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Antibunched two-mode two-photon bundles via atomic coherence
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In this paper we propose an efficient scheme to continuously generate two-mode two-photon bundles by using
a three-level atomic system, in which two correlated channels are created for the bundle emission in different
modes. It is shown that the antibunching effect not only happens between the same modes but also between two
different modes. While the former is due to the dominance of cavity decay over atomic decay, the latter is based
on the atomic coherence between the two final states of bundle emission. The antibunched two-mode two-photon
bundles are achievable in a wide range of parameters and robust against environmental noise. This scheme
provides a kind of photon sources for two-signal-based applications such as quantum information processing,
high-precision metrology, and ultrasensitive biosensing.
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I. INTRODUCTION

Nonclassical states of light are a major premise for the
implementation of photonic quantum technologies [1]. The
single-photon sources, which are closely related to antibunch-
ing behavior and sub-Poissonian distribution, are viewed as
a fundamental topic in quantum optics all the time because
they can find potential applications in quantum computation
[2–4] and quantum information processing [5,6]. More in-
terestingly, the N-photon sources, emitting more than one
photon, are also the heart of many recent quantum technolog-
ical applications including high-NOON states [7], quantum
communication [8], quantum metrology [9], lithography [10],
spectroscopy [11,12], and biological sensing [13,14]. Re-
cently, a novel scheme as a promising candidate to generate
N-photon resources has been proposed. That is, an emitter
releases the optical energy strictly by strongly correlated N-
photon quanta, which behaves like a single physical entity
called the N-photon bundle. This has attracted much atten-
tion and has been extended to various quantum systems such
as cavity quantum electrodynamics (QED) systems [15–21],
circuit QED systems [22,23], trapped atom systems [24],
macroscopic mechanical resonators [25], and so on.

For the cavity QED setup containing a two-level atom
[15], it is explored that by pumping the atom into a highly
excited state, the continuous emission of the multiple pho-
tons is crucially based on the Purcell effect enhanced internal
leapfrog processes, in which a super-Rabi oscillation is es-
tablished between the ground state and the higher-excited
N-photon Fock state. Successively, the conditions are relaxed
into bad-cavity situations, where one can reveal and purify
multiphoton emission just by frequency filtering [18]. Inter-
estingly, in an acoustic cavity QED system, Bin et al. have
proposed an efficient method for producing high-purity N-
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phonon bundle emission based on the Stokes process [19].
A parity-symmetry-protected scheme is proposed to generate
a perfect 2N-photon bundle emission in the ultrastrong-
coupling regime [20]. Furthermore, the multiphoton bundle
emission has also been investigated in a Josephson-photonics
circuit [22] and in the N-photon Jaynes-Cummings model
[26], respectively. However, so far the existing schemes have
been confined mainly to the two-level quantum emitters and
so to a single mode.

Here we present a scheme for generating the antibunched
two-photon bundles in two different cavity modes. Bundle
antibunching appears not only between the same modes but
also between the different modes. The two-photon bundles
are obtained from the leapfrog transitions, respectively, at
the different inner sidebands of the dressed three-level atom.
Different from the previous schemes, two channels for bundle
emission in different modes coexist in our scheme and atomic
coherence plays a crucial role. The two needed channels for
the bundle emission are preserved selectively, and at the same
time the bundles in the different modes are antibunched. It
is also shown that the bundle emission and the antibunching
are obtainable in a wide range of parameters and are robust
against thermal noise. The two-mode two-photon bundles
as heralded single-photon sources can be used in quantum
information processing, such as quantum key distribution
[6,27,28], quantum teleportation [29,30], entanglement swap-
ping [31,32], and quantum repeaters [33], where two different
signals in nonclassical states are required. Such nonclassical
sources of light are also applicable in high-precision quantum
metrology [34] and ultrasensitive biosensing [35].

The remainder of the paper is organized as follows: In
Sec. II, we present a general introduction to the model. In
Sec. III, we derive the conditions of multiphoton resonance
transition in the dressed picture and explore the multipho-
ton leapfrog processes through the correlation function. In
Sec. IV, the dynamical emission properties of two-mode two-
photon bundles are discussed in detail. In Sec. V, we discuss
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FIG. 1. Sketch of a three-level �-configuration atom strongly
coupled to two cavity modes, a1 and a2. Two coherent fields, �1 and
�2, drive the |1〉 ↔ |3〉 and |2〉 ↔ |3〉 transitions, respectively. At a
proper driving frequency, the system emits consecutive two-photon
bundles.

the effect of nonsymmetric parameters on two-mode two-
photon bundles. A conclusion is given in Sec. VI.

II. MODEL AND EQUATIONS

As shown in Fig. 1, a three-level atom consisting of two
ground states, |1〉 and |2〉, and an excited state, |3〉, is placed in
a two-mode cavity. Two monochromatic lasers of frequencies
ω1 and ω2 are applied to two atomic transitions, |1〉 ↔ |3〉 and
|2〉 ↔ |3〉, with Rabi frequencies �1 and �2, respectively. At
the same time, two cavity modes of frequency, ωa1 and ωa2 , are
strongly coupled to the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉
with coupling strengths g1 and g2, respectively.

In the electric dipole and rotating-wave approximations,
the Hamiltonian of this bimodal cavity-QED system consists
of two parts, H = Ha + Hc, with (hereafter h̄ = 1)

Ha =�1σ33 + (�1 − �2)σ22 + �1(σ31 + σ13)

+ �2(σ32 + σ23), (1)

Hc =δ1a†
1a1 + δ2a†

2a2 + g1(a1σ31 + a†
1σ13)

+ g2(a2σ32 + a†
2σ23). (2)

The first term represents the interaction of the atom with
classical driving fields and the second term describes the two
cavity modes that interact with the two atomic transitions,
respectively. Here σi j = |i〉〈 j| (i, j = 1, 2, and 3) are the
projection operators for i = j and the spin-flip operators for
i �= j. al and a†

l are the annihilation and creation operators
for two cavity modes. �l = ω3l − ωl (l = 1 and 2) are the
detunings of atomic transition frequencies ω3l with respect to
driving field frequencies ωl . δl = ωal − ωl (l = 1 and 2) are
the detunings of cavity frequencies ωal with respect to driving
field frequencies ωl .

The dynamical evolution of the system is governed by the
master equation [36,37]

ρ̇ = − i[H, ρ] +
∑
l=1,2

(κl

2
L[al ]ρ + γl

2
L[σl3]ρ

)
, (3)

where L[al ]ρ and L[σl3]ρ are the Lindblad terms describing
the cavity and atomic decays with rates κl and γl , respec-
tively, and they take the form L[o]ρ = 2oρo† − o†oρ − ρo†o.
This master equation can be solved numerically by using the
PYTHON package QUTIP [38], which provides a convenient and
effective way to study the dynamics of photon emission in the
system.

In order to clarify the mechanism of the multiphoton res-
onance, it is necessary for us to turn to the dressed-state
picture for analytical analysis. For arbitrary atom-driving-field
detunings and Rabi frequencies, the dressed atom nonlin-
earities are generally so complicated that they conceal the
interaction mechanisms for the quantum correlations. There-
fore, it is better for us to choose the symmetric case for
the atom-field detunings �1 = −�2 = � and equal Rabi fre-
quencies �1 = �2 = �. Under the strong driving conditions
� � (g1,2, κ1,2, γ1,2), the dressed states are obtained through
diagonalizing the Hamiltonian Ha and expressed in terms of
the bare states as [39]

|+〉 =1 − s

2
|1〉 + 1 + s

2
|2〉 + c√

2
|3〉,

|0〉 = c√
2
|1〉 − c√

2
|2〉 + s|3〉, (4)

|−〉 =1 + s

2
|1〉 + 1 − s

2
|2〉 − c√

2
|3〉,

where we define c = √
2�/�̄, s = �/�̄, and �̄ =√

�2 + 2�2. The dressed states |0〉 and |±〉 correspond
to equally spaced eigenenergies E0 = � and E± = � ± �̄.
The Hamiltonian Ha takes the free form Ha = �̄(σ++ − σ−−),
where we have removed the common term � of all
eigenenergies; i.e., we have set E0 to the energy reference
point. σi j (i, j = +, 0, and −) have been defined as the
projection operators (i = j) and spin-flip operators (i �= j).
Spontaneous transitions from an upper triplet of dressed states
to the lower adjacent triplet lead to a five-peaked structure
of fluorescence spectrum [36]. According to the frequency
components of the fluorescence spectrum, the bare atomic
operators can be divided into several terms as

σl3 =σ
(l )
2L + σ

(l )
L + σ

(l )
0 + σ

(l )
R + σ

(l )
2R , (5)

where σ
(l )
0 , σ

(l )
L,R, and σ

(l )
2L,2R denote the dressed atomic

transitions at the central frequency ωl , the inner sidebands
ωl ± �̄, and the outer sidebands ωl ± 2�̄, respectively.
They are defined as σ

(1)
L = A+σ−0 + Bσ0+, σ

(1)
R =

A−σ+0 − Bσ0−, σ
(1)
2L = C+σ−+, σ

(1)
2R = −C−σ+−, and σ

(1)
0 =

C−σ++ − C+σ−− + Dσ00 and as σ
(2)
L = A−σ−0 − Bσ0+,

σ
(2)
R = A+σ+0 + Bσ0−, σ

(2)
2L = C−σ−+, σ

(2)
2R = −C+σ+−,

and σ
(2)
0 = C+σ++ − C−σ−− − Dσ00, with the coefficients

A± = s(1 ± s)/2, B = c2/2, C± = c(1 ± s)/2
√

2, and
D = cs/

√
2. With these representations, we can clearly

understand the spontaneous emission processes of the dressed
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atom and its interaction with the cavity fields. By adjusting
cavity frequency to resonate or not with the atomic transition,
the corresponding emission can be effectively increased or
decreased. In this way, under the strong-excitation regime,
multiphoton sideband emission can be obtained in the cavity
quantum electrodynamics.

III. MULTIPHOTON RESONANT TRANSITION

Multiphoton emission related to nonlinear dynamics can be
analyzed more clearly in a dressed picture in which the inter-
action of the driving fields is merged into the atom. Choosing
the symmetric detunings of the cavity fields from the driv-
ing fields δ1 = −δ2 = δ, we analytically derive the frequency
condition for multiphoton sideband resonance transitions and
numerically simulate the photon correlation functions. For the
sake of simplicity, we assume the same coupling strengths
g1 = g2 = g and decay rates κ1 = κ2 = κ and γ1 = γ2 = γ .

In a strong-driving regime, the atom-field interaction pro-
vides high-order nonlinearities for multiphoton transitions,
which are generally hidden behind the single-photon pro-
cesses. However, they can be enhanced by the Purcell
effect via cavity modes. Similar to the “N-photon leapfrog”
processes in the Mollow triplet [40,41], we introduce the
counterparts in the three-level system, where the photon emis-
sion processes are richer than that of two-level systems. The
N-photon leapfrog processes occur when the sum of N-photon
energies in each cavity mode matches the allowed transitions
between dressed states, i.e., Nδ = �E , with �E = ±�̄ and
±2�̄.

Specifically, we focus on the resonance conditions, where
the two cavity modes are resonant respectively with the two
atomic dipole-allowed transitions, i.e., ωal = ω3l (i.e., δ =
� �= 0). It should be noted that photon emission will not
happen at δ = 0 owing to the effect of coherent population
trapping. At the same time, since the energies of a single pho-
ton in the two modes failed to match the transitions between
dressed states, the single-photon processes are suppressed
and thus the multiphoton transitions become dominant. The
multiphoton resonance transitions and the corresponding con-
ditions can be summarized as

|±〉 N−→ |0〉
|0〉 N−→ |∓〉

}
, �±

N = ±
√

2�2

N2 − 1
(N > 1), (6)

|±〉 N−→ |∓〉, �̃±
N = ±

√
8�2

N2 − 4
(N > 2), (7)

where |i〉 N−→ | j〉 denotes that the dressed-atom transition
from state |i〉 to state | j〉 and the two modes obtain N photons
simultaneously. These processes correspond respectively to
the multiphoton emission at the inner sidebands as in Eq. (6)
and at the outer sidebands as in Eq. (7). Since the two cavity
modes respectively couple to the different atomic transitions,
this mechanism gives us an opportunity to generate photon
bundles of two different frequencies.

In order to describe the multiphoton emission mechanism
as above, we use Eq. (3) and calculate the nth-order quantum

FIG. 2. (a) Equal-time nth-order correlation functions g(n)
(11) and

g(n)
(22) for n = 2 and 3, and (b) photon-number distributions P(1)

m and
P(2)

m for m = 0–4 as functions of δ/g. Here the parameters are � =
δ, κ/g = 0.1, γ /g = 0.01, and �/g = 30. The gray dashed vertical
lines label the locations of N-photon resonances S(N ) at sidebands.

correlation functions [42]

g(n)
(ll )(0) =

〈
a†n

l an
l

〉
〈a†

l al〉n
= tr

(
ρssa

†n
l an

l

)
[tr(ρssa

†
l al )]n

, (8)

for the cavity mode al at steady state (ρ̇ = 0). In Fig. 2(a),
we plot the equal-time nth-order correlation functions g(n)

(ll )(0)
(n = 2 and 3) as functions of δ/g. In Fig. 2(b), we also plot
the photon-number distributions P(l )

m = tr(|m〉〈m|lρss ), where
m = 0–4 is the photon number in the mode al . In the sym-
metric case, the properties of photon emission in two cavity
modes are identical, i.e., g(n)

(11)(0) = g(n)
(22)(0) and P(1)

m = P(2)
m . It

is seen from Fig. 2(a) that the bunching exists over all ranges
of detunings since we always have g(n)

(ll )(0) > 1. The bunching

peaks or dips in correlation functions g(n)
(ll )(0) correspond to the

multiphoton transitions. N-photon transitions at sidebands,
which are denoted by S(N ), are strongly related to the photon-
number distributions P(l )

m in Fig. 2(b). At δ = ±24.5g, since
P(l )

1 and P(l )
2 have the same order of magnitude, this means

the occurrence of the two-photon leapfrog transitions S(2).
Similarly, the peaks located at δ = ±15g correspond to the
three-photon leapfrog transitions S(3) since P(l )

3 has the same
order of magnitude value as P(l )

2 . Namely, the same intensities
of P(l )

N−1 and P(l )
N indicate N-photon resonance transitions at

δ = �±
N . It is found that the numerical calculations are in good

agreement with our analysis. In particular, the two dips instead
of peaks at the two-photon resonance δ = ±24.5g indicate
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that the system enters a regime of pure two-photon bundle
emission.

IV. TWO-PHOTON BUNDLE EMISSION

Multiphoton bundle emission differs from traditional pho-
ton emission in that the photons in a bundle are emitted
simultaneously, which means they behave like a single phys-
ical entity and have a much stronger correlation. Although
such a phenomenon is predicted by the bunching dips of
g(n)

(ll )(0), the mechanism for it does not clear. Therefore, new
methods have been explored to characterize the properties of
photon bundle emission [15] for the further development of
the source of the quantum light. In this section, we discuss the
two-photon bundle emission at δ = � = 24.5g in detail.

To identify such novel photon emission, a correlation func-
tion describing the statistics of photon bundles is introduced
[15]:

g(n)
N (t1, . . . , tn) =

〈
T−

{∏n
i=1 a†N (ti )

}
T+

{∏n
i=1 aN (ti )

}〉
∏n

i=1〈a†N aN 〉(ti ) , (9)

where T± represent the time ordering operators. Compared
to the traditional n-order correlation function, this function
uses a bundle of N photons instead of each individual photon
as a unit. If N = 1, the new correlation function reduces to
the transitional nth-order correlation function. For N = 2, this
time-delayed second-order correlation function is written in
the form

g(2)
2(lk)(τ ) =

〈
a†2

l (0)a†2
k (τ )a2

k (τ )a2
l (0)

〉
〈(

a†2
l a2

l

)
(0)

〉〈(
a†2

k a2
k

)
(τ )

〉 , (10)

which is extended to describe the correlations between two
common or different modes (l, k = 1 and 2). For l = k,
g(2)

2(lk)(τ ) represents the autocorrelation function of two-photon

bundles in the same mode, where τ � τmin = ∑N
m=1 1/mκ .

τmin can be approximately regarded as zero-time delay since
the small-time windows of width 1/κ center at zero, and the
bundle correlation function g(2)

2(ll )(τ ) is ill-defined (as such
short times probe inside the bundle itself) [15,20]. While for
l �= k, g(2)

2(lk)(τ ) (τ � 0) represents the cross-correlation func-
tion between the two-photon bundles in different modes. Such
correlations can be measured directly thanks to the develop-
ments in two-photon detection [43]. In Fig. Fig. 3, we plot the
time-delayed second-order autocorrelation functions g(2)

(ll )(τ )

and g(2)
2(ll )(τ ) (l = 1 and 2) and the cross-correlation function

g(2)
2(12)(τ ) at δ = � = 24.5g. It can be seen that g(2)

(11)(0) =
g(2)

(22)(0) > 1 and g(2)
2(11)(τmin) = g(2)

2(22)(τmin) < 1 at zero time,
which guarantees the generation of antibunched two-photon
bundles in the same mode. At the same time, the two-photon
bundles between different modes are also antibunching, i.e.,
g(2)

2(12)(0) < 1. When the timescale is small, the antibunching
between the bundles in different modes a1 and a2 is stronger
than that of bundles in the same mode a1 (a2). However, when
the timescale is large enough, the correlation between bundles
in different modes a1 and a2 has the same strength as the
correlation between the bundles in the same mode a1 (a2).
This manifests the alternate appearance of the two-photon
bundles in the two modes.

FIG. 3. Time-delayed autocorrelation functions g(2)
(ll ) and g(2)

2(ll )

(l = 1and 2) and the cross-correlation function g(2)
2(12). We consider

δ = � = 24.5g and the other parameters are the same as those in
Fig. 2.

In order to clarify such bundle emissions, it is necessary
to analyze their transition paths. According to the resonance
conditions in Eqs. (6) and (7), we notice that there are two
categories of transition path for the two cavity modes when
the system undergoes two-photon processes. One of them is
related to inner sideband transitions and the other is related
to outer sideband transitions as �̃±

4 = �±
2 . The transitions

at the outer sidebands in Eq. (7) can be safely discarded
because they involve a cascade transition (composed of two
second-order processes and passing through a real state) that
causes the correlation of similar strength with a third-order
process [40]. The rest of the transitions in Eq. (6) are mainly
affected by two aspects. As shown in Fig. 4(a), population
inversion 〈σ00〉ss > 〈σ±±〉ss happens in the entire region of the
multiphoton resonance |�| < �. At the same time, accord-
ing to the effective Hamiltonian, Eqs. (A5)–(A13), derived
in the Appendix, the absolute value of coefficients |G1,2,3|
and |G̃1,2,3| as functions of detuning �/g are plotted in
Fig. 4(b) at two-photon resonances δ = ±�̄/2. One can see
that the coefficients |G1| and |G̃1| (solid lines) increase rapidly
with the increasing of |�|/g, while |G2| and |G̃2| (dashed
lines) first decrease and then increase, leading to the inter-

FIG. 4. (a) The steady-state dressed population 〈σ00〉ss and
〈π±±〉ss as functions of the detuning �/g. (b) The coefficients |G1,2,3|
and |G̃1,2,3| in the effective Hamiltonian derived in the Appendix.
The two-photon resonance condition is chosen as δ = ±�̄/2 and the
other parameters are the same as those in Fig. 2. The gray dashed
lines label the special points at �/g ≈ ±24.5.
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FIG. 5. The dressed-state structure under the condition of the
two-photon resonance δ = � = �+

2 . The solid blue and green lines
correspond to the preserved two-photon bundle emission and the
dotted blue and green lines correspond to the eliminated emission.
The yellow dashed lines depict the subsequent emission which brings
the system back to the initial states.

sects at |�|/g = 10.95. When |�|/g > 10.95, i.e., |G1| >

|G2| (|G̃1| > |G̃2|), it means that the coupling terms σ0−a2
1 and

σ0+a2
2 (σ0+a2

1 and σ0−a2
2) have more weight than that of σ+0a2

1
and σ−0a2

2 (σ−0a2
1 and σ+0a2

2), and vice versa. It is the atomic
coherence induced by the strongly driven fields and quantum
interference that work together to affect dressed populations
and cross couplings. Two cavity modes respectively couple
to different transitions, which guarantees the generation of
two-photon bundles at two different frequencies.

Moreover, in Fig. 4(b), it should be pointed out that the
coefficients |G2| and |G̃2| are vanishing at � ≈ ±24.5g; thus,
the influence of corresponding transition paths, i.e., |±〉 ⇒
|0〉, will be completely eliminated via destructive interference.
In other words, if δ = � = �±

2 , the system experiences two
two-photon transitions |0〉 ⇒ |∓〉 selectively. As is shown in
Fig. 5, the blue and green solid lines respectively represent
the preserved two-photon bundle transitions in the a1 and a2

modes, while the blue and green dashed lines represent the
eliminated transitions. Although the coefficients |G3| and |G̃3|
are nonzero, the corresponding simultaneous emission of the
a1 photon and the a2 photon can be ignored since it is related
to the transition between the states |±〉 ⇒ |±〉 without atomic
population inversion. Such simplified transitions ensure more
perfect emission of the two-photon bundle. Including the
two-photon emission (the solid green and blue lines) and
the subsequent radiation to the initial state |0〉 (the dashed
yellow lines) in the dressed picture, the energy of the whole
photon-emission process is conserved under three quantum
excitations (the solid red lines). If cavity decay dominates over
atomic decay, the two-photon bundles in the same modes will
be blockaded by the spontaneous emission of the atom, result-
ing in an antibunching property. Moreover, the antibunching

FIG. 6. (a) Time evolutions of the population of the states P000

and P20− when g1 = g and g2 = 0. (b) Time evolutions of the pop-
ulation of the states P000, P20−, P02+, and P110 when g1 = g2 = g.
We consider the condition of the initial state |0, 0, 0〉 and the two-
photon resonance δ = � = 24.5g. The driving strength is chosen as
� = 30g.

exists between the two-photon bundles in the different modes
since the final states of the two-photon transition of the two
modes are coherent.

Two-photon bundle transitions can be manifested by super-
Rabi oscillation. At δ = � = 24.5g, according to Eqs. (A5)
and (A6) derived in the Appendix, the effective Hamiltonian
can be rewritten as

H (2)
eff =g(2)

eff,1a2
1σ0− + g(2)

eff,2a2
2σ0+ + H.c.

=
∞∑

μ,ν=0

[
g(2)

eff,1

√
(μ + 1)(μ + 2)|μ, ν, 0〉〈μ + 2, ν,−|

+g(2)
eff,2

√
(ν + 1)(ν + 2)|μ, ν, 0〉〈μ, ν + 2,+|

]
+H.c.,

(11)

where we have ignored the eliminated terms a2
1σ+0 and a2

2σ−0

and have defined

g(2)
eff,l = −2g2

l

3�̄
[3A+(C+ + D) + A−C+]. (12)

Here, states |m1, m2, i〉 = |m1〉 ⊗ |m2〉 ⊗ |i〉 represent that
cavity mode a1 possesses m1 photons, mode a2 possesses
m2 photons, and the atom is located in the dressed state |i〉.
It can be seen from Eq. (11) that two different states are
coupled to a common state in square brackets. This means
that there are two transition paths for generating two-mode
two-photon bundles. To observe such oscillations, we plot
in Fig. 6 the nonzero populations Pm1m2i = |〈m1, m2, i|ψ (t )〉|2
without dissipation. The initial state of the system is assumed
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to be |0, 0, 0〉; i.e., the two cavity modes are both prepared
in a vacuum state and the atom is located in the dressed
state |0〉. At first, we consider the case that there is only one
mode that exists, e.g., g1 = g, g2 = 0. The time evolutions of
nonzero populations P000 and P20− are plotted in Fig. 6(a).
It can be seen that the whole system will oscillate back and
forth between state |0, 0, 0〉 and state |2, 0,−〉. Namely, the
two-photon bundle in mode a1 can be solely generated and is
accompanied by a dressed-atom flip |0〉 → |−〉. When both
two cavity modes are considered, i.e., g1 = g2 = g, the situ-
ation becomes different. In Fig. 6(b) we present all the states
that have a nonzero population. It is found that the two pop-
ulations P20− and P02+ have the same behavior of oscillation.
A peak in the single-mode case splits into two peaks when
both of the two modes are contained. This means that the
emission of two-photon bundles in two modes is separately
accompanied by different atomic flips. Besides, we find that
these two transition paths are coherent since the oscillations
of the off-diagonal elements of states |2, 0,−〉 and |0, 2,+〉
are consistent with the oscillations of their diagonal elements.
It is established by the intrinsic atomic coherence between the
dressed states. It is for this reason that the two-photon bundles
between the different modes have strong antibunching proper-
ties. During the two-photon transitions for two channels, the
intermediate state |1, 1, 0〉 appears, which means that there
is a possibility to generate photon pairs composed of one
a1 photon and one a2 photon. However, this is a negligible
process since it is just the oscillation between P110 and P000

without population inversion for light amplification.
To display two-photon bundle emission more intuitively,

we simulate the actual situation of photon radiation by extract-
ing the photon emission event from Monte Carlo simulation
over 25 quantum trajectories. We separately simulate two
cases for the existence of a single cavity mode and double
cavity modes. Shown in Fig. 7, the horizontal and vertical
axes respectively represent time and trajectory, and each point
indicates a photon emission event. In Fig. 7(a), when only one
mode exists, it can be seen that the two-photon events account
for the majority of the whole radiation processes in addition
to a small fraction of unexpected events. In Fig. 7(b), the two-
photon events still possess a large proportion when two modes
are contained. It shows that the two-photon bundle emissions
in the two different modes are random in times and trajecto-
ries. Although a small part of two-photon events composed of
one a1 photon and one a2 photon are generated, it is negligible
compared to the two-photon bundle generated separately by
the two modes. Therefore, two-mode two-photon bundles are
achievable in our scheme.

Next, we focus on how the correlation of two-photon bun-
dle emission varies with atomic decay. Since the two cavity
modes have the same properties, we only present the function
of mode a1. In Fig. 8(a), the time-delayed bundle correlation
function g(2)

2(11)(τ ) as a function of γ /g is plotted. It shows how
the statistics of the photon bundle changes from bunching to
antibunching as atomic decay decreases, passing through the
coherent emission with g(2)

2(11)(τ ) = 1. This can be interpreted
by the fact that the long-lived atom (sufficiently small γ ) en-
sures that the timescale of radiation between photon bundles
is much larger than that of photon radiation within bundles.
As a result, the two adjacent bundles exhibit antibunching

FIG. 7. A series of emission events extracted from the Monte
Carlo simulations over 25 quantum trajectories for two-photon reso-
nance for (a) the single mode case, g1 = g and g2 = 0, and (b) the
two-mode case, g1 = g2 = g. The single-, two-, and four-photon
emissions in mode a1 (a2) are denoted by solid (hollow) blue stars,
red circles, and green triangles, respectively. The other parameters
are the same as those in Fig. 3.

properties. This feature can be seen clearly in Fig. 8(b).
The shadow area satisfies the conditions g(2)

2(11)(τmin) < 1,

g(2)
2(12)(0) < 1, and g(2)

(11)(0) > 1, which describe the anti-
bunched two-mode two-photon bundles. It should be pointed
out that the cross-correlation function of the two-photon bun-
dle g(2)

2(12)(0) is always less than or equal to 1 due to the
relatively stable atomic coherence of our system.

Finally, we explore the influence of thermal photon noise
on the antibunched two-photon bundles. To do this, we in-
clude the dissipative terms

∑
l=1,2

nth,l κl

2 (L[al ]ρ + L[a†
l ]ρ) in

FIG. 8. (a) Logarithmic plot of the time-delayed second-order
bundle correlation function g(2)

2(11)(τ ) as a function of the atom
decay rate γ /g. (b) Logarithmic plot of the correlation func-
tions g(2)

(11)(0), g(2)
2(11)(τmin), and g(2)

2(12)(0) for τmin = ∑N
m=1 1/mκ . The

shadow area represents the regimes of g(2)
2(11)(τmin) < 1, g(2)

2(12)(0) < 1,

and g(2)
(11)(0) > 1. The other parameters are the same as those in Fig. 3.
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FIG. 9. The zero-time delayed correlation functions g(2)
(11)(0),

g(2)
2(11)(τmin), and g(2)

2(12)(0) as a function of mean thermal photon num-
bers nth. The other parameters are the same as those in Fig. 3.

the master equation, Eq. (3), where nth,l = 1/(exp(
h̄ωal
KBT ) −

1) are the equilibrium thermal photon occupation numbers
with the Boltzmann constant KB and the temperature T .
Here we assume nth,1 = nth,2 = nth. In Fig. 9 the correlation
functions g(2)

(11)(0), g(2)
2(11)(τmin), and g(2)

2(12)(0) are plotted as
functions of the mean thermal photon number nth. It can be
seen that the antibunched two-mode two-photon bundles, i.e.,
g(2)

2(11)(τmin) < 1, g(2)
2(12)(0) < 1, and g(2)

(11)(0) > 1, are achiev-
able for nth � 0.01, which shows a strong robustness to the
environmental noise.

V. EFFECT OF NONSYMMETRIC PARAMETERS

So far the bundle emission and the antibunching are ana-
lyzed for the symmetric parameters: ωa1 = ω31 and ωa2 = ω32

(i.e., δ1 = �1 and δ2 = �2), �1 = −�2 = 24.5g, g1 = g2 =
g, γ1 = γ2 = 0.01g, and κ1 = κ2 = 0.1g. Such symmetry is
possibly not so well realistic in practice. In this section we
verify numerically the mechanism validity in a wide range of
parameters. We plot in Fig. 10 the bundle correlation functions
as functions of one parameter (�1, g1, γ1, and κ1, respectively)
while the other parameters are fixed. It is obvious that all
correlation functions are smaller than unity in a wide range
of parameters. This means that the antibunching for the same
modes and for the different modes is not so well sensitive to
the parameter changes around the symmetric case. In particu-
lar, the cross-correlation function g(2)

2(12)(0) (blue dotted lines)
remains almost unchanged in a wide range of the parameters.
In comparison, the autocorrelation functions g(2)

2(11)(τmin) (red

solid lines) and g(2)
2(22)(τmin) (green dashed lines) are a little

more sensitive to the parameters. As shown in Fig. 10(a),
the autocorrelation functions g(2)

2(11)(τmin) and g(2)
2(22)(τmin) take

oscillating changes with the change in the detuning �1. Nev-
ertheless, the bundle antibunching in the same modes is well
preserved in the range of −1.3 < �1/�2 < −0.9. Shown in
Fig. 10(b), g(2)

2(11)(τmin) and g(2)
2(22)(τmin) increase as the cou-

pling strength increases. Even so, good bundle antibunching
in the same modes still stays in the range of 0 < g1/g2 <

1.5. Figure10(c) shows a slight change of g(2)
2(11)(τmin) and

FIG. 10. The zero-time delayed correlation functions g(2)
2(11)(τmin),

g(2)
2(22)(τmin), and g(2)

2(12)(0) as functions of (a) �1, (b) g1, (c) γ1, and
(d) κ1. Except for the changing parameter, the fixed parameters are
ωa1 = ω31 and ωa2 = ω32 (i.e., δ1 = �1 and δ2 = �2), �1 = −�2 =
24.5g, g1 = g2 = g, γ1 = γ2 = 0.01g, κ1 = κ2 = 0.1g, and � = 30g.

g(2)
2(22)(τmin) with increasing γ1. We find that the bundle anti-

bunching in the same modes can be well realized even in the
large range 0 < γ1/γ2 < 10. Shown in Fig. 10(d) is the effect
of the cavity dissipation κ1. It can be seen that g(2)

2(11)(τmin)
depends remarkably on κ1 but is always smaller than unity
when κ1/κ2 � 0.4. Meanwhile, the influence of the cavity
decay rate κ1 on g(2)

2(22)(τmin) is negligibly weak. Finally, when
the changing parameters (�1, g1, γ1, and κ1) in Fig. 10 are
substituted into (�2, g2, γ2, and κ2), respectively, the prop-
erties of autocorrelation functions g(2)

2(11)(τmin) and g(2)
2(22)(τmin)

are exchanged, while the properties of the cross-correlation
function g(2)

2(12)(τmin) remain unchanged. The two-photon bun-
dle emission and the antibunching in the same and different
modes are valid in a very wide range of parameters.

VI. CONCLUSION

We have shown that a � three-level system in a bimodal
cavity can be used to continuously generate two-mode two-
photon bundles. They arise from the leapfrog processes at
different inner sidebands of the dressed atom, in which atomic
coherence plays a key role. Two coherent channels can be
selected by tuning the two cavity modes resonant with the bare
atomic transitions, which ensures the antibunched two-photon
bundles in the same modes and between different modes are
obtained simultaneously. The antibunching for the different
modes is based on the atomic coherence between the two
final states of bundle emission, while the antibunching for the
same modes is due to the dominance of cavity decay over
atomic decay. These antibunched two-photon bundles have
been shown to be robust against thermal photon noise and
are achievable within a relatively wide range of parameters.
Our work opens up a route to generate two-mode two-photon
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states, which have potential applications in quantum informa-
tion, high-precision metrology and ultrasensitive biosensing.
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APPENDIX: DERIVATION OF THE TWO-PHOTON
SUPER-RABI OSCILLATION

In the dressed picture, the total Hamiltonian of the system
is expressed as H = H0 + V , where

H0 =δ1a†
1a1 + δ2a†

2a2 + �̄(σ++ − σ−−), (A1)

V =g1a†
1

[
σ

(1)
2L + σ

(1)
L + σ

(1)
0 + σ

(1)
R + σ

(1)
2R

]
+ g2a†

2

[
σ

(2)
2L + σ

(2)
L + σ

(2)
0 + σ

(2)
R + σ

(2)
2R

] + H.c. (A2)

Then an effective Hamiltonian can be obtained by applying
the unitary transformation Heff = exp(−λS)H exp(λS), where
we introduce the non-Hermitian operator

S =g1a1

[
1

δ1 − 2�̄
σ

(1)
2L + 1

δ1 − �̄
σ

(1)
L + 1

δ1
σ

(1)
0

+ 1

δ1 + �̄
σ

(1)
R + 1

δ1 + 2�̄
σ

(1)
2R

]

+ g2a2

[
1

δ2 − 2�̄
σ

(2)
2L + 1

δ2 − �̄
σ

(2)
L + 1

δ2
σ

(2)
0

+ 1

δ2 + �̄
σ

(2)
R + 1

δ2 + 2�̄
σ

(2)
2R

]
− H.c., (A3)

with the satisfaction of V + [H0, S] = 0. The parameter λ is
introduced to represent the degree of perturbation and we
rewrite V as λV . In terms of the Baker-Campbell-Hausdorff
formula, we expand Heff to second-order in λ:

Heff =H0 + λV − λ[S, H0] − λ2[S,V ]

+ λ2

2!
[S, [S, H0]] + O(λ3)

=H0 − λ2

2
[S,V ] + O(λ3). (A4)

By setting λ = 1 and driving the system to the two-photon
resonance δ = �̄/2, the related second-order perturbation
interaction Hamiltonian is reduced to three terms, H (2)

eff =
H (2)

eff,1 + H (2)
eff,2 + H (2)

eff,12, with

H (2)
eff,1 = − g2

1

2
a2

1(G1σ0− + G2σ+0) + H.c., (A5)

H (2)
eff,2 = − g2

2

2
a2

2(G1σ0+ + G2σ−0) + H.c., (A6)

H (2)
eff,12 = − g1g2

2
G3a1a2(σ++ − σ−−) + H.c. (A7)

The first and second terms represent the two-photon transi-
tions for cavity modes a1 and a2, respectively. The second
term denotes the two-photon transition composed of an a1

photon and an a2 photon. The coupling coefficients are de-
fined as

G1 = 4

�̄
A+(C+ + D) + 4

3�̄
A−C+, (A8)

G2 = 4

�̄
B(C− − D) + 4

3�̄
BC+, (A9)

G3 = 4

15�̄
[3C2

− + 5(C2
+ + A−B) − 15A+B]. (A10)

Similarly, when δ = −�̄/2, the corresponding
Hamiltonian is divided as follows: H̃ (2)

eff = H̃ (2)
eff,1 + H̃ (2)

eff,2 +
H̃ (2)

eff,12, with

H̃ (2)
eff,1 = − g2

1

2
a2

1(G̃1σ0+ + G̃2σ−0) + H.c., (A11)

H̃ (2)
eff,2 = − g2

2

2
a2

2(G̃1σ0− + G̃2σ+0) + H.c., (A12)

H̃ (2)
eff,12 = − g1g2

2
G̃3a1a2(σ++ − σ−−) + H.c., (A13)

where the coupling coefficients are defined as

G̃1 = − 4

�̄
A−(D − C−) + 4

3�̄
A+C−, (A14)

G̃2 = − 4

�̄
B(C+ + D) − 4

3�̄
BC−, (A15)

G̃3 = 4

15�̄
[3C2

+ + 5(C2
− − A+B) + 15A−B]. (A16)
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