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Inhibition of double excitation and strong quantum entanglement via engineered cavity interactions
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We propose a method for realizing the inhibition of simultaneous excitation of two identical qubits in a
single-mode cavity QED system, where two qubits are driven by a coherent field and coupled to a cavity with
engineered qubit-cavity interactions. By suitably chosen placements of the qubits in the cavity and by adjusting
the relative decay strengths of the qubits and cavity field, we close many unwanted excitation pathways. This
leads to an inhibition of the doubly excited state. In addition, we show that these two qubits are strongly entangled
over a broad regime of the system parameters. We show that a strong signature of nonexcitation of the doubly
excited state is the bunching property of the cavity photons, which thus provides a possible measurement of this
nonexcitation. We also present dynamical features of the inhibition of simultaneous excitation of two qubits.
The proposal presented in this paper can be realized not only in traditional cavity QED, but also in noncavity
topological photonics involving edge modes.
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I. INTRODUCTION

The inhibition of simultaneous excitation of two qubits
was first investigated in free space [1], where two atoms far
apart from each other are immersed in a laser field. If two
atoms have different resonant frequencies, the doubly excited
state cannot be excited due to the destructive interference
between two excitation pathways in two-photon absorption.
Several schemes have been suggested to allow the disallowed
transitions [1–6].

Another method to prevent the excitation of two qubits is
based on the van der Waals (vdW) interaction between two
atoms in Rydberg states. Due to the vdW interaction, the
doubly excited state will be shifted, preventing the absorption
of two photons [7,8]. Thus only a single atom can be excited,
and simultaneous excitation of two atoms is blocked. This
effect is widely known as the dipole blockade or Rydberg
blockade [9–11], which is the more pronounced the stronger
the vdW interaction is. Moreover, the dipole blockade will
result in many extraordinary phenomena, such as entangled
atoms [12–15], super-radiance behavior [16], blockade gate
operation [17–19], enhanced Kerr nonlinearity [20,21], and
so on.

A similar phenomenon to generate the single-excitation
state can also be realized in a two-identical-qubit system
with strong dipole-dipole interaction [22]. In contrast to the
Rydberg blockade, the effects of the dipole-dipole interaction
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lead to the shift of the states from the single-qubit energy [5].
Thus the probability of simultaneously exciting two qubits
can be suppressed when the double-excitation state is shifted
from resonance by a single-photon resonant laser field. Since
the suppression of two-photon excitation will not destroy the
single-photon excitation, a single-excitation entangled state
can be created, leading to a very large concurrence of two
qubits [23,24].

In this paper, we propose a method to realize an inhibition
of double excitation by engineering the qubit-cavity inter-
actions instead of direct coupling between two qubits, and
our proposal also yields a strong entanglement between two
qubits. We consider a two-qubit cavity QED system with a
π phase shift in positions of localized qubits as in the exper-
iments of Refs. [16,25]. Under the strong-coupling regime,
the symmetric Dicke state is decoupled from the cavity. When
the cavity decay rate is much larger than the emitting rates
of qubits, the excitation of the doubly excited state can be
inhibited just by adjusting the quality factor of the cavity.
Moreover, it is possible to observe this cavity-induced inhi-
bition of exciting two qubits simultaneously by measuring the
second-order photon correlation function. In the presence of
this phenomenon, we also show that very strong entanglement
between two qubits can be achieved. We add that an earlier
work [26] considered steady-state production of entangled
states of two atoms using cavity decay in a pair of lambda
systems. The entangled states involved two lower states of
the lambda system which are stable states. In contrast, we
engineer cavity QED parameters to produce steady-state en-
tanglement which involves two-level systems with a decaying
excited state.
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FIG. 1. (a) Schematic diagram of a single-mode cavity coupled
with two qubits driven by a pump field with angular frequency ωP

and driving strength η. The decay rate of each qubit is 2γ , and
the cavity decay rate is 2κ . The coupling strength of the ith qubit
is gi (i = 1–2), satisfying g1 = −g2. (b) Physical picture leading to
the suppression of double excitation. Here, we just show the main
transition pathways and qubit-cavity interactions for this two-qubit
QED system. The physical picture requires that the population of
the state |ee, 0〉 should be quickly transferred to the cavity mode as
we need to keep γ very low so that the state |+, 0〉 is significantly
populated.

II. THEORETICAL MODEL

As shown in Fig. 1(a), we consider a scheme consisting
of two identical qubits with resonant frequency ωA in a
single-mode cavity, where the cavity resonant frequency is
ωC , and two qubits are localized at different positions with a
π phase shift, yielding g1 = −g2 = g0. A pump field drives
these two qubits directly with angular frequency ωP and
driving strength η. Under the rotating-wave approximation,
the Hamiltonian of the system can be expressed as H =
H0 + HI + HL with H0 = h̄�A(S(1)

z + S(2)
z )/2 + h̄�Ca†a,

HI = h̄g0[(a†S(1)
− + aS(1)

+ ) − (a†S(2)
− + aS(2)

+ )], and
HL = h̄η

∑
i=1,2(S(i)

− + S(i)
+ ). Here, �A = ωA − ωP and

�C = ωC − ωP are the detunings for the cavity and qubits,
respectively. The operator a† (a) is the photon creation
(annihilation) operator, while operators S(i)

z and S(i)
± are the

spin operators of the ith (i = 1, 2) qubit.
In Fig. 1(b), we show the physical mechanism behind the

inhibition of the doubly excited state. Figure 1(b) is based on
the use of collective states for two qubits. We illustrate the
possible transitions, and the diagram also shows the condition
needed to realize the inhibition of double excitation. Using the
collective states |gg〉, |±〉 = (|eg〉 ± |ge〉)/

√
2 and |ee〉 as the

basis, the Hamiltonian can be expressed in terms of the collec-
tive operators Dz = S(1)

z + S(2)
z and D†

± = (S(1)
+ ± S(2)

+ )/
√

2,
yielding H0 = h̄�ADz/2 + h̄�Ca†a, HL = √

2h̄η(D†
+ + D+),

and HI = 2h̄g0(aD†
− + a†D−)/

√
2. Here, the symmetric and

antisymmetric Dicke states |±〉 are created by using the col-
lective Dicke operators D†

± [8,27]. Assuming �A = �C = 0,
one can obtain a clear picture of transition pathways for this
two-qubit cavity QED system. As shown in Fig. 1(b), the
symmetric Dicke state |+, 0〉 can be excited by absorbing a

single photon (i.e., |gg, 0〉
√

2η→ |+, 0〉). Due to the antisymmet-
ric coupling (i.e., g1 = −g2), the symmetric Dicke state |+, 0〉

is decoupled from other states in the one-photon space. By
absorbing another photon, the state |ee, 0〉 can be excited. In
the two-photon space, possible qubit-cavity interactions are

then via the coupling |ee, 0〉
√

2g0↔ |−, 1〉 2g0↔ |gg, 2〉. When the
cavity decay rate is much larger than the emitting rates of
qubits (i.e., κ � γ ), the population of the doubly excited state
should be quickly transferred to the cavity mode. Therefore
the probability of detecting the symmetric Dicke state |+, 0〉
is predominant, yielding nonexcitation of the state |ee, 0〉 via
the engineered environment and qubit-cavity interactions. It
is worth pointing out that this inhibition of the simultaneous
excitation of two identical qubits can also be detected by mea-
suring the second-order photon correlation function g(2)(0) =
〈a†a†aa〉/(〈a†a〉)2. Since the photons leak from the cavity via
the state |gg, 2〉, strong bunching of photons [i.e., g(2)(0) > 2]
can be observed with nonexcitation of state |ee, 0〉.

III. BIEXCITATION BLOCKADE-QUANTITATIVE
TREATMENT

We next present full master equation calculations to con-
firm the physical picture as outlined in Fig. 1(b). To show this
inhibition of the excitation of two qubits quantitatively, one
can directly solve the master equation

d

dt
ρ = −i[H0 + HI + HL, ρ] + Lγ ρ + Lκρ, (1)

where ρ is the density matrix operator of the system. The
damping terms of the cavity and qubits are given by Lκρ =
κ (2aρa† − a†aρ − ρa†a) and Lγ ρ = γ

∑
i=1,2(2S(i)

− ρS(i)
+ −

S(i)
+ S(i)

− ρ − ρS(i)
+ S(i)

− ), respectively. The inhibition of double
excitation can be characterized by evaluating the ratio be-
tween the double-excitation probability and the square of the
single-excitation probability, i.e.,

ξ ≡ Pee/P2
e , (2)

under the steady-state condition. Here, Pee = 〈ee|ρatom|ee〉
is the probability of finding two qubits excited, and Pe =
〈e|ρatom1|e〉 = 〈e|ρatom2|e〉 denotes the probability of finding
one of two qubits excited. In the presence of the inhibition
of double excitation, the probability of detecting the doubly
excited state is smaller than that of detecting the single-qubit
excitation state. Therefore the value of ξ is smaller than unity,
giving a direct signature of the suppression of the double
excitation. The stronger the suppression of double excitation
becomes, the smaller the ratio ξ is.

First, we study the probability of detecting the doubly
excited state Pee as a function of the normalized coupling
strength g0/κ in Fig. 2(a). The qubit decay rate is chosen as
γ /κ = 1 (dotted blue curve), 0.1 (dashed green curve), 0.01
(dash-dotted orange curve), and 0.001 (solid purple curve).
Other system parameters are given by η/γ = 5 and �A =
�C = 0. In our numerical simulation, the number of pho-
ton states is chosen to be 50 to ensure the convergence of
the numerical procedure. In the case of κ � γ , the value
of Pee [dash-dotted orange and solid purple curves shown
in Fig. 2(a)] drops significantly as the qubit-cavity coupling
strength increases. This is because the strong qubit-cavity

interaction |ee, 0〉
√

2g0↔ |−, 1〉 2g0↔ |gg, 2〉 opens an additional
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FIG. 2. The probability of detecting the doubly excited state Pee (a), the ratio ξ (b), and the second-order photon correlation function g(2)(0)
(c) as a possible method for detection in experiments. Here, the qubit decay rate is chosen as γ /κ = 1 (dotted blue curve), 0.1 (dashed green
curve), 0.01 (dash-dotted orange curve), and 0.001 (solid purple curve). Other system parameters are given by �A = �C = 0 and η = 5γ .

damping pathway and the decay of state |gg, 2〉 becomes
predominant. However, the symmetric Dicke state |+, 0〉 un-
couples from other states in the one-photon space due to the
antisymmetric coupling. Thus it is stable, and the inhibition of
double excitation occurs, yielding ξ < 1 as shown in Fig. 2(b).
In the case of κ � γ , the doubly excited state |ee, 0〉 is as sta-
ble as the single-excitation state |+, 0〉. Thus the suppression
of double excitation disappears, and the ratio ξ ≈ 1 [see dot-
ted blue and dashed green curves in Fig. 2(b)]. In the presence
of nonexcitation of the doubly excited state, the second-order
photon correlation function g(2)(0) > 2 shown in Fig. 2(c),
and extremely strong bunching of photons can be detected.

In Fig. 3(a), we also show the value of log10(ξ ) as functions
of the normalized qubit-cavity coupling strength g0/κ and
the detuning �C/κ , respectively. Here, we choose ωC = ωA,
γ /κ = 0.01, and η = 5γ . It is noted that the engineered-
interaction-and-environment-induced nonexcitation of the
doubly excited state only occurs in the resonant or near-
resonant driving regime. As the qubit-cavity coupling strength
g0 increases, the frequency regime for realizing the inhibition
of doubly excitation is broadened simultaneously, which pro-
vides great facilities for experimental implementation.

IV. REMOTE ENTANGLEMENT OF TWO QUBITS

As demonstrated in Ref. [11], the strong entanglement of
two qubits can be achieved when the double excitation is

FIG. 3. (a) The value of log10(ξ ) as functions of the normalized
coupling strength g0/κ and detuning �C/κ with ωC = ωA. The white
curves indicate log10(ξ ) = 0. (b) The concurrence as functions of
the normalized coupling strength g0/κ and driving intensity η/γ ,
respectively. Here, the black curves denote the boundary of the two
strongly entangled qubits, where the concurrence is close to 0.5.

inhibited. To show this interesting property, we evaluate the
concurrence of two qubits under the steady-state condition,
where the maximum value of the concurrence is 0.5. As shown
in Fig. 3(b), there exists a regime where these two qubits are
strongly entangled (red region). The boundaries denoted by
the black curves are given by g2

0 = 2
√

2ηκ and
√

2η = γ ,
respectively (see Appendix A for details). Here, the system
parameters are chosen as �A = �C = 0, γ = 0.01κ . It is clear
to see that the value of the concurrence tends to be saturated
when the coupling strength g0 is large enough. Then, we
choose g0 = κ and scan the driving field intensity to show
the influence of qubit decay rate on the entanglement of two
qubits. In Fig. 4, the maximum value of the concurrence is
calculated as a function of the normalized qubit decay rate
γ /κ . Clearly, strong entanglement can be achieved when the
qubit decay rate is much smaller than the cavity decay rate,
e.g., the ratio γ /κ 
 0.01. Except for the concurrence, the
entanglement of two qubits can also be demonstrated by eval-
uating the real parts of the elements of the qubit density matrix
ρqubit . When the ratio γ /κ � 1, the system is in the ground
state |gg〉 in the equilibrium condition. However, in the case
of γ /κ 
 1, the system is in a mixture state consisting of a
ground state with weight 0.5 and a single-qubit excitation state
(|eg〉 + |ge〉)/

√
2 as depicted by the orange bars with qubit

decay rate γ = 10−3κ .

FIG. 4. The red curve represents the steady-state concurrence
against the qubit decay rate γ /κ with g0 = κ . The orange bar dia-
gram demonstrates the real part of the qubit density matrix elements
with γ = 5×10−3κ (dashed orange circle).
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FIG. 5. The variable log10(ξ ) (a) and the steady-state concur-
rence (b) are plotted as functions of the normalized coupling strength
g0/κ and the position-dependent phase difference φz/π between two
qubits. Here, we set γ = 0.01κ , �A = �C = 0, and η = 5γ for the
numerical calculation.

Next, let us investigate how exclusive the condition
of g1 = −g2 is to realize this engineered-interaction-and-
environment-induced inhibition of double excitation and the
corresponding entanglement of the two qubits. We first as-
sume that one qubit is trapped at the peak of the cavity
mode with a qubit-cavity coupling strength g1 = g0 for math-
ematical simplicity. Then, the coupling strength of the other
qubit is given by g2 = g0 cos(φz ), where φz = 2π�z/λC is
the position-dependent phase shift with �z being the distance
between two qubits and λC being the wavelength of the cavity
mode. In Fig. 5, we plot the ratio log10(ξ ) [Fig. 5(a)] and
the concurrence [Fig. 5(b)] as functions of the normalized
coupling strength g0/κ and the phase difference φz/π , re-
spectively. Here, we choose γ = 0.01κ , and other system
parameters are the same as those used in Fig. 4. It is noted that
the engineered-interaction-and-environment-induced inhibi-
tion of double excitation (i.e., ξ < 1) and strong entanglement
between two qubits (the concurrence is close to 0.5) can be
achieved over a wide regime of coupling strengths near the π

phase shift, which is robust for experimental implementation.
However, note that if one is interested in the smallest possible
double excitation, then phase π/4 is preferable. We also no-
tice that the engineered-interaction-and-environment-induced
inhibition of double excitation cannot be realized in the case
of g1 = g2 since the interaction between states |+, 0〉 and
|gg, 1〉 is allowed. More details are given in Appendix B.

Finally, we discuss the dynamical properties of this
engineered-interaction-and-environment-induced inhibition
of double excitation and the corresponding entanglement of
two qubits by numerically solving the time-dependent master
equation with the initial condition Pgg = 1. In Fig. 6(a),
we show the probability of detecting the doubly excited
state Pee as a function of the normalized time parameter
γ t with different qubit decay rate γ = κ (dash-dotted
green curve), 0.1κ (dashed orange curve), 0.01κ (dotted
blue curve), and 0.001κ (solid red curve). Other system
parameters are chosen as g0 = κ , η = 5γ , and �A = �C = 0.
Obviously, the probability of finding a doubly excited
state reaches over 50% in the case of γ = κ . As the qubit
decay rate decreases, however, the probability of finding a
doubly excited state drops quickly. In particular, the double
excitation will be significantly inhibited when γ 
 κ [see
dotted blue and solid red curves in the inset of Fig. 6(a)]. The
oscillation in Pee can be explained by describing the system

FIG. 6. (a) The probability of detecting doubly excited state Pee

vs the normalized evolution time γ t with the initial condition Pgg =
1. The qubit decay rate is chosen as γ = κ (dash-dotted green curve),
10−1κ (dashed orange curve), 10−2κ (dotted blue curve), and 10−3κ

(solid red curve), respectively. Other system parameters are given
by �A = �C = 0, g0 = κ , and η = 5γ . The inset in (a) only shows
the results of γ /κ = 10−2 (dotted blue curve) and 10−3 (solid red
curve). (b) The concurrence is plotted as a function of time with
γ /κ = 10−3 and η = 20γ . (c) and (d) The blue (c) and red (d) bars
demonstrate the real and imaginary parts of the qubit density matrix
at t = π/(2

√
2η), respectively.

as a damping two-level model. Using the time-dependent
Bloch equations, the probability of detecting the doubly
excited state oscillates with a period of time π/(

√
2η)

(see Appendix C). Likewise, the concurrence has similar
dynamical characteristics exhibited in the profile of Pee. As
shown in Fig. 6(b), the concurrence also oscillates with a
period of time π/(

√
2η) and reaches it maximum at time

t = π/(2
√

2η), corresponding to a maximum entanglement
of two qubits. Here, we choose the system parameters as
γ = 10−3κ , g0 = 4κ , and η = 20γ . The maximum value
of the concurrence is close to 0.93 at t ≈ 0.06/γ . The
corresponding real (blue bars) and imaginary parts (red
bars) of the elements of the atomic density matrix ρqubit are
demonstrated in Figs. 6(c) and 6(d), respectively. Clearly,
the probabilities of finding single-qubit excited states are
predominant compared with probabilities of finding qubits in
other states. More importantly, these states are stable since
their imaginary parts are zero.

Before ending, let us discuss the feasibility of the experi-
mental implementation of this two-qubit cavity QED system
with engineered qubit-cavity interactions and environment.
With current experimental technologies, a spatial π phase
difference of two qubits can be achieved not only in traditional
cavity QED systems [16,25] but also in noncavity topological
photonics involving edge modes [28,29]. A possible platform
to realize our proposal is the semiconductor quantum dot QED
system, where ideal decay rates of quantum dots in such sys-
tems are of the order of 0.1 GHz, but the interaction strengths
and cavity field decay rates are about two orders of magnitude
bigger [30].
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V. CONCLUSION

In conclusion, we provide a physical mechanism for inhi-
bition of double excitation by using engineered interactions
and an engineered environment. To realize this phenomenon,
the positions of two qubits are chosen suitably, and the de-
cay strengths of the cavity field and qubits satisfy κ � γ .
For example, in the case of a spatial π phase shift in the
positions of the localized quits, the symmetric Dicke state is
decoupled from other states in the one-photon space, and the
population of the doubly excited state is transferred quickly
to the cavity mode. Thus the symmetric Dicke state is sig-
nificantly populated, resulting in the elimination of double
excitation. Moreover, this effect can be detected by measuring
the second-order photon correlation function. In the pres-
ence of the inhibition of double excitation, extremely strong
bunching of photons can be observed. Using the mean-field
method, we also show that the strong entanglement of two
qubits can be achieved under the conditions of g2

0 � 2
√

2ηκ

and
√

2η � γ .
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APPENDIX A: MEAN-FIELD APPROXIMATION

As shown in Fig. 1(b), the state |gg, 2〉 is coupled with the
doubly excited state |ee, 0〉 via the qubit-cavity interaction.
Thus the mean photon number is nonzero. To show this point,
we explore the nonzero solution for mean photon number
by solving the Heisenberg equations of motion for operators.
Under the mean-field approximation, we have

˙〈a〉 = −i�C〈a〉 − ig0(〈S(1)
− 〉 − 〈S(2)

− 〉) − κ〈a〉, (A1a)

˙〈S(1)
− 〉 = −i

�A

2
〈S(1)

− 〉 + 2ig0〈a〉〈S(1)
z

〉 + 2iη
〈
S(1)

z

〉 − γ 〈S(1)
− 〉,
(A1b)

˙〈S(2)
− 〉 = −i

�A

2
〈S(2)

− 〉 − 2ig0〈a〉〈S(2)
z

〉 + 2iη
〈
S(2)

z

〉 − γ 〈S(2)
− 〉,
(A1c)

˙〈S(1)
z 〉 = ig0(〈a†〉〈S(1)

− 〉 − 〈a〉〈S(1)
+ 〉) − iη(〈S(1)

+ 〉 − 〈S(1)
− 〉)

− γ
(
1 + 2

〈
S(1)

z

〉)
, (A1d)

˙〈S(2)
z 〉 = ig0(〈a〉〈S(2)

+ 〉 − 〈a†〉〈S(2)
− 〉) − iη(〈S(2)

+ 〉 − 〈S(2)
− 〉)

= −γ
(
1 + 2

〈
S(2)

z

〉)
, (A1e)

where 〈O〉 corresponds to the expectation value of the op-
erator O. Assuming �A = �C = 0, Eqs. (A1a)–(A1e) have
a trivial photon number solution with a = 0, and S( j)

− =

FIG. 7. (a) Transition pathways for the case of g1 = g2. (b) The
ratio ξ vs the normalized coupling strength g0/κ with γ /κ = 10−3

(solid purple curve), 10−2 (dash-dotted orange curve), 10−1 (dashed
green curve), and 1 (dotted blue curve), respectively.

2iηS( j)
z /γ and S( j)

z = −γ 2/[2(γ 2 + 2η2)] ( j = 1–2), respec-
tively.

To obtain the nontrivial photon number solution, i.e.,
〈a〉 �= 0, we set 〈a〉 = αRe + iαIm and insert it into Eqs. (A1a)–
(A1e). Then, one can obtain αIm = 0 and

〈
S(1)

z

〉 = −γ

/(
2γ + 4g2

0α
2
Re

γ
+ 4η2

γ
+ 8g0ηαRe

γ

)
,

(A2a)

〈
S(2)

z

〉 = −γ

/(
2γ + 4g2

0α
2
Re

γ
+ 4η2

γ
− 8g0ηαRe

γ

)
,

(A2b)

2g0η

γ

(〈
S(2)

z

〉 − 〈
S(1)

z

〉)

= αRe

[
2g2

0

γ

(〈
S(1)

z

〉 + 〈
S(2)

z

〉) − κ

]
. (A2c)

Inserting Eqs. (A2a) and (A2b) into Eq. (A2c), we can obtain

αRe = ±

√√√√2η2κ − (
g2

0 + κγ
)
γ + γ

√
g4

0 − 8η2κ2

2g2
0κ

. (A3)

Note that Eq. (A3) is only valid for g2
0 � 2

√
2ηκ and

√
2η �

γ , which are the boundaries of the strong concurrence shown
in Fig. 3.

APPENDIX B: THE CASE OF g1 = g2

For the case of g1 = g2 = g0, the interaction Hamiltonian
can be expressed as HI = 2h̄g0(aD†

+ + a†D+)/
√

2. Thus the
single-qubit excitation state |+, 0〉 is then coupled with the
single-photon state |gg, 1〉 as shown in Fig. 7. Since the tran-
sition pathway |+, 0〉 ↔ |gg, 1〉 is allowed, the state |+, 1〉
becomes unstable, and the driving field results in |gg, 1〉

√
2η→

|+, 1〉 transition, leading to double excitation via the |+, 1〉 ↔
|ee, 0〉 transition pathway. Therefore the parameter ξ � 1 as
shown in Fig. 7(b).

APPENDIX C: REDUCED TWO-LEVEL MODEL

Since the doubly excited state is inhibited, the system can
be reduced to a two-level system with energy levels |1〉 ≡
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|gg, 0〉 and |2〉 ≡ |+, 0〉. These two states are coupled via a
coherent field with effective Rabi frequency

√
2η. Thus the

Bloch equations describing the dynamics of this resonantly
driven two-level model are given by

i
∂

∂t
ρ11 − 2iγ ρ22 +

√
2η(ρ21 − ρ12) = 0, (C1a)

i
∂

∂t
ρ22 + 2iγ ρ22 −

√
2η(ρ21 − ρ12) = 0, (C1b)

i
∂

∂t
ρ12 + iγ ρ12 +

√
2η(ρ22 − ρ11) = 0. (C1c)

Solving Eqs. (C1a)–(C1c) with the initial condition ρ11(0) =
1 and ρ22(0) = 0, one can easily obtain the time-dependent
populations in states |gg, 0〉 and |+, 0〉, which read

ρ11(t ) = 2η2(K−eK+t − K+eK−t ) + (K+ − K−)(2η2 + γ 2)

(K− − K+)(4η2 + γ 2)
,

(C2a)

ρ22(t ) = 2η2[(K− − K+) + (K−eK+t − K+eK−t )]

(K− − K+)(4η2 + γ 2)
, (C2b)

with K± ≡ −(3γ ±
√

γ 2 − 32η2)/2. Under the condition of
η � γ , one can easily obtain ρ11(t ) ≈ [1 + cos (2

√
2ηt )]/2

and ρ22(t ) ≈ [1 − cos (2
√

2ηt )]/2. Thus the density matrix
elements ρ11 and ρ22 oscillate with a period of π/(

√
2η). To

verify the above analysis, we compare the numerical result by

FIG. 8. Comparison between the numerical result (solid blue
curve) obtained by solving the master equation and the analytical
result (dashed orange curve) from Eq. (C2b).

solving the master equation with the result from Eq. (C2 b). As
shown in Fig. 8, these two results match well except for their
amplitudes. This is because the states in two-photon space at-
tribute more decay pathways and quantum fluctuations are not
included in this reduced two-level model. Thus the amplitude
of the numerical result (solid blue curve) is a little smaller than
that of the analytical result (dashed orange curve).
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