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Spontaneous parametric down-conversion (SPDC) is a widely used source for photonic entanglement. Years
of focused research have led to a solid understanding of the process, but a cohesive analytical description of the
paraxial biphoton state has yet to be achieved. We derive a general expression for the spatio-temporal biphoton
state that applies universally across common experimental settings and correctly describes the nonseparability
of spatial and spectral modes. We formulate a criterion on how to decrease the coupling of the spatial from the
spectral degree of freedom by taking into account the Gouy phase of interacting beams. This work provides new
insights into the role of the Gouy phase in SPDC, and also into the preparation of engineered entangled states
for multidimensional quantum information processing.
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I. INTRODUCTION

Photon pairs generated via spontaneous parametric down-
conversion (SPDC) have provided an experimental platform
for fundamental quantum science [1] and figure prominently
in applications in quantum information processing, including
recent milestone experiments in photonic quantum computing
[2].

Several works in recent years have addressed the challenge
of tailoring the spectral and spatial properties of signal and
idler photons generated via SPDC in theory and experiment.
In the spatial domain, that is, the transverse momentum space,
much of this work was motivated by the objective of im-
proving fiber coupling efficiency [3,4] or the dimensionality
of spatial entanglement [5–7]. In the spectral domain, the
motivation was usually to engineer pure spectral states, which
are crucial for protocols based on multiphoton interference
[8]. This has been performed either by tailoring the nonlinear-
ity of the crystal [9] or by using counterpropagating photon
pair generation in periodically poled waveguides [10]. The
frequency degree of freedom (DOF) has also been used to gen-
erate entangled states via spatial shaping of the pump beam
[11] or by transferring polarization into color entanglement
[12]. The spatial shaping of the pump beam has been also
used in Hong-Ou-Mandel interference experiments, in order
to control the two-photon interference behavior [13].

Closed expressions for the state emitted by SPDC in bulk
crystals have been derived using very special techniques and
approximations, such as the narrowband [14], thin crystal
[15,16], or plane wave approximations [17], where either
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the spectral or spatial biphoton state is considered. However,
from the X -shaped spatio-temporal correlations [18,19], the
spatial and spectral properties of SPDC have been known to
be coupled. The X -shaped spatio-temporal correlation implies
that if the twin photons are collected from different positions,
they are detected with a certain time delay. In contrast, if the
photons are detected at the same position, the time delay is
very short (a few nanoseconds) [20].

To date, models that address both spectrum and space
together have been limited to approximate phase matching
functions [21] or numerical calculations [22]. The work [18]
investigated the quite general phase matching function, but the
pump beam was limited to monochromatic plane wave.

Here, we present a simple-to-use closed expression for
the biphoton state. The approach describes the full spectral
and spatial properties of all interacting beams and applies to
a wide range of experimental settings. The analytical treat-
ment of the biphoton state decomposed into discrete Laguerre
Gaussian (LG) modes also provides a deeper insight into
the role of the Guoy phase in PDC. Especially, the spectral
response of spatial modes in SPDC is determined by the
Gouy phase of the pump, signal and idler beams. We will
also show that the Gouy phase can be used to control the
coupling strength of spatial and spectral DOF in parametric
down-conversion (PDC). Next to providing an intuitive un-
derstanding, we also demonstrate the utility of the expression
for quantum state engineering in spatial DOF for multidimen-
sional quantum information processing.

II. THEORETICAL METHODS

Let us start with the basic expressions of SPDC. We can
make use of the paraxial approximation, since typical optical
apparatuses support only paraxial rays about a central axis.
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In the paraxial regime, the longitudinal and transverse com-
ponents of the wave vector can be treated separately k = q +
kz(ω)z. Consequently, the biphoton state in the momentum
space can be represented by the following expression [23–25]:

|�〉 =
∫∫

dqs dqi dωs dωi �(qs, qi, ωs, ωi )

× â†
s (qs, ωs) â†

i (qi, ωi ) |vac〉 . (1)

Equation (1) refers to the generation of photon pairs with en-
ergies ωs,i and transverse momenta qs,i from the vacuum state
|vac〉. The biphoton mode function �(qs, qi, ωs, ωi ) contains
the rich high-dimensional spatio-temporal structure of SPDC
that arises from the coupling between the wave vectors of the
pump, signal, and idler beams.

A. Biphoton state decomposed in Laguerre Gaussian basis

The transverse spatial [24,26] and frequency DOF [27]
have been successfully used in continuous variable informa-
tion processing. However, in practical experimental settings,
the continuous variable space is more often discretized using
a set of modes. The proper choice of a set reduces the number
of dimensions needed to describe the state. Moreover, discrete
modes are easy to manipulate and detect using efficient exper-
imental techniques [28,29]. Since the projection of the orbital
angular momentum (OAM) is conserved in SPDC [30], it is
convenient to decompose the biphoton state into LG modes
|p, �, ω〉 = ∫

dq LG�
p(q) â†(q, ω) |vac〉, which are eigenstates

of OAM [31]:

|�〉 =
∫∫

dωs dωi

×
∞∑

ps,pi=0

∞∑
�s,�i=−∞

C�s,�i
ps,pi

|ps, �s, ωs〉 |pi, �i, ωi〉 , (2)

where the coincidence amplitudes are calculated from the
overlap integral C�s,�i

ps,pi
= 〈ps, �s, ωs; pi, �i, ωi|�〉,

C�s,�i
ps,pi

=
∫∫

dqs dqi �(qs, qi, ωs, ωi ) [LG�s
ps

(qs)]∗[LG�i
pi

(qi )]
∗.

(3)

The angular distribution of an LG mode in the momentum
space is given by

LG�
p(ρ, ϕ) = e

−ρ2 w2

4 ei� ϕ

p∑
u=0

T p,�
u ρ2u+|�|, (4)

with T p,�
u being

T p,�
u =

√
p! (p + |�|)!

π

(
w√

2

)2u+|�|+1 (−1)p+u(i)�

(p − u)! (|�| + u)! u!
,

and where ρ and ϕ stand for the cylindrical coordinates q =
(ρ, ϕ). The summations in Eq. (2) run over the LG mode
numbers p and � associated with the radial momentum and the
OAM projection, respectively. Except for the fact that we now
deal with summations instead of integrations, this discretiza-
tion will also help us to understand the coupling of spatial and

spectral DOF in the frame of the Gouy phase of LG modes.
Note that we discretize only the transverse spatial DOF, but in
principle, it is also possible to discretize the frequency DOF
[32].

The construction of the biphoton state reduces to the cal-
culation of the coincidence amplitudes C�s,�i

ps,pi
, which in turn

depend on the mode function �(qs, qi, ωs, ωi ). A compact
expression for the mode function can be derived if the experi-
mental setup and geometry is fixed.

B. Geometry and mode function

Here, we consider the scenario when a coherent laser beam
propagates along the z axis and is focused in the middle of
a nonlinear crystal placed at z = 0. Signal and idler fields
propagate close to the pump direction, known as the quasi-
collinear regime. The crystal and the pump beam have typical
transverse cross sections in the order of millimeters and mi-
crometers, respectively. Hence, we assume that the crystal
compared to the pump beam is infinitely extended in the
transverse direction, which enforces the conservation of the
transverse momentum, qp = qs + qi [23]. Taking into account
also the energy conservation ωp = ωs + ωi, the mode function
can be written as [25]

�(qs, qi, ωs, ωi ) = N0 Vp(qs + qi ) Sp(ωs + ωi )

×
∫ L/2

−L/2
dz exp [iz(kz,p − kz,s − kz,i )],

(5)

where N0 is the normalization constant, Vp(qp) is the spatial
and Sp(ωp) the spectral distribution of the pump beam, and L
is the length of the nonlinear crystal along the z axis.

The important component of the mode function (5) is the
phase mismatch in the z direction 	kz = kz,p − kz,s − kz,i,
which characterizes the differences in the energies and mo-
menta of the signal and idler photons. Therefore, careful
calculation of 	kz is essential for the quantitative description
of SPDC, which we will do next.

Experimentally generated lights are usually not monochro-
matic and contain a frequency distribution. Therefore, except
for the central frequencies that meet energy conservation con-
dition ω0,p = ω0,s + ω0,i, we expect a deviation from them,
ω = ω0 + 
, with the assumption 
 � ω0. Furthermore, in
the paraxial approximation, the transverse component of the
momentum is much smaller than the longitudinal component
|q| � k. Hence, we can apply the Taylor series on kz (Fresnel
approximation) to |q|/k and also to small 
:

kz = k(
)

√
1 − |q|2

k(
)2
≈ k + 


ug
+ G
2

2
− |q|2

2k
,

where ug = 1/(∂k/∂
) is the group velocity and G =
∂/∂
 (1/ug) is the group velocity dispersion, evaluated at the
respective central frequency. Here, we also assume that the
propagation is along a principal axis of the crystal, so we can
ignore the Poynting vector walk-off of extraordinary beams in
the crystal. Next, we insert the corresponding kz of the pump,
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signal, and idler into the phase mismatch 	kz and arrive at

	kz = 	
 + ρ2
s

kp − ks

2kpks
+ ρ2

i

kp − ki

2kpki
− ρsρi

kp
cos (ϕi − ϕs),

(6)
where the frequency part 	
 is given by

	
 = 
s + 
i

ug,p
− 
s

ug,s
− 
i

ug,i
+ Gp(
s + 
i )2

2

− Gs

2
s

2
− Gi


2
i

2
. (7)

We used in Eq. (6) the relation ρ2
p = ρ2

s + ρ2
i +

2ρsρi cos (ϕi − ϕs) and assumed momentum conservation
for central frequencies 	k = kp − ks − ki = 0. The condition
	k = 0 ensures constructive interference in the crystal
between the pump, signal, and idler beams, which is
usually performed with birefringent crystals [25] or
more recently by periodic poling along the crystal axis,
kp − ks − ki − 2π/� = 0, where � is the poling period [33].

The remaining components of the mode function (5) that
we should still fix are the pump characteristics. We model
the angular distribution of the pump with an LG beam. The
advantage of this choice is that an arbitrary paraxial optical
field can be expressed as a sum of LG beams

∑
n anLG�n

pn
with∑

n |an|2 = 1 by using their completeness relation. Thus, the
theory developed for the LG pump can be easily extended to
SPDC with a particular pump. The amplitudes (13) can then
be upgraded to revised amplitudes

∑
n anCn, which follows

from Eq. (3). Finally, the temporal distribution is modeled
with a Gaussian envelope of pulse duration t0, Sp(ωp) =
exp [−(ωp − ω0,p)2 t2

0 /4] t0/
√

π [34], but which can be ex-
tended to any arbitrary pump spectrum.

C. Derivation of coincidence amplitudes

We can now substitute Eqs. (4)–(7) into Eq. (3) and calcu-
late the coincidence amplitudes:

C�,�s,�i
p,ps,pi

= N0

p∑
u=0

ps∑
s=0

pi∑
i=0

T p,�
u

(
T ps,�s

s

)∗ (
T pi,�i

i

)∗
∫

dz dρs dρi dϕs dϕi (z, ρs, ρi, ϕi − ϕs)ei�ϕs ei(−�sϕs−�iϕi ), (8)

where we used a revised notation for the coincidence amplitudes C�,�s,�i
p,ps,pi

to indicate the mode numbers of the pump. The function
(z, ρs, ρi, ϕi − ϕs) is defined as

(z, ρs, ρi, ϕi − ϕs) = [
ρ2

s + ρ2
i + 2ρsρi cos (ϕi − ϕs)

] 2u+(|�|−�)
2 ρ |�s|+2s+1

s ρ
|�i|+2i+1

i

(
ρs + ρi ei(ϕi−ϕs )

)�

× exp

[
−

[
ρ2

s + ρ2
i + 2ρsρi cos (ϕi − ϕs)

]
w2

4
− ρ2

s w2
s

4
− ρ2

i w2
i

4

]
t0√
π

e− t2
0 (
s+
i )2

4

× exp

[
iz

(
	
 + ρ2

s

kp − ks

2kpks
+ ρ2

i

kp − ki

2kpki
− cos (ϕi − ϕs)

ρsρi

kp

)]
. (9)

In Eq. (9), the polar angle ϕ of the pump beam has been
expressed as a function of signal and idler coordinates,

ei � ϕ = (cos ϕ + i sin ϕ)� = ei�ϕs

ρ�
p

(ρs + ρi ei(ϕi−ϕs ) )�,

by taking into account the conservation of transverse momen-
tum,

qp = qs + qi =
(

ρs cos ϕs + ρi cos ϕi

ρs sin ϕs + ρi sin ϕi

)
.

The presentation of the coincidence amplitudes C�,�s,�i
p,ps,pi

in
Eq. (8) with the function (z, ρs, ρi, ϕi − ϕs) follows the goal
to show the OAM conservation in SDPC. To do so, we expand
the function (z, ρs, ρi, ϕi − ϕs) as superposition of plane
waves with the phases exp [i�′(ϕi − ϕs)](Fourier series with
complex coefficients),

(z, ρs, ρi, ϕi − ϕs) =
∞∑

�′=−∞
f�′ (z, ρs, ρi )e

i�′(ϕi−ϕs ). (10)

We substitute expression (10) into Eq. (8) and perform the
integration over the polar angles ϕs and ϕi:

∞∑
�′=−∞

f�′ (z, ρs, ρi )
∫ 2π

0

∫ 2π

0
ei�ϕs ei(−�sϕs−�iϕi )

× ei�′(ϕi−ϕs )dϕsdϕi ∝ δ�′,�−�sδ�′,�i . (11)

As expected, the Kronecker delta functions appear in Eq. (11)
which enforce the conservation of OAM � − �s = �i. This
conservation is not valid out of the quasicollinear regime [35]
because of the spin-orbital angular momentum coupling in the
nonparaxial regime [36]. In a noncollinear regime, the total
angular momentum should remain conserved, which can be a
future topic to study.

Going back to expression (8), we now calculate the inte-
gration over polar coordinates ϕs,i explicitly. For simplicity,
we consider the coincidence amplitudes C�,�s,�i

p,ps,pi
for positive

OAM number of the pump beam � � 0. The coincidence
amplitude for � < 0 is then given by C�,�s,�i

p,ps,pi
= (C−�,−�s,−�i

p,ps,pi
)∗,

which follows from Eq. (3). Furthermore, the two brackets on
the first line in Eq. (9) should be rewritten as finite sums by
using the Binomial formula. For instance, the first bracket is
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written as[
ρ2

s + ρ2
i + 2ρsρi cos (ϕi − ϕs)

]u

=
u∑

m=0

(
u

m

)(
ρ2

s + ρ2
i

)u−m
[2ρsρi cos (ϕi − ϕs)]m.

The cosine function can be expressed as the sum of two
exponential functions by using Euler’s formula, which should
be again expressed as a binomial sum. After this step, the an-
gular integration takes the form of the integral representation
of the Bessel function of the first kind [37],

1

2π

∫ 2π

0
einϕ±iz cos (ϕ−ϕ′ )dϕ = (±i)neinϕ′

Jn(z).

Next, the sum representation of the Bessel function should be
used,

Jn(z) =
∞∑

k=0

(−1)k

k! �(k + n + 1)

(
z

2

)2k+n

, (12)

which transforms the integration over the radial coordinates
into ∫ ∞

0
dρ ρne−a ρ2 = �

(
n+1

2

)
2a

n+1
2

.

The final result is achieved via summing over k from Eq. (12)
by using the definition of the regularized hypergeometric
function [38]. The coincidence amplitudes read for � � 0 as

C�,�s,�i
p,ps,pi

= N0 π3/2 t0 e− t2
0 (
s+
i )2

4 δ�,�s+�i

×
p∑

u=0

ps∑
s=0

pi∑
i=0

T p,�
u

(
T ps,�s

s

)∗ (
T pi,�i

i

)∗
�∑

n=0

u∑
m=0

×
(

�

n

)(
u

m

) u−m∑
f =0

m∑
v=0

(
u − m

f

)(
m

v

)
�[h] �[b]

×
∫ L/2

−L/2
dz eiz 	


Dd

Hh Bb 2F̃1

[
h, b, 1 + d,

D2

H B

]
(13)

and C�,�s,�i
p,ps,pi

= (C−�,−�s,−�i
p,ps,pi

)∗ for � < 0. The function 2F̃1 is
known as the regularized hypergeometric function [38]. The
missing coefficients of Eq. (13) are given by

H = w2
p

4
+ w2

s

4
− iz

kp − ks

2kpks
, D = −w2

p

4
− iz

1

2kp
,

B = w2
p

4
+ w2

i

4
− iz

kp − ki

2kpki
, d = �i + m − n − 2v,

h = 1

2
(2 + 2s + � + �i + 2(− f + u) − 2n − 2v + |�s|),

b = 1

2
(2 + 2 f + 2i + �i + 2m − 2v + |�i|),

where wp, ws, and wi are the beam waists of the pump signal
and the idler beams, respectively.

Expression (13) for the coincidence amplitudes as a func-
tion of the pump mode constitutes the main result of this

work. It allows the spatial and spectral emission profiles to
be reconstructed mode by mode and is applicable in any ex-
perimental setting that exhibits cylindrical symmetry. It can be
readily used to calculate many characteristics of SPDC: joint
spectral density, photon bandwidths, pair-collection proba-
bility, heralding ratio, spectral and spatial correlation, etc.
Previously, these could only be achieved through numerical
calculations or for special cases with a limited scope of ap-
plicability. The experimental demonstration of Eq. (13) has
already been presented in Ref. [39], where we also showed
how the coupling of spatial and spectral DOF deteriorates the
spatial entanglement but can be compensated directly by a
proper choice of the collection mode.

D. Gouy phase and spatio-temporal coupling

The spatio-temporal coupling encoded in Eq. (13) is a
fundamental feature of SPDC. However, the usual applica-
tions in quantum optics utilize either the spatial or spectral
DOF, neglecting the correlation between them. Nevertheless,
this coupling remains a fundamental issue in many protocols
based on entangled photon sources, where any distinguisha-
bility arising from not-considered DOF reduces the coherence
of the state. Next, we will illustrate the utility of expression
(13) in the frame of possible decoupling of spatial and spectral
DOF �(qs, qi, ωs, ωi ) = �q(qs, qi )�ω(ωs, ωi ). We will show
that this decoupling is closely related to the Gouy phase of
interacting beams.

The role of the Gouy phase in nonlinear processes has been
investigated before. For instance, in SPDC, the change of the
Gouy phase ψG(z) = (N + 1) arctan(z/zR) within the propa-
gation distance has been used to control the relative phase of
two different LG modes of measurement basis [40,41]. Here,
N is the combined LG mode number N = 2p + |�| and zR is
the Rayleigh length. In four-wave mixing (FWM), the con-
version behavior between LG modes is strongly affected by
the Gouy phase [42]. The authors observed that the existence
of a relative Gouy phase between modes with different mode
numbers N leads to a reduced FWM efficiency.

Here, we have a similar situation: pump, signal, and idler
fields acquire different Gouy phases along with propagation
in the crystal due to different mode numbers N , causing a
reduced efficiency of mode down-conversion. We expect in-
tuitively that the shape of the spectrum of spatial modes is
affected by the relative Gouy phase of interacting beams. This
is still a guess and requires proof.

We consider for simplicity the scenario in which the
Rayleigh lengths of the three beams are equal zR,p = zR,i =
zR,s and fixed. This condition matches the Gouy angle
arctan(z/zR) for all beams. Hence, the relative Gouy phase
can be written as

ψG,p − ψG,s − ψG,i = (Np − Ns − Ni − 1) arctan(z/zR).

This implies that the Gouy phase is fully defined by the rel-
ative mode number NR = Np − Ns − Ni. If the Gouy phase is
responsible for different spectral dependencies of the coinci-
dence amplitudes C�,�s,�i

p,ps,pi
(
s,
i ), the shape of the spectrum

should remain the same for fixed NR. Assuming kp = 2ks,
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Eq. (13) transforms into

C�,�s,�i
p,ps,pi

(
s,
i ) ∝
∫ L/2

−L/2
dz eiz 	


(
i2z + kpw

2
p

)NR(−i2z + kpw2
p

)NR+1 . (14)

We see from Eq. (14) that the spectral response of
C�,�s,�i

p,ps,pi
(
s,
i ) encoded only in the term eiz 	
 remains un-

affected up to a constant if NR is fixed. On the other hand, NR

can be rewritten as

NR = ψG,R

arctan(z/zR)
+ 1, (15)

where ψG,R is the relative Gouy phase ψG,p − ψG,s − ψG,i.
Therefore, it follows from Eqs. (14) and (15) that the spectral
response of coincidence amplitudes is determined by the rela-
tive Gouy phase ψG,R if the pump characteristics zR,p, wp, and
kp are fixed. This is what we wanted to prove. Note that the
simple form of Eq. (14) is due to the assumptions kp = 2ks and
zR,p = zR,i = zR,s. The analytical proof for the general case
requires more effort, which we omit here.

This proof brings us a step forward in the decoupling
problem of spatial and spectral DOF: the decoupling can be
achieved for a selected subspace of modes that possess the
same relative Gouy phase. So, if a state is engineered that con-
sists of modes with NR = const., assuming zR,p = zR,i = zR,s,
then the modes contributing to the state have the same spec-
trum, i.e., the state is separable. The question of decoupling
of spatial and spectral DOF can now be reformulated: How do
we engineer a state only consisting of modes with the same
relative mode number NR?

III. ENGINEERING HIGH-DIMENSIONAL ENTANGLED
STATES IN OAM BASIS

The state engineering in spatial DOF has been investigated
theoretically in the thin crystal regime [43,44] and also im-
plemented experimentally [45,46]. In particular, three-, four-,
and five-dimensional entangled states in OAM basis have been
generated in Ref. [45] using the superposition of LG beams
for the pump. The correct superposition for the pump has
been determined with a simultaneous perturbation stochastic
approximation algorithm [47].

We show in this section how to calculate the correct su-
perposition of LG beams with Eq. (13) in order to generate
entangled states in OAM basis, including the states from
Ref. [45]. Our method is very straightforward and requires
no optimization algorithm. In comparison to Refs. [43,44],
our results can be directly implemented in a real experiment,
since we do not consider the thin crystal approximation. State
engineering in the thin crystal regime is inefficient due to
an infinite amount of spatial modes generated in the down-
conversion.

A. Determination of pump beam

We consider the four-dimensional subspace �s, �i =
0, 1, 2, 3 and ps = pi = 0, which we refer to as S4,
with associated notation |ps = 0, �s, ωs〉 |pi = 0, �i, ωi〉 :=
|�s(ωs), �i(ωi )〉. The goal is to engineer a four-dimensional
maximally entangled state in this subspace. We model the

pump beam as a superposition of LG beams,

Vp =
∑

�

a� LG�
0,

where the range of summation is determined with the pos-
sible minimal and maximal OAM values in the subspace,
� = [min(�s + �i ), max(�s + �i )]. The correct choice of the
expansion amplitudes a� is now our task. Since the pump
function appears in Eq. (2) linearly, the corresponding state
in S4 is given by

|�4〉 =
6∑

�=0

a�

3∑
�s,�i=0

C�,�s,�i
0,0,0 |�s, �i〉 .

The matrix representation of the state |�4〉 can clarify the
right choice of the coefficients a�. The matrix consists of 16
elements and is given by the left-hand side of the following
expression:⎛
⎜⎜⎝

a0 C0,0 a1 C1,0 a2 C2,0 a3 C3,0

a1 C0,1 a2 C1,1 a3 C2,1 a4 C3,1

a2 C0,2 a3 C1,2 a4 C2,2 a5 C3,2

a3 C0,3 a4 C1,3 a5 C2,3 a6 C3,3

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠,

(16)

where we used the notation C�s+�i,�s,�i
0,0,0 = C�i,�s . The state be-

comes maximally entangled in this subspace if the matrix has
exactly one entry of 1 in each row and each column and 0
elsewhere (permutation matrix). The right-hand side of ex-
pression (16) is such a state that can be engineered if we select
a1 = 1/C0,1 ≈ 1/C1,0, a5 = 1/C2,3 ≈ 1/C3,2 and a0 = a2 =
a3 = a4 = a6 = 0, where we assumed degenerate SPDC kp ≈
2ks. This choice leads to the state |�4〉 = 1

2 (|0, 1〉 + |1, 0〉 +
|2, 3〉 + |3, 2〉). Thus, the state engineering is finished, where
the coefficients of the pump superposition {a1, a5} should be
calculated with the expression (13). In the same way, the state
|� ′

4〉 = 1
2 (|0, 0〉 + |1, 1〉 + |2, 2〉 + |3, 3〉) from Ref. [45] can

also be engineered, if we select {a0, a2, a4, a6} to be equal to
{1/C0,0, 1/C1,1, 1/C2,2, 1/C3,3} and a1 = a3 = a5 = 0.

The states |� ′
4〉 and |�4〉 are presented in Figs. 1(a) and

1(b) with blue-colored bars on top. As we can see, the modes
contributing to the states |� ′

4〉 and |�4〉 represent just a part
of the full OAM emission (spiral bandwidth). Therefore,
the postselection should be the final step in the engineering
process, where undesirable modes are sorted out. Next, we
should calculate the Schmidt number and the purity of the
presented states, in order to evaluate the efficiency of the
state preparation in the subspace S4. We will use for all our
calculations the same experimental parameters as in Ref. [45]:
15-mm-thick periodically poled KTiOPO4 crystal designed
for a collinear frequency degenerate type-II phase matching,
continuous-wave laser of wavelength 405 nm with beam waist
wp = 25 μm and detection modes of radius ws,i = 33 μm.

B. Schmidt number and purity of subspace states

We compare first the azimuthal Schmidt numbers of the
states |�4〉 and |� ′

4〉 in the subspace S4. Obviously, the di-
agonal modes {|0, 2〉 , |2, 0〉 , |1, 3〉 , |3, 1〉} in Fig. 1(a) are
undesirable and lead to a decrease of entanglement in S4. Con-
sequently, the state |� ′

4〉 has an azimuthal Schmidt number
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FIG. 1. Normalized high-dimensional entangled states (a) |� ′
4〉 = 1

2 (|0, 0〉 + |1, 1〉 + |2, 2〉 + |3, 3〉) and (b) |�4〉 = 1
2 (|0, 1〉 + |1, 0〉 +

|2, 3〉 + |3, 2〉). The state |�4〉 is maximally entangled in the subspace �s, �i = 0, 1, 2, 3, but not |� ′
4〉 because of diagonal elements in

the subspace. The state |� ′
4〉 is maximally entangled in a smaller subspace, namely, in the subspace consisting of only four modes

{|0, 0〉 , |1, 1〉 , |2, 2〉 , |3, 3〉}. (c) The modes of signal (idler) involved in the state |�4〉 have the same spectrum (blue solid curve) compared to
the modes out of the subspace shown in the same color as corresponding bars (dotted curve |2, −1〉 and dashed curve |3, −2〉). These curves
correspond only to the spatial modes from (b).

less than 4, K = 2.04, while the Schmidt number of the state
|�4〉 equals 4. Therefore, the preparation of the state |�4〉 is
more efficient in S4 than for |� ′

4〉. K = 4 is necessary, but
not a sufficient condition for a four-dimensional state to be
maximally entangled. Additionally, the state should be pure.
Hence, the state |�4〉 can be called maximally entangled in S4,
if it is also spatially pure.

In order to calculate the spatial purity of |�4〉, we need the
reduced density matrix ρq, which results from tracing over the
frequency ρq = Tr
(ρ). The fact of a continuous-wave laser
Sp(ωp) ∝ δ(ωp − ω0,p) sets the condition 
s = −
i := 
,
which transforms Eq. (2) into

|�〉 =
∫∫

d


∞∑
�s,�i=−∞

C�s,�i (
) |�s,
〉 |�i,−
〉 . (17)

Now, we calculate the density matrix ρ = |�〉〈�| and then
trace over the spectral domain, which yields

ρq =
∑
�s,�i

∑
�̃s,�̃i

A�̃s,�̃i
�s,�i

|�s, �i〉〈�̃s, �̃i|, (18)

where A�̃s,�̃i
�s,�i

= ∫
d
 C�s,�i (
) [C�̃s,�̃i

(
)]∗ is the overlap inte-
gral of the spectra of the OAM modes. Equation (18) is very
useful to calculate the spatial purity in small subspaces.

We run summations in Eq. (18) over �s, �i, �̃s, �̃i =
0, 1, 2, 3, renormalize the state, construct the density matrix
of the subspace ρq,s and calculate the purity Tr(ρ2

q,s). Here, the
subscript s indicates the consideration of the subspace S4. In
fact, the state |�4〉 is spatially pure, Tr(ρ2

q,s) = 1. The reason
is very trivial: all modes that contribute to the state consist
of only positive OAM numbers, which leads to the same
NR = |�| − |�s| − |�i| = 0 for all modes due to � = �s + �i.
Moreover, the experimental parameters from Ref. [45] satisfy
the condition zR,p ≈ zR,i ≈ zR,s. Hence, all modes have the
same relative Gouy phase and consequently the same spec-
trum, which is presented in Fig. 1(c) with the blue curve.
This means that the spatial and spectral DOF are decoupled
in S4. Interestingly, even though the authors did not consider
the spectral DOF, the prepared state from Ref. [45] is also

separable in space and frequency in the smaller subspace
of only four modes {|0, 0〉 , |1, 1〉 , |2, 2〉 , |3, 3〉}. We suppose
that the engineering of maximally entangled states in spatial
DOF in a certain subspace enforces automatic decoupling in
spatial and spectral DOF in that subspace.

C. Purity and Schmidt number of the full biphoton state

Obviously, the subspace S4 is a part of the full SPDC
emission. The first four OAM modes out of the subspace in
Fig. 1(b), |2,−1〉 and |3,−2〉, possess different spectra in
contrast to the modes in S4, shown in Fig. 1(c) with dotted
and dashed curves, respectively. The appearance of modes
with distinguishable spectra indicates the inseparability of
spatial and spectral DOF out of S4. The more distinguishable
modes contribute to the state, the stronger the spatio-temporal
coupling. This, in turn, leads to reduced purity for the spatial
biphoton state. Usually, narrowband filters are used in front
of detectors to increase the purity of the spatial state. On one
hand, the spectral filters improve the purity of the spatial state;
on the other hand, they reduce the rate of entangled photons.

We calculated the spatial purity Tr(ρ2
q,full ) [21] of the full

biphoton state (1) depending on the filter bandwidth 	λ, in
order to quantify the influence of spectral filters on the bipho-
ton state. We chose as a pump the same beam, which leads to
the state |�4〉. Very narrow filters are required to end up with a
more or less pure state, as we can see from Fig. 2. For instance,
a typical spectral filter with a bandwidth of 1 nm would leave
the state in a mixed state of purity 0.33.

The Schmidt number of the full spatio-temporal biphoton
state is also different in comparison to the subspace state.
The total Schmidt number can be calculated from the reduced
density matrix in space and frequency for the signal by tracing
over the idler ρsignal = Tridler (ρ)[21]. The Schmidt number is
then given by K = 1/Tr(ρ2

signal ) [48]. The number of both
spatial and spectral Schmidt modes in the range of frequen-
cies 810 ± 10 nm equals 140, where 810 nm is the central
frequency for signal and idler photons. In comparison, the
number of Schmidt modes generated only at central frequency
810 nm equals 5.8.

Finally, a small remark about the thin crystal regime: The
spatio-temporal coupling is absent in the thin crystal regime

063711-6



GENERALIZED DESCRIPTION OF THE … PHYSICAL REVIEW A 106, 063711 (2022)

FIG. 2. Purity of the spatial biphoton state depending on the
bandwidth of spectral filter.

L � zR,p, since the biphoton state is independent of the crystal
features. The problem with this regime is that it gives rise to
a huge amount of spatial modes. Assume we keep all param-
eters the same as in Ref. [45], but change the crystal length
to L = 1 μm. The thin crystal regime is then well achieved
according to Ref. [16]. The state becomes spatially pure, but
possesses a large amount of Schmidt modes, 107.

IV. CONCLUSION

In summary, we derived a closed analytical expression for
the biphoton spatio-temporal state in terms of the LG mode
amplitudes. The expression readily reveals the dependence
of the modal decomposition on frequency and thus correctly
describes spectral-spatial coupling, a quintessential feature
of SPDC. The expression provides a new understanding of
how the Gouy phase is related to the decoupling of spatial
and spectral DOF: the relative Gouy phase of the interacting
beams fully defines the shape of the spectrum of down-
converted photons.

Engineering the modal decomposition of the pump beam
can be used to engineer a high-dimensional OAM entangle-
ment. State engineering can also be used to decrease the
coupling between the spatial and spectral DOF, leading to
an increase of the correlation stored in the spatial DOF. We
thus hope that it will aid experimenters in the design and
quantitative modeling of challenging experiments based on
parametric down-conversion.
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