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N emitters collectively coupled to a quantized cavity mode are described by the Tavis-Cummings model. We
present a complete analytical solution of the model in the presence of inhomogeneous couplings and energetic
disorder. We derive the exact expressions for the bright and the dark sectors that decouple the disordered model
and find that, in the thermodynamic limit, the energetic disorder transforms the bright sector to Fano’s model that
can be easily solved. We thoroughly explore the effects of energetic disorder assuming a Gaussian distribution
of emitter transition energies. We compare the Fano resonances in optical absorption and inelastic electron
scattering in both the weak and the strong coupling regimes. We study the evolution of the optical absorption
with an increase in the disorder strength and find that it changes the lower and upper polaritons to their broadened
resonances that finally transform to a single resonance at the bare cavity photon energy, thus taking the system
from the strong to the weak coupling regime. Interestingly, we learn that Rabi splitting can exist even in the
weak coupling regime, while the polaritonic peaks in the strong coupling regime can represent almost excitonic
states at intermediate disorder strengths. We also calculate the photon Green’s function to see the effect of cavity
leakage and nonradiative emitter losses and find that the polariton line width exhibits a minimum as a function
of detuning when the cavity leakage is comparable to the Fano broadening.
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I. INTRODUCTION

Cavity quantum electrodynamics (cavity QED) deals with
the interaction of a spatially confined quantized electromag-
netic field and some form of matter excitations that can
originate from a number of different systems, e.g., atoms
[1,2], molecules [3,4], quantum dots [5–7], and Bose-Einstein
condensates [8,9]. In microcavities, interesting many-body
phenomena can arise as the photons mediate interaction
[10–12] and coherence [13] between the matter constituents
and in turn acquire correlations among themselves even when
they leak out [14]. In the strong coupling regime [15], these
systems host polaritons [16] that have a hybrid matter-light
character and, due to their technological prospects [4,17–21],
have been extensively studied.

The minimal model to describe the cavity QED with mul-
tiple matter systems, or emitters, as they are usually called,
is the Tavis-Cummings (TC) model [22]. The model can be
analytically solved in the absence of disorder using the bright
(symmetric) and dark (nonsymmetric) states [23]. However,
in the presence of a disorder in the transition energies of the
emitters, these states are not decoupled, so this transformation
is rendered useless and we resort to brute force numerical
solutions [24–26]. In some cases, the disorder can even invali-
date the basic TC model and an extension is deemed necessary
[27]. In natural systems, on the one hand, disorder in both
the transition energies and couplings is inevitable. On the
other, a tuneable disorder can be realized in artificial systems
[28,29]. Thus, exploring the effects of disorder is important,
and solving the TC model analytically can be a significant step
forward as it can provide us with an insight into the disordered
cavity QED systems.

Although the TC model describes a wide range of systems,
we illustrate our results here considering organic micro-
cavities as an example. The transition energies of organic
molecules usually have a distribution of width

√
2 × 0.1 eV

[30–32], which is a sizable fraction of the typical Rabi
splitting of 0.5 eV [33] in these systems. Furthermore, the
distribution of orientations and positions of the molecules in
the cavity translates to a disorder in their couplings to the
cavity mode.

Organic polaritons have interesting properties, e.g., con-
densation and lasing at room temperature [4,34,35]. Their
effect on materials’ properties, e.g., charge and energy trans-
port [36–39], and chemical reaction rates [23,40–46] has also
been studied recently. Besides the polaritons, we have a large
number of dark states in such systems [23,47] that also play an
important role in various processes of interest, e.g., catalysis
[26]. While the dark states were initially thought to be only
a reservoir of incoherent excitations [48,49], they are now
well appreciated for their coherence and delocalized nature
[50–52]. Although the dark states do not couple to the light,
they can still be optically excited indirectly by exciting polari-
tons or higher-energy emitter states. In addition, the electrical
excitation predominantly creates the dark states due to their
large density of states. The dark states can relax to the lower
polariton state, which is important for creating a large po-
lariton population for condensation and lasing, for instance,
and their dynamics has been studied extensively [53–61]. The
effect of disorder on the localization of the dark state has also
been numerically studied recently [25]. Due to their hugely
important role in organic microcavities and other cavity QED
systems, it is desired to know their exact form under realistic
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conditions, which can lead to a significant development of
analytical methods.

Since real systems are often weakly coupled to their envi-
ronment, the resulting homogeneous broadening of the cavity
and molecular states is inherited by the polariton states, and
can be treated using open quantum system approaches—
master equations—or phenomenologically with the Green’s
functions [62–64] (or an equivalent quantum control method
[65]). In fact, to obtain the optical absorption spectrum, the
Green’s functions can exactly treat the energetic disorder or
the inhomogeneous broadening as well [29,66], as we will
later show in this article. (Nevertheless, it has also been used
to find an approximate solution by neglecting the effect of
energetic disorder on the light-matter coupling strength [24].)
However, only the photon Green’s function can be computed
this way, which alone cannot describe the eigenstates of the
system, thus severely limiting the scope of the previous stud-
ies [24,29,65,66].

Exact numerical diagonalization, another method that is
simple and usually effective, has its own shortcoming. In a
clean system with identical emitters, studying the collective
effects in the thermodynamic limit is possible, as the typi-
cal size that is considered large enough is N = 20, where
N is the number of emitters. However, in an energetically
disordered system, a realistically smooth distribution of states
that converges the results requires N � 106, which is com-
putationally intractable considering that all eigenstates of the
Hamiltonian are to be computed. This is the reason that exact
diagonalization in such cases would even fail to capture the
features in the optical spectrum that are given by the photon
Green’s function in the thermodynamic limit.

What is so important in the thermodynamic limit of the
energetically disordered system that has not yet been under-
stood? It is the emergence of the Fano’s model [67], which
can only be found if the Hamiltonian is first decoupled into its
exact bright and dark subspaces. Fano’s model describes the
interaction of a discrete or localized state to a continuous band
and exhibits Fano resonances [67–71]. It gives a characteristic
asymmetric line shape in excitation spectra that finds appli-
cations [72] in sensing and switching devices [73,74]. It is
ubiquitous in physical systems [75–82] but, being a coherent
phenomenon, finding it in a disordered system [83,84] is not
common. Fano’s model has always been applied in the weak
coupling regime but, as we will shortly see, it is also relevant
in the strong coupling regime [71].

Here, we consider the Tavis-Cummings model with disor-
der in both emitter energies and their couplings to the cavity
mode. We derive the exact expressions for the bright and
the dark states that span the two decoupled subspaces of
the model. We show that, in the thermodynamic limit, the
bright states of the disordered system form a nondegenerate
band whose interaction with the cavity mode gives the Fano’s
model that can be exactly solved. Figure 1 illustrates the
formation of the bright band and the nature of the eigenstates
of the system at varying levels of the disorder strength. In
Fig. 1(a), when N emitters have the same transition energy,
their states can be transformed to give a single bright state
|S0〉 that couples to the cavity and N − 1 dark states that
are decoupled, hence the names. However, when the emitter

FIG. 1. Effect of energetic disorder in the thermodynamic limit.
(a) Bright (permutation symmetric) and dark (nonsymmetric) states.
In the absence of energetic disorder (left), N emitters form a single
bright state and N − 1 dark states. In the presence of energetic
disorder (right), where the density of states (DOS) forms a local-
ized distribution, such bright-dark decoupling occurs at all energies
separately, which produces a nondegenerate continuum of bright
states (flat DOS) and a distribution of dark states. The coupling of
the bright band to the cavity mode V (ω) equals the square root
of the emitter DOS. (b)–(e) The eigenstates of the system formed
by the coupling between the bright state |S0〉 or band |S0(ω)〉 and
the cavity photon state |1P〉. Without energetic disorder (b), upper
and lower polaritons (UP, LP) are formed. With energetic disorder
(c)–(e), we have a continuum of eigenstates at the original bright
band energies but the true polariton states exist only at small disorder
(c). At intermediate disorder, we have polariton’s Fano resonances
(d) that transform to the photon’s Fano resonance (e) at large disorder
strengths.

energies form a distribution, a similar transformation at every
energy produces bright and dark states at that energy, decou-
pling the dark sector completely and forming a nondegenerate
band of bright states |S0(ω)〉 with flat density of states (DOS).
The eigenstates of the system in the single excitation space are
formed by the coupling between |S0〉 or |S0(ω)〉 and the cavity
photon state |1P〉 as shown in Figs. 1(b)–1(e), where differ-
ent scenarios that give polaritons [Figs. 1(b) and 1(c)], their
Fano resonances [Fig. 1(d)], and the photon’s Fano resonance
[Fig. 1(e)] are illustrated, which result from progressively
increasing the energetic disorder σ that takes the system from
the strong coupling regime to the weak coupling regime. Our
calculations suggest that the polaritons are a manifestation of
the Fano resonances at weak disorder. Further, we show that
the Rabi splitting or anticrossing in the optical spectra does
not have to correspond to the polaritons; they should also
be seen when the corresponding Fano resonances are better
thought of as matter states with strong optical absorption.

For completeness, we also consider the effect of losses
on the optical response of the system and compute the exact
photon Green’s function that encodes it. We explore the effect
of cavity and emitter losses on the optical absorption spectrum
and find that, in organic microcavities, it should exhibit a
minimum in the polariton line width around zero detuning.
While preparing for the revised version of this manuscript, we
found another work with some overlap [66].

The organization of this article is as follows. The
decoupling of the TC model into its bright and dark spaces
is presented in Sec. II, where Sec. II A considers N identical
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emitters, Sec. II B includes disorder in the couplings only,
while Sec. II C also takes account of energetic disorder.
Section III contains the results related to the Fano’s
model. The emergence of the Fano’s model and its
solution in two possible scenarios [shown in Figs. 1(c)
and 1(d)] are given in Sec. III A. Fano resonances
in two types of excitation spectra—optical absorption
and inelastic electron scattering—are presented in
Sec. III B in both the weak and strong coupling
regimes. Section IV explores the effects of energetic disorder,
where Sec. IV A considers the Rabi splitting and the nature
of the eigenstates, Sec. IV B discusses the differences from a
homogeneous broadening, and Sec. IV C analyzes the Fano
broadening of polaritons. Finally, the effects of losses are
described in Sec. V, where the photon Green’s function is
used to study the polariton line shape and line width as well
as the role of the distribution of emitters’ energies.

II. MODEL AND ITS SOLUTION

Consider N two-level emitters coupled to a common cavity
mode. The Hamiltonian of this system in the rotating wave
approximation [85] is given by

Ĥ = ωcâ†â +
N∑

i=1

{εiσ̂
+
i σ̂−

i + gi(â
†σ̂−

i + σ̂+
i â)}, (1)

where ωc is the energy of a cavity photon, â†, â are its creation
and annihilation operators, and σ±

i are raising and lower-
ing operators for the ith emitter that has transition energy
εi and couples to the cavity mode with strength gi. Both
gi and εi are randomly distributed according to some prob-
ability functions. Ĥ commutes with the excitation number
N̂ex = â†â + ∑N

i σ̂+
i σ̂−

i , which allows its diagonalization in
an eigenspace of N̂ex. We will focus on the single excitation
subspace in this article.

In the following sections, we describe the decoupling of the
emitters’ Hilbert space into bright and dark sectors, where the
bright sector couples to the cavity mode but the dark sector
does not.

A. Identical emitters

For identical emitters, i.e., when εi = ε and gi = g for all
i, the solution is already well known. In this case, a unitary
transformation to the symmetric (bright) and nonsymmetric
(dark) superpositions of the emitter states block-diagonalizes
the TC model in the single excitation space. The bright state
is created by

Ŝ+
0 ≡ 1√

N

N∑
i=1

σ̂+
i (2)

and produces the two polariton states due to its coupling to the
cavity mode, which are given by

�̂+
UP = cos θ â† + sin θ Ŝ+

0 , (3)

�̂+
LP = sin θ â† − cos θ Ŝ+

0 , (4)

ωUP = 1
2

( − δ +
√

δ2 + 4ω2
R

)
, (5)

ωLP = − 1
2

(
δ +

√
δ2 + 4ω2

R

)
, (6)

2θ = tan−1(2ωR/δ), (7)

where δ = ωc − ε and �̂+
UP/LP create the polaritonic states at

energies ωUP/LP.
For the nonsymmetric or dark states, being a degenerate

manifold (at the bare exciton energy ε), there is no unique
representation and one can choose any complete set as basis
states for the dark space. Usually, a set of delocalized discrete
Fourier transform states is used, given by

ˆ̃S+
k ≡ 1√

N

N∑
n=1

ei2πkn/N σ̂+
n , k ∈ [1,N − 1].

In the case of inhomogeneous couplings (i.e., when a disorder
in the couplings exists), these states no longer represent the
dark sector. Here, we present another set that can be easily
modified in such a case.

Inspired from the maximally localized dark state,

Ŝ+
N−1 ≡

√
N − 1

N σ̂+
N − 1√

N (N − 1)

N−1∑
i=1

σ̂+
i ,

that is fairly known and is localized at site N , we can focus
on how it turns out to be orthogonal to the bright state Ŝ+

0 . We
note that the contribution from the N th site is exactly canceled
by the sites 1 to N − 1. Designing another dark state on
the same pattern to ensure its orthogonalization to Ŝ+

N−1, we
obtain Ŝ+

N−2 that is maximally localized on emitter N − 1 but
has zero component along σ̂+

N , i.e., on the site N . Repeating
this process, we construct an orthonormal representation for
the dark states where different dark states tend to localize on
different molecules, albeit to a varying degree, given by [86]

Ŝ+
j ≡ 1√

j( j + 1)

⎛
⎝ j∑

i=1

σ̂+
i − jσ̂+

j+1

⎞
⎠, (8)

where j ∈ [1,N − 1].

B. Only off-diagonal disorder

It is well known that when a disorder in the couplings
exists, Ŝ+

0 modifies to

Ŝ+
0 ≡ 1

GN

N∑
i=1

giσ̂
+
i , (9)

where G2
N ≡ ∑N

i=1 g2
i . However, exact expressions for the

dark states are not known. As we mentioned in the previous
section, we modify the maximally localized states to obtain
just that. These can be obtained by following the changes in
Ŝ+

0 and imposing the orthogonalization of the dark states to
this bright state. That is, try

Ŝ+
j ≡ α j

⎛
⎝ j∑

i=1

giσ̂
+
i − β j σ̂

+
j+1

⎞
⎠,

and impose 〈GS|Ŝ−
0 Ŝ+

j |GS〉 = 0, where |GS〉 is the ground
state of the emitters. This gives β j = G2

j/g j+1, and then
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normalization 〈GS|Ŝ−
j Ŝ+

j |GS〉 =1 gives α j=g j+1/(GjGj+1).
We thus obtain

Ŝ+
j ≡ g j+1

GjGj+1

j∑
i=1

giσ̂
+
i − Gj

Gj+1
σ̂+

j+1. (10)

C. Fully disordered

Due to the presence of disorder in the diagonal terms in Ĥ,
the above transformations no longer work. However, as we
show below, the exact bright and dark subspaces still do exist
and it is still possible to block diagonalize Ĥ. Even though the
energies {εi} are randomly distributed, assuming their intrinsic
line width γ to be negligible for the moment, we can count the
number of states at any given energy and make bright and dark
sectors for every energy level. Indexing these energy levels in
ascending order, let us take Kn to be the degeneracy of the
nth level at energy ωn. Relabeling the emitters i → n, in with
in ∈ [1, Kn] and dropping the subscript for brevity, εi → ωn,i,
gi → gn,i, and σ±

i → σ±
n,i. This allows us to make bright and

dark states for every level, similar to Eqs. (9) and (10). For the
nth degenerate level, we have

Ŝ+
n,0 ≡ 1

Gn,Kn

Kn∑
i=1

gn,iσ̂
+
n,i, (11)

Ŝ+
n, j ≡ gn, j+1

Gn, jGn, j+1

j∑
i=1

gn,iσ̂
+
n,i − Gn, j

Gn, j+1
σ̂+

n, j+1, (12)

where j ∈ [1, Kn − 1] and G2
n,l = ∑l

i=1 g2
n,i. For the nonde-

generate levels, only a bright state Ŝ+
n,0 = σ̂+

n,1 exists. Taking

N as the number of bright states or the number of levels, Ĥ
can be written as Ĥ = ĤB + ĤD, where

ĤB = ωcâ†â +
N∑

n=1

ωnŜ+
n,0Ŝ−

n,0 +
N∑

n=1

Gn,Kn [âŜ+
n,0 + â†Ŝ−

n,0],

(13)

ĤD =
N∑

n=1

ωn

Kn−1∑
j=1

Ŝ+
n, jŜ−

n, j, (14)

where ĤD is again already diagonal, and there are
ND = ∑N

n=1(Kn − 1) = N − N dark states in total. Thus, to
completely solve the disordered TC model, all that is left is
the diagonalization of ĤB above.

ĤB can be diagonalized numerically. The size of the bright
space could be negligibly small compared to the full space,
i.e., N ≪ N . For instance, even at N = 1023, N could be
taken as small as ∼ 102–103 for most realistic situations
without compromising the thermodynamic limit. However,
probably the best outcome of our approach is that, at large
N , when {ωn} forms a continuous band, following Fano [67],
analytical solution of ĤB can also be found, as follows.

III. EMERGENCE OF FANO’S MODEL

In the thermodynamic limit, N → ∞, we can con-
sider the continuous limit for the bright band. Taking

G2
n,Kn

→ V (ω)2dω,

V (ω)2dω = K (ω)dω

∫
dgPc(g)g2,

= NP(ω)dω 〈g2〉 , (15)

where Pc(g) and P(ω) are distribution functions for couplings
and energies. Note that as long as we get the same value
for 〈g2〉, the specific form of Pc(g) does not matter. Taking
ω2

R ≡ ∑
n G2

n,Kn
and noting that

∫
P(ω)dω = 1, we can now

write ω2
R = ∫

V (ω)2dω = N 〈g2〉, which can be compared to
Eq. (15) above to write

V (ω) = ωR

√
P(ω). (16)

Thus, the continuous limit of ĤB in Eq. (13) becomes

ĤB = ωcâ†â +
∫

ωŜ+
0 (ω)Ŝ−

0 (ω)dω

+
∫

V (ω)[âŜ+
0 (ω) + â†Ŝ−

0 (ω)]dω. (17)

A. Fano’s model: ĤB in Nex = 1 subspace

There are three ingredients in the Fano’s model [67]: (i) a
discrete state interacting with a (ii) continuum of states that
form the eigenstates of the system to which (iii) transition
from another discrete state [uncoupled to (i) and (ii)] is to be
explored. Since Nex is a conserved quantity, ĤB is decoupled
in subspaces with different Nex. In the following we show
that ĤB,1ex (ĤB in Nex = 1 subspace) consists of (i) and (ii),
whereas the transitions from the sole eigenstate of ĤB,0ex (the
ground state of the full system) to the eigenstates of ĤB,1ex

should give the Fano resonances.
In the single excitation subspace we can either have

a cavity photon or a molecular excitation of the bright
band. The corresponding states are |1P〉 ≡ â† |vac〉 and
|S0(ω)〉 ≡ Ŝ+

0 (ω) |vac〉, where |vac〉 = |0P〉 ⊗ |GS〉 is the
ground state of the full system that constitutes the subspace
with zero excitation Nex = 0. So projecting ĤB to Nex = 1
subspace gives

ĤB,1ex = ωc |1P〉 〈1P| +
∫

ω |S0(ω)〉 〈S0(ω)| dω

+
∫

V (ω)(|1P〉 〈S0(ω)| + |S0(ω)〉 〈1P|)dω. (18)

We can see that ĤB,1ex describes the interaction of a local-
ized state |1P〉 with a continuum |S0(ω)〉. This model has been
solved by Fano long ago [67] to explain the resonance bearing
his name that occurs at small V (ω). Due to its relevance to the
disordered TC model as shown above, we thoroughly explore
this model in the strong coupling regime elsewhere [71] where
the continuum bandwidth W is assumed to be the largest
energy scale and all eigenstates lie within it. In real systems,
e.g., organic microcavities, however, the distribution P(ω) is
nonzero only in a finite energy window, which determines
the bandwidth W of the bright states. So, the following two
scenarios are possible for the eigenstates of ĤB,1ex in general.
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1. Small bandwidth: Polaritons outside the continuum

At W � 2ωR, depending on the cavity detuning from the
center of V (ω), we can have one or two polaritons as dis-
crete states outside the bright band, along with a continuum
of eigenstates at the original bright band energies, as shown
in Fig. 1(c). These eigenstates can be easily calculated, see
Sec. A of the Appendix.

Assuming |�(ω)〉 represents the discrete eigenstates of
ĤB,1ex outside the bright band at energy ω = ω̃, we find that

|�(ω̃)〉 = |1P〉 +
∫

V (ω′)
ω̃ − ω′ |S0(ω′)〉 dω′, (19)

where the integration is over the bright band and the normal-
ization is left on purpose. The associated eigenvalues ω̃ are
given by the roots of

ω̃ − ωc − F (ω̃) = 0, (20)

where

F (ω̃) =
∫

V (ω′)2

ω̃ − ω′ dω′. (21)

Note that there is no singularity in the above integral as, by
definition, ω′ = ω̃ in this case.

The roots of Eq. (20) can also lie within the bright con-
tinuum where F (ω) would be the principal value (p.v.) of
the integral in Eq. (21). There can be up to three roots in
the strong coupling case [71] that can be named after the
states they belong to in the extreme cases of weak and strong
coupling regimes by considering a localized distribution P(ω)
[remember that V (ω) = ωR

√
P(ω)]. If the width of P(ω) is

taken to be σ , then at σ/ωR � 1 we will only have a single
root ω̃c at (or near) the cavity photon energy, while in the
opposite case σ/ωR � 1 two more roots ω̃LP and ω̃UP exist
at the lower and upper polariton energies. ω̃LP and ω̃UP can
be inside the continuum or outside it. When inside, the corre-
sponding states |�(ω̃LP)〉 and |�(ω̃UP)〉 are still eigenstates of
ĤB,1ex and produce polariton’s Fano resonances. This will be
explained in the following when we discuss the structure of
the continuum eigenstates.

The eigenstates of ĤB,1ex within the bright continuum have
already been calculated by Fano [67], where he correctly
handled the singularities involved. Assuming |�(ω)〉 is such
an eigenstate at energy ω, we can write it as a superposition
(Sec. A of the Appendix),

|�(ω)〉 = sin (ω)

πV (ω)
|�(ω)〉 − cos (ω) |S0(ω)〉 , (22)

where

(ω) = − arctan

[
πV (ω)2

ω − ωc − F (ω)

]
. (23)

The significance of the state |�(ω)〉 can now be appreciated
further by noting the sine and cosine terms in the coeffi-
cients of the two component states in this expression. For
a physical process that can excite the system from |vac〉
state to the eigenstate |�(ω)〉, there are two transition paths
available—via |�(ω)〉 and |S0(ω)〉 components—that can in-
terfere if the corresponding amplitudes are finite for the two.
This becomes quite interesting at the roots of Eq. (20) ω̃

inside the continuum, where the phase (ω) jumps between
±π/2 and, since sine and cosine functions have opposite
parity, the two paths interfere constructively on one side of
the root and destructively on the other side, leading to an
asymmetric line shape there. This is the Fano resonance that
will be discussed later in Sec. III B. Since  = ±π/2 at ω̃,
sin  = ±1, cos  = 0 there, and |�(ω̃)〉 = |�(ω̃)〉 /πV (ω̃),
showing that |�(ω̃)〉 also represents the eigenstates inside the
continuum at ω̃c, ω̃LP, ω̃UP. In the weak coupling case, when
only a single root ω̃c exists, it will be called the photon’s
Fano resonance. In the strong coupling case, if the roots ω̃LP

and/or ω̃UP lie within the continuum, the resonances will be
reminiscent of the discrete polariton states, and will hence be
called polariton’s Fano resonances.

2. Large bandwidth: Polaritons inside the continuum

At W � 2ωR, we do not have any discrete polariton eigen-
states because all roots of Eq. (20) lie within the bright band,
as shown in Figs. 1(d) and 1(e). In this case, all eigenstates are
described by |�(ω)〉 in Eq. (22). This completes the solution
of the disordered TC model in the thermodynamic limit for a
generic distribution P(ω).

An interesting situation arises when a polaritonic root
ω̃ = ω̃LP/UP lies inside the bright band but the coupling
V (ω) → 0 around its position. In such a case, (ω) → 0 at
ω = ω̃, but (ω̃) → ±π/2 still holds. So, |�(ω)〉 → |S0(ω)〉
at ω = ω̃, and |�(ω̃)〉 ∝ |�(ω̃)〉 /V (ω̃) as always. This ob-
servation can be used to unify the above two cases of small
and large bandwidth into the latter, by extending the bright
band on either side and simultaneously reducing the coupling
V (ω) → 0 in the extended region. Considering that V (ω) is
sharply localized naturally as V (ω)2 = ω2

RP(ω) can be as-
sumed to be a Gaussian distribution for energetic disorder in
real systems, the above trick will be used henceforth and W
will be assumed to be the largest energy scale.

Let us take

P(ω) = 1√
2πσ

e−ω2/2σ 2
, (24)

where σ is the standard deviation that determines the width
of the distribution and the mean energy ω0 = ∫

ωP(ω)dω is
taken as a reference. We can now evaluate F (ω) in Eq. (21) to
obtain

F (ω) = ω2
R√

2πσ
× p.v.

∫
e−ω′2/2σ 2

ω − ω′ dω′, (25)

F (ω) = πω2
RP(ω)erfi

(
ω√
2σ

)
,

erfi(ω) ≡ erf (iω)/i, (26)

where erfi is the imaginary error functions. The contribution
of the tail of the Gaussian (that may not be present in real sys-
tems) in the above integral is negligible [even around ω = ω′
on the tail—note that the p.v. of the integral in Eq. (25)
measures the asymmetry of e−ω2/2σ 2

around ω in a small
energy window as the denominator causes a suppression away
from ω].

The response of the system to an optical, electronic, or
a hybrid excitation can now be evaluated. To illustrate the
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characteristic nature of the eigenstates, let us first compare
the inelastic electron scattering with the optical absorption.
Later, we focus on the optical absorption as the main response
function of the system.

B. Fano resonances

1. Optical absorption vs inelastic electron scattering

For a generic process that can excite the system from |vac〉
to an eigenstate |�(ω)〉, the excitation probability normalized
with the bare excitation probability of the continuum state
|S0(ω)〉 is given by the Fano formula [67,71]. Let us assume T̂
to be the operator that describes the excitation of molecules in
an inelastic electron scattering event. Obtaining this spectrum
in experiments on microcavities is likely to be the easiest
when a gas of molecules is confined between the cavity mir-
rors or flows through them. In typical organic microcavities
with active molecules in a solid film of thickness ∼100 nm
sandwiched between two plane mirrors, the exposed region of
the film along its thickness can be probed. We can consider
the excitation of the dark molecular states [eigenstates of ĤD

in Eq. (14)] as a background and focus on the bright band. The
normalized probability for this process is given by [67,71]

M(ω) ≡ | 〈�(ω)|T̂ |vac〉 |2
| 〈S0(ω)|T̂ |vac〉 |2 ,

= (q + ε)2

1 + ε2
, (27)

where

ε = ω − ωc − F (ω)

π |V (ω)|2 ,

=
√

2

π

σ

ω2
R

eω2/2σ 2
(ω − ωc) − erfi(ω/

√
2σ ), (28)

and the “asymmetry parameter” q is given by

q = 1

πV (ω)

〈�(ω)|T̂ |vac〉
〈S0(ω)|T̂ |vac〉 ,

= 1

πV (ω)
p.v.

∫
V (ω′)dω′

ω − ω′ ,

= erfi(ω/2σ ), (29)

where we assumed the bare transition matrix element
〈S0(ω)|T̂ |vac〉 is constant over the energy range of interest
and used 〈1P|T̂ |vac〉 = 0 as the electron scattering would not
create cavity photons.

For the optical absorption in our hybrid system, however,
the bare transition amplitude to the bright continuum is zero,
i.e., 〈S0(ω)|â†|vac〉 = 0, where â† is the transition operator
for this process. We thus use the unnormalized probability
given by

A(ω) ≡ | 〈�(ω)|â†|vac〉 |2,

= ω2
RP(ω)

[ω − ωc − F (ω)]2 + π2ω4
RP(ω)2

, (30)

which is simply the photon spectral function. In the con-
text of the weak coupling Fano resonance, the vanishing of

FIG. 2. Fano resonances in (a) M(ω) and (b) A(ω) at σ/ωR =
10, 0.3 and ωc = 0. Blue dotted lines are standard weak coupling
Fano resonances (with asymmetry parameter q � 0, ∞), while the
black lines are their strong coupling [71] counterparts.

〈S0(ω)|â†|vac〉 also means that q = ∞, so the line shape in
the weak coupling regime is a Lorentzian whose width is
given by the interaction strength [67,71]. The above result
is exact as long as there is no cavity leakage or nonradiative
emitter losses. We will include these using Green’s function
formalism later.

2. Fano resonances in the weak and strong coupling regimes

Both M(ω) and A(ω) give information about the eigen-
states of ĤB,1ex . However, their line shapes are completely
different due to the fact that they excite either the molecules or
the cavity but not both (as 〈S0(ω)|â†|vac〉 = 0 = 〈1P|T̂ |vac〉).
Figure 2 shows M(ω) and A(ω) at σ/ωR = 10, 0.3 and
ωc = 0. At σ/ωR = 10 (blue dotted curves), the system
is in the weak coupling regime [71] where we see the
famous characteristic profiles around ω̃c = 0 correspond-
ing to q � 0,∞—inverted Lorentzian dip in M(ω) and a
Lorentzian peak in A(ω). In usual terms, the dip arises due
to a destructive interference between two transition paths,
one to the bare bright states |S0(ω)〉 and the other to the
modified (and broadened) discrete state |�(ω)〉 (that now has
components of the bright band as well). M(ω) drops to zero
at the dip, indicating a complete destructive interference. For
the same eigenstates, A(ω) behaves differently because it only
excites the photon state.

At σ/ωR < 1, two new resonances appear at ω̃LP and ω̃UP

where the phase angle (ω) jumps discontinuously [71],
which will now be seen in the two spectra. The black curves
in Fig. 2 show M(ω) and A(ω) at σ/ωR = 0.3. We see
sharp peaks around ω/ωR = ±1 in either spectrum, but the
peak profiles of M(ω) and A(ω) are still very different.
While A(ω) is not a superposition of two Lorentzians, as
two (homogeneously) broadened polariton peaks would pro-
duce in the case of identical emitters, it looks quite similar.
However, M(ω) shows dips adjacent to these peaks where
M(ω) vanishes, clearly establishing the difference between
the eigenstates of our model from broadened polariton states,
which will be discussed later in Sec. IV B. While going from
the weak to the strong coupling regime, a residual of original
resonance still exists. At σ/ωR = 0.3, it is too small to be
visible in A(ω) but shows its signatures in M(ω) that always
vanishes at ω = ω̃c = 0.
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FIG. 3. The evolution of the Fano resonances with disorder
strength σ for a resonant cavity mode (δ = 0). (a) The spectral
weight A(ω) at σ/ωR ∈ [0.2, 1.6] shown red to yellow, values la-
beled on the left. As σ increases, the polariton peaks broaden due
to interactions and become polaritons’ Fano resonances, which then
merge together and give the photon’s Fano resonance. The blue and
green dots show the actual locations ω̃UP, ω̃LP, ω̃c of the resonances
as determined by the jumps in the phase (ω). (b) The Rabi splitting
ω̃R or the location of the upper polariton peak in A(ω) and ω̃UP as
a function of σ again at δ = 0 as in (a). The emitter weight WX in
the state at the absorption peak is also shown, see the scale on the
right. A finite splitting (ω̃R > 0) exists even in the weak coupling
regime σ/ωR � 1 [71]. Furthermore, even strong coupling does not
guarantee the hybrid excitations, WX � 1 coexisting with ω̃R ∼ ωR in
the middle region.

IV. EFFECT OF ENERGETIC DISORDER ON
THE EIGENSTATES

A. Rabi splitting and polaritons

We now focus on optical absorption and see how the Rabi
splitting ω̃R observed in the absorption spectrum depends
on the energetic disorder σ , and wether a finite splitting
necessarily means the formation of polaritons or the strong
matter-light coupling. This is an important question as the
optical spectrum can exhibit a similar two-peak structure even
when the underlying quantum states are entirely different, as
explained below. In the absence of energetic disorder, ĤB,1ex

has only two polariton states given in Sec. II A, which are
observed in experimental optical spectra as two sharp peaks
at ωUP, ωLP [Eqs. (5) and (6) with a nonzero line width due
to homogeneous broadening γ and cavity leakage κ (κ, γ �
ωR). However, in the presence of energetic disorder, we have
a continuum of states |�(ω)〉 that can also produce two peaks
in the absorption just like the polaritons in the above case. In
the following, we first present our results of optical spectrum
which pertains to the states |�(ω)〉. We will discuss the differ-
ences from the other case described above in Sec. IV B.

Figure 3(a) shows the evolution of the photon spectral
weight A(ω) with σ for σ/ωR ∈ [0.2, 1.6] (shown red to
yellow) for a resonant cavity, δ = ωc − ω0 = 0. The roots of
Eq. (20) are also shown as blue (ω̃UP, ω̃LP) and green (ω̃c = 0)
dots to compare them with the peaks positions. At small σ , we
have two sharp peaks for the upper and the lower polaritons
which broaden and shift as σ increases, and finally merge
together into a single broad central peak. At σ/ωR = 0.2, the
peaks are ultrasharp and their locations agree to ω̃UP, ω̃LP [and
the clean case ±ωR, Eqs. (5) and (6). This can be understood
by ignoring the bright states away from ω � 0 as they do
not have a significant effect on the polaritonic eigenstates

formed by the coupling between |1P〉 and |S0(0)〉. However,
at higher σ , still in the strong coupling case, the peaks are
shifted slightly outwards from ω̃UP, ω̃LP. This can also be ex-
plained as arising from the coupling of |1P〉 with the detuned
bright states on either side of the ω = 0. Consider the bright
states at ω � 0. It will push both lower and upper polaritons
upwards by an amount that would depend on their detuning
from the polaritons, which is ωR − ω for the upper polariton
but ωR + ω for the lower polariton. So the effect on the upper
polariton will be stronger. Similarly, the bright states at ω � 0
that pull down the polaritons will affect the lower polariton
more strongly, leading to a net upward shift of the upper
polariton and a net downward shift of the lower polariton.
The bright states within the two polaritonic states will have
this effect. At σ/ωR � 1, the effective collective coupling of
these states becomes weaker and comparable to the bright
states outside this polaritons window, so all these states obtain
a significant photon component, leading to excessively broad
absorption peaks. At σ/ωR � 1, ω̃UP, ω̃LP do not exist and we
are in the weak coupling regime with a single root ω̃c = 0,
but, as we can see, A(ω) still keeps its two-peak structure at
σ/ωR = 1, 1.2.

Thus, as σ increases, the interactions transform the po-
laritons into two polariton’s Fano resonances, which are
eventually replaced by a single photon Fano resonance at
σ/ωR � 1. For clarity, we call it a polariton’s Fano resonance
when the hybrid polaritonic character of the eigenstate is
compromised due to Fano broadening. We can think of the
polariton’s Fano resonances as arising from the interaction of
polaritons (formed by cavity mode and bright states that are
resonant or more strongly coupled to it) and off-resonant or
less strongly coupled bright states, as illustrated in Figs. 1(c)
and 1(d) and also discussed in Sec. III A 1. However, it is
worth noting that this is not strictly the same as Fano res-
onances arising from a weak coupling between two discrete
states and a continuum [67]. At large enough σ , there are not
enough states or coupling strength to create the strong cou-
pling resonances, so we obtain a single photon Fano resonance
in this weak coupling regime.

It is also interesting to see that at ω = ω̃UP, ω̃LP, ω̃c,
the expression for A(ω) in Eq. (30) can be simplified
(as the first term in the denominator vanishes) to obtain
ωRA(ω) =

√
2/π3σ/ωR exp(ω2/2σ 2), so that the size of the

central peak is always proportional to σ . Since the spectral
function is normalized, increasing σ thus decreases the line
width of the central peak at σ/ωR > 1. This gives the correct
picture in the case of σ/ωR � 1, where the coupling becomes
too weak and the cavity photon state is only slightly perturbed
by the interaction with the bright continuum.

In Fig. 3(b), the Rabi splitting ω̃R or the position of the
upper polariton peak in A(ω), and the actual location of the
related resonance ω̃UP, are shown as a function of σ again
at δ = 0. We see that as σ increases, ω̃R slightly increases
at small σ and then decreases sharply to zero at large σ

where the two peaks in Fig. 3(a) merge together. ω̃UP also
shows a similar behavior but slightly quicker, leading to an
interesting situation where A(ω) has two peaks with ω̃R > 0
even in the weak coupling regime, σ/ωR � 1. In the strong
coupling case, these peaks should exist because the first term
in the denominator of Eq. (30) becomes nonmonotonic [71]
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(vanishes at multiple locations) but here it is sustained because
its sum with the second term still bears a bimodal structure.

Thus, we find important implications for the experiments
on disordered systems: Rabi splitting or anticrossing in the
optical absorption or transmission spectrum alone cannot
guarantee the formation of polaritons or strong coupling.
Besides, strictly speaking, these two terms should not be
considered synonymous in the case of disordered systems, as
there is a wide range of σ/ωR in the strong coupling regime
where even the eigenstates containing the largest photon spec-
tral weight are still far from truly hybrid polaritons. This will
be further explained in the following section.

B. Inhomogeneous vs homogeneous broadening

Let us see how the effects of an inhomogeneous broad-
ening or energetic disorder σ are different from that of a
homogeneous broadening or the intrinsic line width γ of the
emitter states. We can compare the spectrum in Fig. 3(a)
to that of a system with no energetic disorder but a large
homogeneous broadening, e.g., atoms in a microcavity as in
Ref. [62] (see Fig. 2 there). While the spectra look similar,
their physical interpretation depends on the nature of the
quantum states of the system, which is different in the two
cases. The homogeneous broadening of the emitter states γ

broadens the polaritonic eigenstates or polaritons around their
expected energy (±ωR at δ = 0) and keeps their polaritonic
character intact. In contrast, the inhomogeneous broadening σ

(that creates the continuum of the bright emitter states in the
first place) broadens the photon spectral function only with-
out broadening the eigenstates, making the polariton states
at the absorption peaks more excitonic or emitter-like as σ

increases. That is, the polaritonic character of the eigenstates
is distributed over a larger number of eigenstates, making
even the most polaritonic state nearly excitonic when the Fano
broadening spans a large number of emitter states in the bright
continuum.

This is best illustrated by considering a specific density
of continuum states and numerically evaluating the emitter
weight of the most polaritonic eigenstate. For example, taking
one bright state every ω = 0.003ωR, the emitter weight WX

of the states at the absorption peaks is plotted in Fig. 3(b)
[black curve] as a function of σ at δ = 0. We see that WX ∼
1/2 (polaritons) at σ � 0.3, where the Fano broadening is
still smaller than the “width” ω of a single eigenstate, but
quickly approaches unity around σ � 0.5, where the Fano
broadening distributes the photon spectral weight over many
eigenstates. Thus, polaritons lose their meanings and the
peaks in the optical absorption simply correspond to strongly
absorbing emitter states. As the figure shows, this happens
at σ/ωR as low as 0.5 with ω̃R � ωR, i.e., well below the
threshold for the weak coupling σ/ωR = 1.

This raises another question that ought to be discussed
here. What does ω correspond to in a real system? An
intuitive answer to this question is that it plays the role of
the intrinsic line width or the homogeneous broadening γ of
the emitter states (i.e., ω � γ ). Increasing the homogeneous
broadening γ for the emitter states should extend the bright
band on either side by γ /2 but reduce the number of such
homogeneously broadened bright states in the band (� W/γ ).

FIG. 4. Fano broadening as a function of detuning δ and disorder
strength σ . (a) Optical absorption at δ/ωR ∈ [−1, 1] shown red to
blue at σ/ωR = 0.25. The closer a peak is to the center of the bright
band, the broader it gets. (b and c) The line width � and the ratio of
the half widths �R/�B of the lower polariton peak as a function of
σ at the same parameters as in (a). � increases almost quadratically
with σ . The effect is stronger for the positive detuning where the
lower polariton peak is closer to the bright band center. The deviation
of �R/�B from unity also follows the trend of �.

This should enhance the polaritonic character of the states at
the cost of their broadening. In the extreme case γ → W , the
bright band will become a homogeneously broadened bright
state that would produce two homogeneously broadened po-
laritons as observed in Ref. [62].

C. Fano broadening: Shape and width of polaritonic peaks

Let us focus on the Fano broadening and the line shape
asymmetry in the strong coupling regime even when the corre-
sponding weak coupling case exhibits a symmetric Lorentzian
profile. We find that the Fano broadening appears even at
fairly small σ . Figure 4(a) shows the scaled spectral weight
ωRA(ω) at σ/ωR = 0.25 and δ/ωR ∈ [−1,+1]. We see that
as a polariton peak gets near the bright emitter band, its line
width increases and it transforms into a Fano resonance. This
also accompanies a slight shift in the peak position compared
to the clean case σ → 0, Eqs. (5) and (6), and the actual
locations of the resonance ω̃UP, ω̃LP, as discussed before for
δ = 0. Considering the peak corresponding to the lower po-
lariton, Figs. 4(b) and 4(c) show its line width � and a simple
measure of the asymmetry of its line shape, the ratio of the
half line widths of the low (�R) and the high (�B) energy side
of the peak, as functions of σ for the same set of δ values
as in Fig. 4(a). We see that � increases with σ much more
strongly at large positive detuning (bluish curves) where the
lower polariton is closer to the bright emitter band and would
be more matter-like even at σ = 0. The line shape asymmetry
shown in Fig. 4(c), the deviation of �R/�B from 1, also shows
the same trend.

We will now consider a small homogeneous broadening
and treat it using the standard Green’s function formalism. To
treat both homogeneous and inhomogeneous broadening of
the emitter states on equal footing, new methods need to be
developed, which is clearly beyond the scope of the present
work.

V. OPTICAL ABSORPTION IN THE PRESENCE
OF LOSSES

So far we have not considered the losses, a finite cav-
ity leakage and nonradiative emitter decay that amount to
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FIG. 5. Total broadening as a function of disorder strength σ

and detuning δ in the presence of a small homogeneous broad-
ening κ of the cavity state. (a) � as a function of δ at κ/ωR ∈
[0, 0.05] shown red to yellow. � → κ at large negative δ, while
� → �σ = �(σ, γ = 0 = κ, δ/ωR = +1) at large positive δ [the
blue curve in Fig. 4(b)]. (b) The percentage change in � as δ changes
from zero, at σ/ωR ∈ [0.1, 0.4], κ = �σ , γ = 0.

homogeneous broadening of the bare cavity and emitter states.
To see the effect of these losses on the spectral function A(ω)
or optical absorption, we need the photon Green’s function
G(ω) as A(ω) = −�G(ω), which will now be used instead
of Eq. (30). Here � stands for the imaginary part. Due to the
absence of the coupling between the emitters or their bright
states, G(ω) can be easily calculated from the resolvent of
ĤB,1ex (Sec. B of the Appendix) to obtain

G(ω) = [ω − ωc + iκ − �(ω + iγ )]−1, (31)

�(z) = ω2
R

∫
dω′ P(ω′)

z − ω′ , (32)

where � is the self energy and κ, γ are cavity leakage and
nonradiative emitter relaxation rates. Computing the self-
energy �(z) for the Gaussian P(ω) readily gives

�(z) = πω2
RP(z)

[
erfi

(
z√
2σ

)
− i

]
, (33)

which can now be used with Eq. (31) to explore the optical
absorption including the losses.

A. Line shape and line width

Let us now include the effect of cavity and emitter losses
on the total broadening of absorption peaks. In systems where
κ � γ , e.g., organic microcavities [24,87], we can ignore γ

to understand how κ changes the picture discussed so far.
Figure 5(a) shows � as a function of δ at σ/ωR = 0.25,
γ = 0 and κ/ωR ∈ [0, 0.05]. We see that at large negative
detuning, |δ| � σ , where the polariton is away from the band
and Fano broadening can be ignored, the effect of κ is the
strongest due to larger photon fraction. As δ increases to
zero and positive values, the effect of κ decreases but that
of σ increases. This leads to an interesting situation where
� develops a minimum at an optimum δ. The minimum gets
deeper and more prominent if � at extreme δ values is large
and of similar size. Noting that at δ/ωR = −1, � ∼ κ and at
δ/ωR = +1, � ∼ �σ ≡ �(σ, δ/ωR = +1, κ = 0 = γ ) [blue
curve in Fig. 4(b)], the optimum κ to observe such a minimum
is κ = �σ . This is shown in Fig. 5(b) for σ/ωR ∈ [0.1, 0.4],
where percentage change in �, �/�0 = (� − �0)/�0, is
shown as δ deviates from the resonance, δ = 0, where � = �0,

FIG. 6. Evolution of the Fano resonance with the bandwidth for a
flat energy distribution that leads to a flat interaction V (ω). (a) Photon
spectral weight −ωR�G(ω) at σ/ωR = 0.01, 0.5 − 2.5 (indicated
by vertical lines). (b) Emitter weight WX as a function of the
bandwidth W .

which is used as a reference. We see that the smaller the
σ , the larger the percentage change in �, and the larger the
optimum δ. It should be observable in typical organic mi-
crocavities where κ ∼ 0.05 eV [87], 2ωR ∼ 1 eV [33], and
σ ∼ √

2 × 0.1 eV [30,31], so σ/ωR ∼ 0.28, which gives the
minimum at δ ∼ 0.

B. Dependence on the energy distribution

If the emitter transition energies are distributed more
evenly, the distribution function is flatter in the middle and
falls more sharply at the edges. We would expect it should
result in a sharper transition between polaritons and their
Fano resonances as the polariton energy starts overlapping
the bright states band. Taking the extreme case of a flat dis-
tribution, P(ω) = 1/W,−W/2 � ω � W/2, 0 otherwise, we
find that the transition actually becomes more gradual. This
is because in this case all bright states would couple equally
strongly to the cavity mode [as V (ω) = ωR/

√
W = constant]

and increasing W would push the polaritons away from the
band edges at small to intermediate W . In this case, Eq. (32)
gives

�(z) = ω2
R

W
ln

(
z + W/2

z − W/2

)
. (34)

Figure 6(a) shows the scaled spectral weight −ωR�G(ω)
for the flat distribution [Eq. (31) with Eq. (34)] at δ = 0,
κ/ωR = 0.05, γ /ωR = 10−4 (κ, γ typical of organic micro-
cavities, [24,87]) and W/2ωR = 0.01, 0.5 − 2.5 in increments
of 0.5, marked with dotted vertical lines. We see that it has
a feature resembling Fano line shape with a dip, but note the
log scale; these structures differ from the weak coupling Fano
profile indeed. At W < 2ωR, the peaks resemble isolated po-
laritonic states. Despite the change in line shape at W � 2ωR,
they still remain quite hybrid for a while. WX for the lower po-
lariton state at the peak position at δ = 0 = κ = γ is shown in
Fig. 6(b). We see that WX increases from 1/2 to 1 over a wider
σ range: WX � 0.7 only at W/2ωR = 1 and it increases to 0.9
around W/2ωR = 1.5. Compare this to the Gaussian energy
distribution, where WX jumps to ∼0.95 around σ/ωR = 0.5
only. This sluggish increase in the emitter weight for the flat
distribution can be understood as a result of poor correspon-
dence of ωR itself to the Rabi splitting ω̃R, because the bright
states at the band edge couple equally strongly to the cavity
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mode and their effective detuning from it shifts the polari-
ton energy more significantly. Another difference from the
Gaussian distribution case is that the photon Fano resonance
appears before the polaritons’ Fano resonances disappear. So
the notion of the Rabi splitting ω̃R also becomes relatively
vague at W/2ωR � 2 in this case. Interestingly, however, for
polaritonic peaks, a significant line width narrowing occurs at
W � 2ωR, as can be seen in Fig. 6(a).

VI. SUMMARY AND CONCLUSIONS

We solve the disordered TC model by identifying and
decoupling the exact bright and dark sectors of the emitters’
Hilbert space. Explicit expressions for the bright and the dark
states are presented, allowing the exact numerical diagonal-
ization for arbitrarily large systems. For the emitter states
forming a continuum in the thermodynamic limit, we obtain
Fano’s model, whose solution has already been around for
a long time. The Fano resonances in the optical absorption
and inelastic electron scattering spectra are presented in both
the strong and weak coupling regimes, where they correspond
to polaritons or their Fano resonances and photon’s Fano
resonance, respectively. We find that the hybrid light-matter
character of the excitations could be lost due to strong en-
ergetic disorder while the optical spectra are still showing
Rabi splitting and anticrossing. We also explore the effect of
cavity and emitter losses on the line width and line shape
by calculating the photon Green’s function. We find that the
polariton’s line width should exhibit a minimum as a function
of the detuning when the cavity losses are comparable to the
maximum Fano broadening.

VII. OUTLOOK

We studied the model in the rotating wave approxima-
tion that ignores the counterrotating terms in the light-matter
interaction. These terms introduce coupling within a given
parity subspace (Nex even or odd) which is usually ignored
below the “ultrastrong” coupling regime (ωR � 0.3ω0) due
to a large energetic difference (� 2ω0) between the coupled
states. However, energetic disorder would reduce this ener-
getic difference and, at large energetic disorder, the highest
end of the bright band or the upper polariton in Nex = 1
subspace would come close enough to (or overlap with) the
lowest end of the bright band or the lower polariton in Nex = 3
subspace such that their interaction cannot be ignored any
longer. Similarly, the effects of an interaction that does not
respect the excitation number parity (coupling to a bath, for
instance) on the eigenstates of the system would be enhanced
even further, as it would only require to reduce the gap (� ω0)
between the states of adjacent excitation spaces (e.g., Nex = 1
and Nex = 2). Investigation of such effects of the energetic
disorder can be carried out in a future study. Considering a
weak coupling between the bright and dark spaces due to
dipole-dipole interaction and application of the two spaces in
other systems, e.g., those described by the Anderson impurity
model, and exploring the effects of Fano broadening on highly
excited states such as polariton condensate and lasing would
also be interesting future works.
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APPENDIX

A. Calculations of |�(ω)〉 and |�(ω)〉
1. Eigenstates and energies outside the bright band

Assuming that |�(ω)〉 represents a discrete eigenstate of
ĤB,1ex at energy ω outside the bright continuum, it can be
written as a superposition of the form

|�(ω)〉 = |1P〉 +
∫

B(ω,ω′) |S0(ω′)〉 dω′, (A1)

where the integration is over the bright band. By
substituting |�(ω)〉 into the eigenvalue equation
ĤB,1ex |�(ω)〉 = ω |�(ω)〉, projecting it onto |1P〉 and
|S0(ω′′)〉 in turn, and using the orthonormality of the
basis states, 〈1P|1P〉 = 1, 〈S0(ω′)|S0(ω′′)〉 = δ(ω′ − ω′′),
and 〈1P|S0(ω′)〉 = 0, we obtain the following two coupled
equations:

ωc +
∫

V (ω′)B(ω,ω′)dω′ = ω, (A2)

V (ω′) + ω′B(ω,ω′) = ωB(ω,ω′), (A3)

which can be easily solved as ω = ω′ to get

B(ω,ω′) = V (ω′)
ω − ω′ , (A4)

ω = ωc +
∫

dω′ V (ω′)2

ω − ω′ , (A5)

where the last equation contains ω in the integral on the right
side as well and can be solved for ω numerically when V (ω) is
specified. Substituting the above expression for B(ω,ω′) into
Eq. (A1) above gives Eq. (19) in the main text, while Eq. (A5)
is rewritten as Eqs. (20) and (21) there.

2. Eigenstates inside the bright band

Assuming |�(ω)〉 is an eigenstate of ĤB,1ex at an energy
within the bright continuum, we can again write it as a super-
position,

|�(ω)〉 = α(ω) |1P〉 +
∫

β(ω,ω′) |S0(ω′)〉 dω′, (A6)

where the coefficients α, β can be written in terms of
(ω), F (ω), given in the main text as (see Ref. [67] for
detailed derivation)

α(ω) = sin (ω)/πV (ω), (A7)

β(ω,ω′) = α(ω)
V (ω′)
ω − ω′ − cos (ω)δ(ω − ω′), (A8)

where δ is the Dirac delta function. Substituting these back,
we obtain

|�(ω)〉 = sin (ω)

πV (ω)

(
|1P〉 +

∫
V (ω′)
ω − ω′ |S0(ω′)〉 dω′

)

− cos (ω) |S0(ω)〉 , (A9)
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which, along with |�(ω)〉 in Eq. (19) at ω inside the bright
band (where it does not represent an eigenstate in general),
gives Eq. (22).

B. Calculation of G(ω)

The photon Green’s function G(ω) can be obtained [29]
from the resolvent R(ω) of ĤB,1ex , as follows. We start from
the discrete version ĤB in Eq. (13). In the single excitation
space, it can be written in the matrix form as

HB =

⎛
⎜⎜⎜⎜⎝

ωc G1,K1 G2,K2 ... GN,KN

G1,K1 ω1 0 ... 0
G2,K2 0 ω2 ... 0
... ... ... ... ...

GN,KN 0 0 ... ωN

⎞
⎟⎟⎟⎟⎠.

Its resolvent R(ω) is given as R(ω) = (Iω − HB)−1, where
I is identity. It can be computed by partitioning Iω − HB in

four blocks as

Iω − HB =
(

A1×1 B1×N

CN×1 DN×N

)

to take the inverse, where the subscripts with the ma-
trix elements show the dimensions of each block. The
matrix element of R(ω) corresponding to the cavity state
is the photon Green’s function G(ω), given by [88]
G(ω) = (A − BD−1C)−1. Since D is diagonal, its inverse can
be written directly, and we obtain

G(ω) = [ω − ωc + iκ − �(ω)]−1, (A10)

�(ω) =
N∑

n=1

G2
n,Kn

ω − ωn + iγ
, (A11)

where we have added the imaginary components κ, γ to
ωc, ωn to include a finite cavity leakage and nonradiative
emitter relaxation. Considering the continuous limit leads to
Eq. (31).
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