. 1. Assume
that cavities 1 and 2 are coupled to the atom with coupling
strengths g1 and g2 as well as detunings δ1 = ωa − ωc1 > 0
and δ2 = ωa − ωc2 > 0, respectively. Moreover, a classical
pulse is applied to the atom with Rabi frequency � and detun-
ing δp = ωa − ωp > 0. Here, ωc1 and ωc2 are, respectively, the
frequencies of cavities 1 and 2, ωa is the transition frequency
of the atom, and ωp is the frequency of the pulse.

In the interaction picture, after making the rotating-wave
approximation (RWA), the Hamiltonian of the whole system
can be described as (in units of h̄ = 1)

HI = g1(â1σ
+eiδ1t + â†

1σ
−e−iδ1t )

+ g2(â2σ
+eiδ2t + â†

2σ
−e−iδ2t )

+�(σ+eiδpt + σ−e−iδpt ), (1)

where σ+ = |e〉〈g| and σ− = |g〉〈e| are, respectively, the rais-
ing and lowering operators of the atom and â1 and â†

1 (â2

and â†
2) are, respectively, the photon annihilation and creation

operators for cavity 1 (2).
By using James’s effective Hamiltonian method [44,45],

one can obtain the effective Hamiltonian

Heff (t ) = H (2)
eff (t ) + H (3)

eff (t ) + · · · + H (n)
eff (t ), (2)

where H (2)
eff (t ), H (3)

eff (t ), and H (n)
eff (t ) are second-order, third-

order, and nth-order effective Hamiltonians, respectively. Our
proposal aims to realize a tripartite interaction for a two-
photon process involving two operators, σ−â†

1â†
2 and σ+â1â2.

When the Hilbert space is expanded in the basis states
|e〉|n1〉1|n2〉2 and |g〉|n1 + 1〉1|n2 + 1〉2, the effective Hamil-
tonian can be expanded up to third order, while higher-order
terms are neglected. Here, |n1〉1 and |n2〉2 are, respectively, the
Fock states of cavities 1 and 2.

We focus on the third-order term and neglect the higher-
order terms. Thus, under the large detuning conditions δ1 �
g1, δ2 � g2, δp � �, the second-order and third-order effec-
tive Hamiltonians are given by [44,45]

H (2)
eff = 1

i
HI (t )

∫ t

HI (t ′)dt ′, (3)

H (3)
eff = −HI (t )

∫ t

HI (t1)
∫ t1

HI (t2)dt2dt1. (4)

Substituting Hamiltonian HI [i.e., Eq. (1)] into formula (3) and
dropping fast oscillating terms using the RWA, one can ob-
tain the second-order effective Hamiltonian (see Appendix A)
[44–48]

H (2)
eff = [

λ1
(
â†

1â1 + 1
2

) + λ2
(
â†

2â2 + 1
2

) + λp
]
σz, (5)

where λ1 = g2
1

δ1
, λ2 = g2

2
δ2

, λp = �2

δp
, and σz = |e〉〈e| − |g〉〈g|.

Then we consider the third-order case by employing
James’s effective Hamiltonian method [45]. Assuming that
δp � δ1 > δ2 and satisfying δp � δ1 + δ2, H (3)

eff can be ap-
proximated as the following form using the RWA (a detailed
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derivation of H (3)
eff is shown in Appendix B) [44–48]:

H (3)
eff = −g(σ−â†

1â†
2ei�t + σ+â1â2e−i�t ), (6)

where g = g1g2�[ 1
δ2(δp−δ2 ) + 1

δ1(δp−δ1 ) ] is the effective cou-
pling strength, � = δp − δ1 − δ2. Accordingly, one can obtain
the effective Hamiltonian

Heff = H (2)
eff + H (3)

eff = H0 + Hint, (7)

with

H0 = [
λ1

(
â†

1â1 + 1
2

) + λ2
(
â†

2â2 + 1
2

) + λp
]
σz, (8)

Hint = −g(σ−â†
1â†

2ei�t + σ+â1â2e−i�t ). (9)

From the Hamiltonian Hint, one can see that the atom is cou-
pled to cavities 1 and 2 simultaneously. The operator σ−â†

1â†
2,

involved in the Hamiltonian Hint , represents a tripartite inter-
action for a two-photon process, in which the atom makes the
transition from its upper level |e〉 to lower level |g〉, which
is accompanied by the emission of two photons into cavities
1 and 2, respectively; however, the operator σ+â1â2 repre-
sents a tripartite interaction for a reverse two-photon process,
in which the atom makes the transition |g〉 → |e〉, which is
accompanied by the absorption of two photons which are
originally in cavities 1 and 2, respectively.

We note that the previous works considered a single two-
level atom coupled to two cavity modes and two strong
classical pulses [49] or a strong classical pulse [50], which
employed the strong-driving limit or large detuning in the
derivation of the effective Hamiltonian. In this sense, they are
related to this work. However, Refs. [49,50] are different from
our work. References [49,50] focused on how to construct
the effective interaction Hamiltonians between two cavities,
where the degree of freedom for the atom was omitted by
choosing the atomic initial state. However, we concentrated
on how to derive an atom-cavity-cavity tripartite-interaction
effective Hamiltonian for simultaneously coupling two cavi-
ties and an atom. Thus, the form of our effective Hamiltonian
is different from that in Refs. [49,50].

III. GENERATION OF A HYBRID GHZ
ENTANGLED STATE

Now we show that the two-photon process, described by
the effective Hamiltonian (7), can be used to generate a hybrid
atom-cavity-cavity GHZ entangled state.

The bare states of the atom-cavity-cavity system can be
described as |e〉|n1〉1|n2〉2 and |g〉|n1 + 1〉1|n2 + 1〉2. In these
bare states, the effective Hamiltonian (7) can be described as

He2 =
[−(A + λ1 + λ2) −geei�t

−gee−i�t A

]
, (10)

where A = λ1(n1 + 1/2) + λ2(n2 + 1/2) + λp and
ge = g

√
(n1 + 1)(n2 + 1). Here, n1 and n2 are the photon

numbers of cavities 1 and 2, respectively.
Applying a unitary transformation U1 = e−iH0t to the

Hamiltonian (9), one has

H ′
e2 = eiH0t Hinte

−iH0t

= −g[ei�t e−i(N̂+λp)tσ−
eg â†

1â†
2e−i(N̂+λ1+λ2+λp)t + H.c.], (11)

where N̂ = λ1â†
1â1 + λ2â†

2â2. In the bare states |e〉|n1〉1|n2〉2

and |g〉|n1 + 1〉1|n2 + 1〉2, the effective Hamiltonian (11) can
be described as

H ′
e2 =

[
0 −geei(�−2A−λ1−λ2 )t

−gee−i(�−2A−λ1−λ2 )t 0

]
. (12)

Under the Hamiltonian (12), the time evolution of the state
|e〉|n1〉1|n2〉2 can be described as

|e〉|n〉1|n〉2 → cos[(n + 1)gt]|e〉|n〉1|n〉2

+ i sin[(n + 1)gt]|g〉|n + 1〉1|n + 1〉2, (13)

where we have set n1 = n2 = n and � = 2A + λ1 + λ2. Ac-
cordingly, one can obtain the following relationship between
the parameters:

� =
√

δp

2
[� − 2(n + 1)(λ1 + λ2)]. (14)

We assume that the atom is in state |e〉. This can be
achieved by applying a classical π pulse resonant to the
atom which is initially in state |g〉. If cavities 1 and 2 are
in the vacuum state |0〉1|0〉2, the initial state of the whole
system is |e〉|0〉1|0〉2. According to Eq. (13), one can real-
ize a transition |e〉|0〉1|0〉2 → i|g〉|1〉1|1〉2 for the evolution
time t = π/|2g|. This means that the simultaneous emission
of two photons into one cavity each is realized by using
only a two-level atom. If we suppose that the initial state
of the whole system is 1√

2
(|g〉 + |e〉)|0〉1|0〉2, we can trans-

fer the state of the atom into a two-cavity entangled state
for evolution time t = π/|2g|, i.e., 1√

2
(|g〉 + |e〉)|0〉1|0〉2 →

1√
2
|g〉(|0〉1|0〉2 + i|1〉1|1〉2), which may have a potential ap-

plication in the error correction [13]. Equation (13) shows
that after evolution time t = π/|4g|, we can generate a hybrid
atom-cavity-cavity (three-body) GHZ entangled state

|ψ〉 = 1√
2

(|e〉|0〉1|0〉2 + i|g〉|1〉1|1〉2). (15)

We should mention that setting � = 2A + λ1 + λ2 is ab-
solutely crucial for preparation of the GHZ state. Having a
nonzero value for � − 2A − λ1 − λ2 results in a detuning
between the |e〉|0〉1|0〉2 and |g〉|1〉1|1〉2 states, which limits
the efficiency of transferring excitations between the atom and
the cavity modes. This means that (i) the scheme is sensitive
to any imperfections in canceling the two terms [making the
precise value of the Rabi frequency in Eq. (14) extremely
important] and (ii) the scheme can work only when each
cavity starts with a definite Fock state (and not a general
superposition).

IV. EXPERIMENTAL FEASIBILITY

In this section, we investigate the experimental feasibility
of preparing the proposed hybrid GHZ state in a circuit quan-
tum electrodynamics (QED) system by applying the present
proposal. Circuit QED, consisting of superconducting artifi-
cial atoms (e.g., flux qubits, charge qubits, phase qubits, and
transmon qubits) and superconducting microwave cavities,
has become one of the best platforms for achieving quan-
tum computing and quantum information processing [51–58].
Superconducting qubits based on Josephson tunnel junctions
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FIG. 2. Diagram of the setup for two superconducting one-
dimensional transmission line resonators (1 and 2) coupled to a flux
qubit via capacitors.

have multiple energy levels, and their level spacings can be
rapidly adjusted by varying the external control parameters
(e.g., changing the magnetic field threading the loop of super-
conducting qubits) [55–57].

Based on circuit QED, a number of theoretical methods
have been proposed for transferring quantum states [59–65],
synthesizing entangled states (e.g., GHZ states, W states,
and cluster states) [22–31,66–71], and implementing mul-
tiqubit quantum gates [72–78] with superconducting qubits
or superconducting cavities. In experiments, quantum state
transfer between superconducting qubits has been demon-
strated [79–81], entangled states with 3–20 superconducting
qubits have been generated [40–43], and states of photons
(e.g., Fock states, NOON states, two-mode cat states, and
Schrödinger-cat states) have been created [82–85]. Recently,
high-fidelity two-qubit gates of superconducting qubits have
been experimentally implemented in circuit QED [86,87].

Our system consists of two superconducting cavities and
a superconducting flux qubit (Fig. 2). As shown in Fig. 2,
the two superconducting cavities are one-dimensional trans-
mission line resonators. After taking into account the qubit
decoherence and the cavity decay, the dynamics of the lossy
system is determined by the Markovian master equation

dρ

dt
= −i[HI , ρ] + κ1L[â1] + κ2L[â2]

+ γL[σ−] + γϕL[σee], (16)

where ρ is the density operator of the system, HI is given by
Eq. (1), L[�] = �ρ�+ − �+�ρ/2 − ρ�+�/2 (with � =
â1, â2, σ−, σee), and σee = |e〉〈e|. In addition, κ1 and κ2 are
the decay rates of cavities 1 and 2, and γ and γϕ are the energy
relaxation rate and the dephasing rate of the flux qubit.

The fidelity is evaluated by F = √〈ψid|ρ|ψid〉, where |ψid〉
is the ideal target state (i.e., without decoherence and dissipa-
tion considered). Recently, Ref. [88] gave a simple formula
for the fidelity reduction of any desired quantum operation.

We numerically calculate the fidelity for the hybrid atom-
cavity-cavity GHZ state generation by solving the master
equation (16). Numerical calculations are coded in PYTHON

by using the QUTIP library [89,90]. The ideal target state |ψid〉
is given by Eq. (15), and the initial state of the whole system is
given by |e〉|0〉1|0〉2. In our numerical simulation, we choose
g1/2π = 100 MHz, g2/2π = 50 MHz, δ1/2π = 3.66 GHz,
δ2/2π = 1.80 GHz, and δp/2π = 5.4716 GHz. Thus, ac-
cording to Eq. (14), we have �/2π ≈ 95.84 MHz, which is

FIG. 3. Fidelity F versus κ−1 and T for the hybrid GHZ en-
tangled state. The values of the parameters used in the numerical
simulations are κ−1

1 = κ−1, κ−1
2 = 1.2κ−1, γ −1

ϕ = T, and γ −1 = 2T .

available in experiments [91,92]. The coupling strengths here
are available because the coupling strength ∼636 MHz be-
tween a superconducting cavity and a flux qubit was reported
in experiments [93].

Figure 3 shows the calculated fidelities as a function of
κ−1 and T . We find that for κ−1 � 5 µs and T � 10 µs, the
fidelity exceeds 94.82%. When κ−1 = 50 µs and T = 50 µs,
the fidelity is approximately 98.99%. For T = 50 µs, the
decoherence times of the flux qubit are 50−100 µs, which
is a rather conservative case because a decoherence time of
70 µs to 1 ms for the flux qubit was experimentally reported
[94,95]. With the parameters chosen above, the entire oper-
ation time is estimated to be 0.86 µs, which is shorter than
the decoherence times of the flux qubit used in the numerical
simulations. The frequency of a flux qubit is typically within
the range of 1–30 GHz. Thus, we choose ωa/2π = 6.5 GHz.
According to the qubit-cavity detunings chosen above, we
have cavity frequencies ωc1/2π = 2.84 GHz and ωc2/2π =
4.70 GHz. For cavity decay time κ−1 = 50 µs, the quality
factors of cavities 1 and 2 are Q1 ∼ 8.91 × 105 and Q2 ∼
1.77 × 106, which are available in experiments [96,97]. A
numerical simulation shows that the high-fidelity generation
of the hybrid atom-cavity-cavity GHZ state can be achieved
by using current circuit QED technology. We now numer-
ically calculate the dynamics of the fidelity, the qubit mean
excitation number, and the cavity photon number by solving
the master equation (16). The ideal target state |ψid〉 of the
system is i|g〉|1〉1|1〉2, and the initial state is |e〉|0〉1|0〉2. Fig-
ure 4 displays the time evolution of the fidelity, the qubit mean
excitation number 〈σ+σ−〉, and the cavity 1 (2) mean photon
number 〈â†

1â1〉 (〈â†
2â2〉) as a function of 2gt . From Fig. 4(a),

we can see that the fidelity is approximately 96.93% for
2gt = π . Figure 4(a) shows the reversible excitation exchange
between the cavities and the qubit. When 2gt = π , the cavity
populations reach a maximum value at around 0.977, while
the qubit population reaches its minimum value at around
0.141, which is higher than the initial population in the sys-
tem.

We can increase the detunings to reduce the minimum
value of the qubit population. Figure 4(b) differs from
Fig. 4(a) in that it includes the time evolution of the fidelity
and the qubit mean excitation number without considering
the systematic dissipation (i.e., κ−1 = 0 and T = 0). In ad-
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(a)

(b)

FIG. 4. (a) Time evolution of the fidelity, the qubit mean exci-
tation number, and the mean cavity photon number by taking the
systematic dissipation into account. Here, we choose κ−1 = 50 µs
and T = 50 µs. The other parameters used in the numerical sim-
ulation are the same as those used in Fig. 3. (b) Time evolution
of the fidelity, the qubit mean excitation number, and the mean
cavity photon number while considering the systematic dissipation
in (a) but including the time evolution of the fidelity and the qubit
mean excitation number without considering the systematic dissi-
pation. Here, we choose δ1/2π = 380g2, δ2/2π = 140g2, δp/2π ≈
520.059g2, κ−1 = 1000 µs, and T = 1000 µs.

dition, we choose δ1/2π = 380g2, δ2/2π = 140g2, δp/2π ≈
520.059g2, κ−1 = 1000 µs, and T = 1000 µs, which are also
different from Fig. 4(a). Figure 4(b) shows the optimal fideli-
ties can reach 98.37% (with dissipation) and 99.96% (without
dissipation). We observe that for 2gt = π in Fig. 4(b), the
qubit population reaches a minimum value of ∼0.051 (with
dissipation) or 0.028 (without dissipation). This population
can further decrease when the detunings increase. However,
we require longer dissipation times κ−1 and T in the numeri-
cal simulation because the operation time increases with the
increase of the detunings, which may pose a challenge in
experiments. In this case, the operation time can be decreased
by increasing the coupling strengths. A numerical simulation
indicates that the simultaneous emission of two photons into
one cavity each is achieved by using a qubit.

The results shown in Fig. 4 are based on the full Hamil-
tonian HI [i.e., Eq. (1)]. We now numerically calculate the

dynamics of the qubit mean excitation number and the cav-
ity photon number based on the effective Hamiltonian (7)
in Fig. 4(a). We find that for 2gt = π in Fig. 4(a), the
photon population (not shown) can reach a maximum value
of ∼0.985 (with dissipation) or 0.999 (without dissipation),
while the qubit population (not shown) reaches a minimum
value of ∼0.065 (with dissipation) or 9.17 × 10−6 (without
dissipation). We can see that compared to the case with the
populations being transferred based on the full Hamiltonian
(1), the excitation of the qubit is fully transferred to cavities
1 and 2. This occurs because the effective Hamiltonian (7)
preserves the operator |e〉〈e| + â†

1â1 (and, equally, the operator
|e〉〈e| + â†

2â2); thus, the Hamiltonian H0 preserves the number
of excitations, and Hint converts each qubit excitation into one
photon in each of the cavity modes and vice versa. In addition,
dissipation processes keep the number of excitations constant
(dephasing) or reduce it (relaxation). However, the full Hamil-
tonian (1) does not preserve the number of excitations the
way the effective Hamiltonian does; thus, the significant pop-
ulation (i.e., the cavity-qubit population is much higher than
the system’s initial population) of Fig. 4(a) (based on the full
Hamiltonian) is caused by the limited validity of the effective
Hamiltonian. From Fig. 4(b) (based on the full Hamiltonian),
we can see that the significant population of Fig. 4(a) can be
decreased by increasing the detunings.

V. CONCLUSION

We have presented a method for realizing a two-photon
process in which a two-level atom can simultaneously absorb
or emit two photons separately distributed in two cavities.
As shown above, the distinguishing feature of this method is
that only two levels of the atom are needed; that is, no auxil-
iary atomic levels are required. Hence, decoherence from the
higher energy levels of the atom is avoided. We have shown
that the two-photon process can be used to generate a hy-
brid atom-cavity-cavity GHZ entangled state. Our numerical
simulations demonstrated that within the present circuit QED
technology, a hybrid atom-cavity-cavity GHZ state can be cre-
ated with high fidelity. Finally, this proposal is quite general
and can be applied to a wide range of physical systems, such
as a natural atom or a solid-state artificial atom coupled to
two optical or microwave cavities. The two-photon process
proposed in this work may have other potential applications
in quantum information processing and quantum computing.
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APPENDIX A: DERIVATION OF THE SECOND-ORDER EFFECTIVE HAMILTONIAN H (2)
eff

In this Appendix, we derive the second-order effective Hamiltonian (5) in the main text by employing James’s effective
Hamiltonian method [44,45]. According to Refs. [44,45], the second-order effective Hamiltonian is given by

H (2)
eff = 1

i
HI (t )

∫ t

HI
(
t ′)dt ′. (A1)

In the main text, the system’s interaction Hamiltonian HI is Eq. (1), i.e.,

HI = g1(â1σ
+eiδ1t + â†

1σ
−e−iδ1t ) + g2(â2σ

+eiδ2t + â†
2σ

−e−iδ2t ) + �(σ+eiδpt + σ−e−iδpt ). (A2)

Substituting Hamiltonian (A2) into formula (A1), we obtain

H (2)
eff = 1

i
HI (t )

∫ t

HI (t ′)dt ′

= 1

i
[g1(â1σ

+eiδ1t + â†
1σ

−e−iδ1t ) + g2(â2σ
+eiδ2t + â†

2σ
−e−iδ2t ) + �(σ+eiδpt + σ−e−iδpt )]

×
[

g1

iδ1
(â1σ

+eiδ1t − â1σ
+) − g1

iδ1
(â†

1σ
−e−iδ1t − â†

1σ
−) + g2

iδ2
(â2σ

+eiδ2t − â2σ
+)

− g2

iδ2
(â†

2σ
−e−iδ2t − â†

2σ
−) + �

iδp
(σ+eiδpt − σ+) − �

iδp
(σ−e−iδpt − σ−)

]

= g2
1

δ1
[â1â†

1|e〉〈e|(1 − eiδ1t )] + g1g2

δ2
[â1â†

2|e〉〈e|(ei(δ1−δ2 )t − eiδ1t )]

+ g1�

δp
[â1|e〉〈e|(ei(δ1−δp)t − eiδ1t )] − g2

1

δ1
[â†

1â1|g〉〈g|(1 − e−iδ1t )]

− g1g2

δ2
[â†

1â2|g〉〈g|(ei(δ2−δ1 )t − e−iδ1t )] − g1�

δp
[â†

1|g〉〈g|(ei(δp−δ1 )t − e−iδ1t )]

+ g2
2

δ2
[â2â†

2|e〉〈e|(1 − eiδ2t )] + g1g2

δ1
[â†

1â2|e〉〈e|(ei(δ2−δ1 )t − eiδ2t )]

+ g2�

δp
[â2|e〉〈e|(ei(δ2−δp)t − eiδ2t )] − g1g2

δ1
[â1â†

2|g〉〈g|(ei(δ1−δ2 )t − e−iδ2t )]

− g2
2

δ2
[â†

2â2|g〉〈g|(1 − e−iδ2t )] − g2�

δp
[â†

2|g〉〈g|(ei(δp−δ2 )t − e−iδ2t )]

+ g1�

δ1
[â†

1|e〉〈e|(ei(δp−δ1 )t − eiδpt )] + g2�

δ2
[â†

2|e〉〈e|(ei(δp−δ2 )t − eiδpt )]

+ �2

δp
[|e〉〈e|(1 − eiδpt )] − g1�

δ1
[â1|g〉〈g|(ei(δ1−δp)t − e−iδpt )]

− g2�

δ2
[â2|g〉〈g|(ei(δ2−δp)t − e−iδpt )] − �2

δp
[|g〉〈g|(1 − e−iδpt )]. (A3)

If the dynamics are time averaged over a period much longer than the period of any of the oscillations present in the effective
Hamiltonian (i.e., averaged over a time Ta � 2π/min{|δm − δn|}, with m 
= n = 1, 2, p), the fast oscillating terms (i.e., the
time-dependent terms) can be neglected by the RWA [44].

Ignoring fast oscillating terms (i.e., the time-dependent terms) using the RWA [44], we can obtain the reduced second-order
effective Hamiltonian

H (2)
eff = g2

1

δ1
(â1â†

1|e〉〈e| − â†
1â1|g〉〈g|) + g2

2

δ2
(â2â†

2|e〉〈e| − â†
2â2|g〉〈g|) + �2

δp
(|e〉〈e| − |g〉〈g|)

=
[
λ1

(
â†

1â1 + 1

2

)
+ λ2

(
â†

2â2 + 1

2

)
+ λp

]
σz, (A4)

which is the Hamiltonian (5) in the main text. Here, λ1 = g2
1

δ1
, λ2 = g2

2
δ2

, λp = �2

δp
, and σz = |e〉〈e| − |g〉〈g|.
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APPENDIX B: DERIVATION OF THE THIRD-ORDER EFFECTIVE HAMILTONIAN H (3)
eff

In this Appendix, we derive the third-order effective Hamiltonians (6) in the main text by using James’s effective Hamiltonian
method [44,45]. In the interaction picture, the interaction Hamiltonian of the system has the form

HI (t ) =
∑

m

ĥm exp (iωmt ) + ĥ†
m exp (−iωmt ). (B1)

Consider the third-order case and assume that all of the frequencies ωm are distinct and the algebraic sum of any three frequencies
is equal to zero or distinct from zero. By using the RWA, one can obtain a third-order James’s effective Hamiltonian [45],

H (3)
eff (t ) =

∑
l,m,n

{
1

ωn(ωn − ωm)
[ĥl ĥ

†
mĥnei(ωl −ωm+ωn )t + ĥ†

l ĥmĥ†
nei(−ωl +ωm−ωn )t + ĥl ĥmĥ†

nei(ωl +ωm−ωn )t + ĥ†
l ĥ†

mĥnei(−ωl −ωm+ωn )t ]

+ 1

ωn(ωn + ωm)
[ĥ†

l ĥmĥnei(−ωl +ωm+ωn )t + ĥl ĥ
†
mĥ†

nei(ωl −ωm−ωn )t ]

}
. (B2)

In our main text, the interaction Hamiltonian of the system is given by Eq. (1), i.e.,

HI = g1(â1σ
+eiδ1t + â†

1σ
−e−iδ1t ) + g2(â2σ

+eiδ2t + â†
2σ

−e−iδ2t ) + �(σ+eiδpt + σ−e−iδpt ). (B3)

According to Eqs. (B1) and (B2), we choose ĥ1 = g1â1σ
+, ω1 = δ1; ĥ2 = g2â2σ

+, ω2 = δ2; and ĥ3 = �σ+, ω3 = δp. Thus, in
the dispersive regimes δ1 � g1, δ2 � g2, and δp � �, we can obtain the third-order James’s effective Hamiltonian according to
formula (B2) [45]:

H (3)
eff = 1

ω3(ω3 − ω2)
[ĥ1ĥ†

2ĥ3ei(ω1−ω2+ω3 )t + ĥ†
1ĥ2ĥ†

3e−i(ω1−ω2+ω3 )t + ĥ1ĥ2ĥ†
3ei(ω1+ω2−ω3 )t + ĥ†

1ĥ†
2ĥ3e−i(ω1+ω2−ω3 )t ]

+ 1

ω3(ω3 + ω2)
[ĥ†

1ĥ2ĥ3ei(−ω1+ω2+ω3 )t + ĥ1ĥ†
2ĥ†

3e−i(−ω1+ω2+ω3 )t ]

+ 1

ω2(ω2 − ω3)
[ĥ1ĥ†

3ĥ2ei(ω1−ω3+ω2 )t + ĥ†
1ĥ3ĥ†

2e−i(ω1−ω3+ω2 )t + ĥ1ĥ3ĥ†
2ei(ω1+ω3−ω2 )t + ĥ†

1ĥ†
3ĥ2e−i(ω1+ω3−ω2 )t ]

+ 1

ω2(ω2 + ω3)
[ĥ†

1ĥ3ĥ2ei(−ω1+ω3+ω2 )t + ĥ1ĥ†
3ĥ†

2e−i(−ω1+ω3+ω2 )t ]

+ 1

ω3(ω3 − ω1)
[ĥ2ĥ†

1ĥ3ei(ω2−ω1+ω3 )t + ĥ†
2ĥ1ĥ†

3e−i(ω2−ω1+ω3 )t + ĥ2ĥ1ĥ†
3ei(ω2+ω1−ω3 )t + ĥ†

2ĥ†
1ĥ3e−i(ω2+ω1−ω3 )t ]

+ 1

ω3(ω3 + ω1)
[ĥ†

2ĥ1ĥ3ei(−ω2+ω1+ω3 )t + ĥ2ĥ†
1ĥ†

3e−i(−ω2+ω1+ω3 )t ]

+ 1

ω1(ω1 − ω3)
[ĥ2ĥ†

3ĥ1ei(ω2−ω3+ω1 )t + ĥ†
2ĥ3ĥ†

1e−i(ω2−ω3+ω1 )t + ĥ2ĥ3ĥ†
1ei(ω2+ω3−ω1 )t + ĥ†

2ĥ†
3ĥ1e−i(ω2+ω3−ω1 )t ]

+ 1

ω1(ω1 + ω3)
[ĥ†

2ĥ3ĥ1ei(−ω2+ω3+ω1 )t + ĥ2ĥ†
3ĥ†

1e−i(−ω2+ω3+ω1 )t ]

+ 1

ω2(ω2 − ω1)
[ĥ3ĥ†

1ĥ2ei(ω3−ω1+ω2 )t + ĥ†
3ĥ1ĥ†

2e−i(ω3−ω1+ω2 )t + ĥ3ĥ1ĥ†
2ei(ω3+ω1−ω2 )t + ĥ†

3ĥ†
1ĥ2e−i(ω3+ω1−ω2 )t ]

+ 1

ω2(ω2 + ω1)
[ĥ†

3ĥ1ĥ2ei(−ω3+ω1+ω2 )t + ĥ3ĥ†
1ĥ†

2e−i(−ω3+ω1+ω2 )t ]

+ 1

ω1(ω1 − ω2)
[ĥ3ĥ†

2ĥ1ei(ω3−ω2+ω1 )t + ĥ†
3ĥ2ĥ†

1e−i(ω3−ω2+ω1 )t + ĥ3ĥ2ĥ†
1ei(ω3+ω2−ω1 )t + ĥ†

3ĥ†
2ĥ1e−i(ω3+ω2−ω1 )t ]

+ 1

ω1(ω1 + ω2)
[ĥ†

3ĥ2ĥ1ei(−ω3+ω2+ω1 )t + ĥ3ĥ†
2ĥ†

1e−i(−ω3+ω2+ω1 )t ]. (B4)

Assuming that ω3 � ω1 > ω2 (i.e., δp � δ1 > δ2) and satisfying ω3 � ω1 + ω2 (i.e., δp � δ1 + δ2), we can drop the fast
oscillating terms using the RWA. Keeping only the slowly oscillating terms with the factors ei(ω3−ω1−ω2 )t and e−i(ω3−ω1−ω2 )t , the
effective Hamiltonian H (3)

eff can be approximated as

H (3)
eff = 1

ω3(ω3 − ω2)
[ĥ1ĥ2ĥ†

3ei(ω1+ω2−ω3 )t + ĥ†
1ĥ†

2ĥ3e−i(ω1+ω2−ω3 )t ] + 1

ω2(ω2 − ω3)
[ĥ1ĥ†

3ĥ2ei(ω1−ω3+ω2 )t + ĥ†
1ĥ3ĥ†

2e−i(ω1−ω3+ω2 )t ]

+ 1

ω3(ω3 − ω1)

[
ĥ2ĥ1ĥ†

3ei(ω2+ω1−ω3 )t + ĥ†
2ĥ†

1ĥ3e−i(ω2+ω1−ω3 )t] + 1

ω1(ω1 − ω3)
[ĥ2ĥ†

3ĥ1ei(ω2−ω3+ω1 )t + ĥ†
2ĥ3ĥ†

1e−i(ω2−ω3+ω1 )t ]
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+ 1

ω2(ω2 + ω1)
[ĥ†

3ĥ1ĥ2ei(−ω3+ω1+ω2 )t + ĥ3ĥ†
1ĥ†

2e−i(−ω3+ω1+ω2 )t ]

+ 1

ω1(ω1 + ω2)
[ĥ†

3ĥ2ĥ1ei(−ω3+ω2+ω1 )t + ĥ3ĥ†
2ĥ†

1e−i(−ω3+ω2+ω1 )t ]

= g1g2�

δ2(δ2 − δp)
[â1â2σ

+ei(δ1−δp+δ2 )t + â†
1â†

2σ
−e−i(δ1−δp+δ2 )t ] + g1g2�

δ1(δ1 − δp)
[â1â2σ

+ei(δ2−δp+δ1 )t + â†
1â†

2σ
−e−i(δ2−δp+δ1 )t ],

(B5)

where we have used σ−σ− = 0 and σ+σ+ = 0. Accordingly, the Hamiltonian (B5) can be reduced to

H (3)
eff = −g(â1â2σ

+e−i�t + â†
1â†

2σ
−ei�t ), (B6)

which is the Hamiltonian (6) in the main text. Here, � = δp − δ1 − δ2, g = g1g2�[ 1
δ2(δp−δ2 ) + 1

δ1(δp−δ1 ) ].
From Eq. (B4), we can obtain the fourth-order effective Hamiltonian,

H (4)
eff = −1

i
HI (t )

∫ t

HI (t1)
∫ t1

HI (t2)
∫ t2

HI (t3)dt3dt2dt1

= g1χ1

δ1 − δ2 + δp
[−â1â†

1â2|e〉〈e|e−i(δp−δ2 )t + â1â†
1â2|e〉〈e|eiδ1t + â†

1â1â†
2|g〉〈g|ei(δp−δ2 )t − â†

1â1â†
2|g〉〈g|e−iδ1t ]

+ g1χ2

δp − δ1 + δ2
[−â1â1â†

2|e〉〈e|e−i(δp−2δ1+δ2 )t + â1â1â†
2|e〉〈e|eiδ1t + â†

1â†
1â2|g〉〈g|ei(δp−2δ1+δ2 )t − â†

1â†
1â2|g〉〈g|e−iδ1t ]

+ g1g

δp − δ1 − δ2
[−â1â†

1â†
2|e〉〈e|e−i(−δp+δ2 )t + â1â†

1â†
2|e〉〈e|eiδ1t + â†

1â1â2|g〉〈g|ei(−δp+δ2 )t − â†
1â1â2|g〉〈g|e−iδ1t ]

+ g2χ1

δ1 − δ2 + δp
[−â†

1â2â2|e〉〈e|e−i(δ1−2δ2+δp)t + â†
1â2â2|e〉〈e|eiδ2t + â1â†

2â†
2|g〉〈g|ei(δ1−2δ2+δp)t − â1â†

2â†
2|g〉〈g|e−iδ2t ]

+ g2χ2

δp − δ1 + δ2
[−â1â2â†

2|e〉〈e|e−i(δp−δ1 )t + â1â2â†
2|e〉〈e|eiδ2t + â†

1â†
2â2|g〉〈g|ei(δp−δ1 )t − â†

1â†
2â2|g〉〈g|e−iδ2t ]

+ g2g

δp − δ1 − δ2
[−â†

1â2â†
2|e〉〈e|e−i(δ1−δp)t + â†

1â2â†
2|e〉〈e|eiδ2t + â1â†

2â2|g〉〈g|ei(δ1−δp)t − â1â†
2â2|g〉〈g|e−iδ2t ]

+ �χ1

δ1 − δ2 + δp
[−â†

1â2|e〉〈e|e−i(δ1−δ2 )t + â†
1â2|e〉〈e|eiδpt + â1â†

2|g〉〈g|ei(δ1−δ2 )t − â1â†
2|g〉〈g|e−iδpt ]

+ �χ2

δp − δ1 + δ2
[−â1â†

2|e〉〈e|e−i(−δ1+δ2 )t + â1â†
2|e〉〈e|eiδpt + â†

1â2|g〉〈g|ei(−δ1+δ2 )t − â†
1â2|g〉〈g|e−iδpt ]

+ �g

δp − δ1 − δ2
[−â†

1â†
2|e〉〈e|e−i(δ1−2δp+δ2 )t + â†

1â†
2|e〉〈e|eiδpt + â1â2|g〉〈g|ei(δ1−2δp+δ2 )t − â1â2|g〉〈g|e−iδpt ], (B7)

where χ1 = g1g2�[ 1
δp(δp−δ2 ) + 1

δ1(δ1−δ2 ) ] and χ2 = g1g2�[ 1
δp(δp−δ1 ) − 1

δ2(δ1−δ2 ) ]. Typically, under the condition δp � δ1 > δ2 and
satisfying δp + δ2 � 2δ1, the fourth-order terms can be neglected using the RWA. According to the condition δp � δ1 + δ2 given
above, we can obtain δ1 � 2δ2 (i.e., δp � 3δ2). Alternatively, when the third-order effective coupling strength is far greater than
the fourth-order effective coupling constants, i.e., g � { g1χ1

δ1−δ2+δp
,

g1χ2

δp−δ1+δ2
, . . . ,

�g
δp−δ1−δ2

}, the fourth-order terms can also be
neglected. However, these conditions do not need to be met when the Hilbert space is expanded in the basis states |e〉|0〉1|0〉2 and
|g〉|1〉1|1〉2. In the states |e〉|0〉1|0〉2 and |g〉|1〉1|1〉2, we can easily obtain 〈e|〈0|〈0|H (4)

eff |e〉|0〉|0〉 = 0, 〈e|〈0|〈0|H (4)
eff |g〉|1〉|1〉 = 0,

〈g|〈1|〈1|H (4)
eff |e〉|0〉|0〉 = 0, and 〈g|〈1|〈1|H (4)

eff |g〉|1〉|1〉 = 0. Thus, when the Hilbert space is expanded in the states |e〉|0〉1|0〉2 and
|g〉|1〉1|1〉2, the fourth-order terms can be neglected.
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