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Reconstructing the full modal structure of photonic states by stimulated-emission
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Stimulated emission tomography (SET) is a powerful and successful technique to both improve the resolution
and experimentally simplify the task of determining the modal properties of biphotons. In the present paper we
provide a theoretical description of SET valid for any quadratic coupling regime between a nonlinear medium
and pump fields generating photons by pairs in the low-gain regime. We use our results to obtain not only
information about the associated modal function modulus but also its phase, for any mode, and we discuss the
specific case of time-frequency variables as well as the quantities and limitations involved in the measurement
resolution.

DOI: 10.1103/PhysRevA.106.063709

I. INTRODUCTION

Photons are elementary excitations of the electromagnetic
field in a given mode, which can combine polarization, fre-
quency, and transverse position or momentum, among other
degrees of freedom. As such, photons cannot be separated
from the properties defined by the modes they occupy. This
is actually good news: Since modes can be decomposed in an
orthonormal basis, they can be manipulated and engineered
using linear and nonlinear devices and different modes can
be measured independently. Consequently, modes can be used
not only to distinguish, isolate, and manipulate quantum prop-
erties of the electromagnetic field but also to measure its
statistics [1,2].

The interplay between the electromagnetic-field states
and modes—or, more poetically, between light and color, if
one refers to frequency modes—presents thus many facets,
and modes are valuable tools to exploit different proper-
ties and aspects of the electromagnetic field. One example
is nonlocality tests using single photons, which rely on the
independent measurement of the polarization modes of the
quantum state of a photon pair in spatially separated modes.
The correlations between polarization measurements of pho-
tons belonging to the same pair led to the demonstration of
nonclassical effects that are particular to quantum states of the
field [3].

Polarization, as well as all modal attributes, is a property
of the electromagnetic field which applies to both classical
and quantum descriptions. The modal measurement statistics
inherit the photon’s quantum properties and can be used as a
way to reveal different surprising aspects of quantum physics
such as (in the case of Ref. [3]) nonlocality. In addition, mode
manipulation and engineering can lead, through the same prin-
ciples, to the modification of the photon statistics in particular
measurements, controlling, for instance, the distinguishability

between photons and tailoring effective commutation rela-
tions [4–6].

For photon pairs generated by parametric processes, such
as spontaneous parametric down-conversion (SPDC) or four-
wave mixing, the modal structure of the photon pair is crucial
to infer some quantum properties of the produced state such as
entanglement. The conservation laws involved in the photon
pair production lead to a correlated joint modal function and
the number of independent orthogonal modes which are nec-
essary to describe the pair’s mode structure is directly related
to the degree of entanglement of the state [7]. Consequently,
experimentally inferring entanglement and using it as a re-
source demand perfect knowledge of the joint modal structure
of the photon pair [8].

Finally, the manipulation of the mode basis of squeezed
states can transform entangled states into separable ones and
vice versa, and this mode basis transformation enables mul-
timode entanglement detection in continuous variables and
their applications as quantum teleportation [9]. Modes also
play a key role in quantum state measurement and metrology
[8,10], since usual techniques such as homodyne detection
require a nearly perfect mode overlap between the probed
state and the reference state in order to be reliable [11–13].

The mode structure of a quantum field depends on the con-
ditions of its generation, such as the properties of the medium
producing it and the complex amplitude of auxiliary fields.
One of the simplest configurations leading to the generation of
nonclassical states of light consists of nonlinear interactions
that can be described by nondegenerate quadratic operators
with a complex mode structure

Ŝ = γ

∫∫
L(k, k′)â†

s (k)â†
i (k′)dk dk′. (1)
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In the physical process associated with Eq. (1), photons are
created in pairs and distributed in different auxiliary modes
(as polarization or propagation direction), which are labeled
s and i, for signal and idler, with

∫∫ |L(k, k′)|2dk dk′ = 1.
We choose to discuss the nondegenerate case for generality,
but our results also apply to the degenerate case. The modal
variables k and k′ can refer to any mode such as frequency,
time, and propagation direction, among others. Also, the inte-
gral over modes k and k′ for the signal and the idler fields may
as well involve a sum over discrete modes, such as the orbital
angular momentum or polarization. We use only the integral
form to simplify the notation.

In Eq. (1), γ is a coupling constant, given by the product of
two physically independent quantities, which we label A and
χ , so we can write γ = Aχ . While A depends on physical
parameters that can be controlled at each run of an experiment,
such as the complex amplitude of auxiliary fields, χ relates
to the gain and is considered as a constant in time related
only the nonlinear device used in the experiment, such as the
material’s size and geometry. The distinction between the two
parameters is important since in the present paper we always
consider that |χ |2 � 1 (see Appendix A), while γ is arbitrary.

Equation (1) can describe different physical processes,
such as four-wave mixing, or a general parametric process, for
instance. In both of cases mentioned, Eq. (1) is an approxima-
tion of the nonlinear interaction describing the conversion of
photons from classical fields (coherent states), called pump(s),
into two photons, mediated by a material medium. The com-
plete derivation of Eq. (1) can be found in Appendix A and
involves considering that the pump’s state remains a coherent
state (continuous wave or pulsed) and can be treated as classi-
cal during its interaction with the medium. This assumption is
important since, in this case, Eq. (1) leads to an output quan-
tum state |ψout〉 that can be written, in the low-gain regime, as
(see Appendix A)

|ψout〉 = eŜ−H.c.|ψin〉 = Û |ψin〉, (2)

where |ψin〉 is the total state of the electromagnetic field before
the nonlinear interaction.

If γ � 1 (which is the case, for instance, in SPDC), we
can consider only the first terms of the expansion of Eq. (2)
in powers of γ ; in this regime, the creation of photon pairs
can be observed by postselection using coincidence detection.
Alternatively, but still in the low-gain regime, cavity effects
can enhance the creation of squeezed states, which typically
can be detected using homodyne detection. These two regimes
are contemplated in the present paper, which has as its main
goal the measurement of the modal function L(k, k′). This
function is determined by the medium and by the (possible)
auxiliary fields’ spectral properties, but does not depend on
the auxiliary or on the pump field’s amplitude.

Hence, from Eq. (2) we see that if |ψin〉 is Gaussian, |ψout〉
will also be Gaussian. If the low-gain hypothesis no longer
holds, time-ordering effects must be considered to obtain the
evolution operator associated with the nonlinear interaction;
this regime was extensively discussed in [14–17].

The tomography of the modal function L(k, k′) for any
mode k or k′ is a challenging task. Several experimental meth-
ods have been proposed according to the specific type of mode

FIG. 1. Schematic of the stimulated emission tomography.

one wants to access as well as the coupling strength regime. A
good overview of the existing techniques can be found in [18].
Among these, an interesting approach is stimulated emis-
sion tomography (SET). Introduced in [19], SET was used
with great success to infer mode properties of photon pairs
using relatively simple experimental techniques avoiding co-
incidence counts and low intensity signals, and consequently
improving the measurement resolution and reducing the inte-
gration time. Stimulated emission tomography can be applied
to all types of modes, and its main principles are sketched in
Fig. 1: A pump beam is sent through a nonlinear medium, to-
gether with a seed beam in mode i. In its original formulation,
the seed beam is prepared in a coherent state in a mode defined
by k′

i in support of the idler’s mode with resolution δk′, where
δk′ is much narrower that the idler mode’s width. Then the
intensity of the signal mode is detected with a resolution δks

around a given value ks. The main result of [19] was to show
that the obtained intensity is proportional to the coincidence
detection of photon pairs that are produced in the spontaneous
regime, i.e., in the absence of a seed beam. The proportionality
factor is given by the intensity of the seed beam, and this is the
reason for the signal to noise improvement. Also, since the in-
tensity of the seed beam is known, one can easily recover from
this measurement the absolute value of the modal function of
the produced two-mode state, |L(ks, k′

i )|2 at points ks and k′
i

defined by the seed mode choice and the signal beam mode
selective detection.

Using SET to obtain full phase and amplitude information
about the modal function associated with the signal and idler
beams requires different experimental resources according to
the mode one is interested in. Stimulated emission tomogra-
phy can be straightforwardly used to completely characterize
the polarization state generated in a nonlinear process [20],
since by changing the polarization of the seed beam and the
one of the detected signal field one can reconstruct the full
two-photon polarization state with intensity measurements
only. This idea can be extended to other degrees of freedom,
such as propagation direction, by discretizing them, as it was
done in [21].

For the field’s spectral properties, the situation is trickier.
It is experimentally challenging to manipulate and shape the
seed to provide information about the phase of the spectral
function with intensity measurements only. A clever solution
for this was provided in [22], where the authors used the same
classical beam as for a pump and seed and as a phase ref-
erence pulse. The original field is decomposed, multiplexed,
and chirped, and the field generated through the nonlinear
interaction is made to interfere with the reference beam with
a phase difference that can be experimentally adjusted. The
detected signal has the same form as one of the outputs of an
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interferometer, so by combining output signals with differ-
ent phase choices, one reaches a result which is propor-
tional to the photon pair’s joint spectral amplitude (JSA)
L(k, k′) = L(ω,ω′). Also, in [23] a on-chip ring inter-
ferometer was designed to recover phase information of
the stimulated field in a regime where the spectrum of
the output stimulated field does not asymptotically repro-
duce the spectrum of the stimulated photon of the pair.
Finally, alternative techniques to obtain phase information
[24] and complement the SET measurement in its orig-
inal formulation were also proposed and implemented in
[25–27], but they require using coincidence measurements
as well.

In the present paper we present a way to extend the SET
technique so it can provide, for arbitrary modes, full infor-
mation about the produced field’s modal function without the
need to perform coincidence detection. This means that we
show it is possible to obtain information about not only the
absolute value of the modal function, as in [19], but also its
phase, for any mode. In order to do so, we present a theo-
retical model for the output field produced by the nonlinear
interaction slightly different from the one used, for instance,
in [19,28,29]. Furthermore, we consider the exact output state
for an arbitrary effective coupling regime [arbitrary value
of γ in Eq. (1)]. Finally, we combine the stimulated output
field in both signal and idler modes using an interferometric
configuration and compute the difference of intensities of the
combined modes. The reasons for these modifications are
twofold. First of all, since SET relies on classical intensity
measurements, all the involved operations, interactions, and
elements are Gaussian. Thus, using any step of the model
non-Gaussian states may be confusing and inaccurate. The
output state in the SET configuration is Gaussian and must
be considered as such, in spite of the fact that the spontaneous
regime combined with postselection by coincidence detection
produces a non-Gaussian state, as is usually the case in SPDC.
Second, keeping the full evolution operator in Eq. (2) enables
extending SET to other experimental situations where mul-
timode squeezed states can be produced and measured, for
instance, optical parametric oscillators and homodyne detec-
tion. We will see how these modifications change the results
obtained in [19], which can also be recovered by making an
expansion on parameters that surprisingly depend not only on
the coupling strength but also on the frequency correlation
properties of the output field.

We will thus present in the following the exact calculation
of the signal intensity detection in the stimulated regime,
using methods similar to the ones of [19,28,30]. In addition,
we will use our results to propose a method to interferometri-
cally measure either the full modal function, including phase
information, or its Fourier transform, according to the choice
made on the seed’s spectral properties. We will see that the
conditions on the seed’s spectrum to unveil the modal function
or its Fourier transform are not exactly the same as in [19,22]
nor are they simply the Fourier analogs to them. They are
rather the analog of a two-party spectral homodyne detection.

The paper is organized as follows. Section II is devoted to
the direct detection of the signal field, in the same spirit as
the original formulation of SET. This section is important to
fix notation and establish the main differences between our

approach and the one of [19]. In Sec. III we use the obtained
results to develop the principles of the interferometric detec-
tion. In Sec. IV we discuss the particular case of frequency
and time measurements. We briefly summarize in Sec. V.

II. DIRECT DETECTION

The first measurement configuration we study is the same
as in the original paper [19] but with a slightly different ap-
proach. First of all, we consider that the nonlinear interaction
between the medium and the pump beam can be described by
the unitary operator appearing in Eq. (2).

The unitary operator is thus applied to the system’s initial
state |ψin〉, given by the vacuum state displaced by the seed,
which is a coherent state |ψo〉 = D̂(α)|0〉, where α is the
complex amplitude of a coherent state in the seed’s mode (see
Appendix A for a derivation). The seed mode α can also be
represented as a superposition of modes. More specifically,
the associated multimode displacement operator is given by

D̂(α) = exp

(∫
[â†(k)α(k) − â(k)α∗(k)]dk

)
, (3)

where |α|2 = ∫ |α(k)|2dk. Thus, the state obtained by the
application of Eq. (2) to the seeded state |ψo〉 is given by

|ψ〉 = Û D̂(α)|0〉. (4)

As we can see in Appendix A, this expression can be obtained
using the asymptotic treatment of [30], with no other assump-
tion than the undepleted pump regime, which is justified when
|χ |2 � 1 (recall that γ = Aχ ).

We can now rewrite the operators appearing in Eq. (4) as
D̂(α)D̂†(α)Û D̂(α)|0〉 and consider that the seed’s mode is
orthogonal to the signal’s. As a result, the former does not
affect the latter and

D̂†(α)Û D̂(α) = ˜̂U = exp

(
γ

∫∫
L(k, k′)â†

s (k)

× [â†
i (k′) + α(k′)]dk dk′ − H.c.

)
. (5)

If the signal mode is detected close to a given value k′
s, with

a measurement resolution δk′
s, the intensity of the detected

signal can be expressed as

〈â†
s (k′

s)âs(k′
s)〉δk′

s = 〈0| ˜̂U †â†
s (k′

s)âs(k′
s) ˜̂U |0〉δk′

s, (6)

where we have used that [â(ks), â†(k′
i )] = 0 and that the dis-

placement operator associated with the seed commutes with
the signal modes.

It is now convenient to express all the creation and
annihilation operators using the Schmidt decomposition.
We have then that Ŝ = γ

∫∫
L(k, k′)â†

s (k)â†
i (k′)dk dk′ =

γ
∑

n

√
λnb̂†

nĉ†
n, where b̂†

n = ∫
ψn(k)â†

s (k)dk and ĉ†
n =∫

φn(k)â†
i (k)dk are the Schmidt modes (see Appendix B and

[31], for instance, for the full details of the change to the
Schmidt basis).

Using the previous results and definitions, we can thus
expand, in first place, the operator â(ks) in the Schmidt
basis as

âs(ks) =
∑

n

ψn(ks)b̂n. (7)
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Equivalently, the seed mode ŝ = ∫
α∗(k)
|α|2 âi(k)dk = ∑

n α∗
n ĉn

can also be expressed in this same basis for conve-
nience, with αn = ∫

α(k)
|α|2 φ∗

n (k)dk or, alternatively, α(k) =
|α|2 ∑

n αnφn(k). Using the Schmidt decomposition, we can
now express Û †âs(ks)Û as

Û †âs(ks)Û =
∑

n

ψn(ks)[b̂n cosh(γ
√

λn) + ĉ†
n sinh(γ

√
λn)]

(8)

and consequently

〈Û †â†
s (ks)âs(ks)Û 〉 = 〈0|Û †â†

s (ks)âs(ks)Û |0〉
=

∑
n

|ψn(ks)|2 sinh2(γ
√

λn). (9)

We now consider the effect of the seed mode. It performs
the transformation ĉn → ĉn + αn so that Eq. (9) finally be-
comes

〈Û †â†
s (ks)âs(ks)Û 〉 =

∑
n

|ψn(ks)|2 sinh2(γ
√

λn)

+|α|2
∣∣∣∣∣
∑

n

α∗
nψn(ks) sinh(γ

√
λn)

∣∣∣∣∣
2

,

which is the output of the produced two-mode (signal and
idler) field.

We can now discuss Eq. (10). By considering, for instance,
that no mode selection is performed and detection is made
in the signal mode, we have that the detected intensity can
be expressed as 〈n̂s〉 = 〈0|n̂s|0〉 = ∫ 〈Û †âs(ks)†âs(ks)Û 〉dks,
which leads to

〈n̂s〉 =
∑

n

sinh2(γ
√

λn)(1 + |αn|2|α|2). (10)

For |α|2 	 1, the first term on the right-hand side of Eq. (10)
corresponds to the spontaneous emission term and can be ne-
glected. Also, we have that 〈n̂s〉 ≈ ∑

n sinh2(γ
√

λn)|αn|2|α|2.
A first consequence of this expression is that by shaping the
seed beam only to a Schmidt mode, using techniques similar
to the ones proposed in [32], one can measure λn and infer the
noise and entanglement properties of the whole system.

We now consider, as in [19] and Eq. (6), that the detection
is performed in a given mode ks in the interval δks of the
signal mode. Equation (10) then becomes

〈Û †â†
s (ks)âs(ks)Û 〉 = |α|2

∣∣∣∣∣
∑

n

α∗
nψn(ks) sinh(γ

√
λn)

∣∣∣∣∣
2

.

(11)

Several interesting specific cases can be studied from the
expression above. If γ

√
λn � 1, we have that sinh(γ

√
λn) ≈

γ
√

λn. In addition, to obtain an expression which is valid for
an arbitrary high value of γ , the benefit of the exact expression
(11) is to give precise physical insight into the conditions of
validity of the usual γ � 1 approximation. Indeed, we see
that it is actually the factor γ λn that plays the role of the
control parameter. We thus can infer that the usual γ � 1
approximation can remain valid even with a higher pump
field intensity if its spectrum and the nonlinear interaction are

such that the output field is highly entangled. Indeed, as the
number of entangled modes increases, the number of nonzero
values of the λn parameter also increases, always keeping∑

n λn = 1. Note that this aspect will not be discussed in detail
in the present work.

Now, using that
√

λnψn(k) = ∫
L(k, k′)φ∗

n (k′)dk′, we
have finally that Eq. (11) becomes

∣∣∣∣∣γ
∑

n

∫∫
L(ks, k′)α(k′′)φn(k′′)φ∗

n (k′)dk′dk′
∣∣∣∣∣
2

=
∣∣∣∣γ

∫
L(ks, k′)α∗(k′)dk′

∣∣∣∣
2

. (12)

If α(k′) has a flat spectrum in support of L(ks, k′), we have
that Eq. (12) returns the marginal of L(ks, k′) with respect to
the idler mode. For α(k′) ≈ δ(k)|α|2, so that |αn| ≈ |φ∗

n (k)|,
we obtain the original result from [19]:

〈â†
s (ks)âs(ks)〉 ≈ γ 2|α|2|L(ks, k)|2. (13)

We recall that even if from this result one can obtain infor-
mation about the absolute value of the mode function at each
point ks and k it is not obvious to obtain information about the
phase of the function L(ks, k) for any mode. In order to solve
this problem, we now use the output state (4) as the input of
an interferometer.

III. INTERFEROMETRIC DETECTION

In this section we use the results obtained in the preceding
section in a configuration which leads to the direct measure-
ment of the full joint modal function L(k, k′) of signal and
idler beams. For this we assume that the signal and the idler
fields are spatially separated and serve as the inputs of an in-
terferometer. Then the two modes are combined in a balanced
beam splitter and the intensities of the output fields in modes
A and B are detected.

The field operators in the input modes s and i are com-
bined as âA(k) = [âs(k) + âi(k)]/

√
2 and âB(k) = [âs(k) −

âi(k)]/
√

2. The difference between the field intensities de-
tected at each one of the two output ports of the interferometer
can be expressed as

〈(N̂A − N̂B)〉 =
∫

〈[â†
A(k)âA(k) − â†

B(k)âB(k)]〉dk

=
∫

〈[â†
s (k)âi(k) + â†

i (k)âs(k)]〉dk, (14)

which is thus the measurement of the nonresolved modal cross
correlation of the signal and idler fields.

We can now use the Schmidt decomposition of Eq. (1)
and of the idler mode to compute the effect of the nonlinear
evolution operator on âi(k):

Û †âi(k)Û =
∑

n

φn(k)[ĉn cosh(γ
√

λn) + b̂†
n sinh(γ

√
λn)].

(15)

Then, considering as before the effect of the seed field,
which displaces the idler mode, we have that Eq. (14)
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FIG. 2. Interferometric detection for the joint temporal amplitude. In the time-frequency case, the parameters are qσ ≡ τ and qη ≡ t and
BS stands for beam splitter. A classical pump field and a coherent seed field generate a pair of modes denoted by ai and as. The seed is
shifted by qσ before the stimulated emission process, and the output mode is then shifted from a value qη. The two modes ai and as are then
recombined into a balanced beam splitter, and nonresolved direct detections are performed in each final mode aA and aB.

becomes

〈(N̂A − N̂B)〉

= |α|2Re

⎡
⎣∫ ∑

n,m

ψ∗
n (k)φm(k)αnαm sinh(2γ

√
λn)dk

⎤
⎦.

(16)

It is now convenient to reexpress Eq. (16) by transforming the
seed mode back from the Schmidt decomposition. By doing
so, we can study, for instance, the limit γ � 1, which can be
written as

〈(N̂A − N̂B)〉 = 2 Re

[∫∫
γ L(k, k′)α∗(k)α∗(k′)dk dk′

]
.

(17)

Our first comment on Eq. (17) is that even though it re-
lates to the real part of a function, one can easily access the
imaginary part of this function by simply changing the phase
of the signal (or the idler) beam, which can be done with
standard experimental techniques. One example is by adding a
delay line [33] or a spatial light modulator [34] in the mode of
the signal beam before it reaches the beam splitter. By doing
so, the beam-splitter input mode corresponding to the signal
beam acquires a phase difference of π/2 with respect to the
one corresponding to the idler beam. Alternatively, one can
impinge an extra π/4 phase difference between the seed beam
and the pump so that the cumulated phase in the integrand is
π/2 shifted with respect to (17).

We can see that Eq. (17) does not provide full informa-
tion about the modal function L(k, k′). Nevertheless, studying
some particular cases can be helpful to gain some intuition and
find out how to experimentally access this function.

To start with, let us suppose that the seed field’s modal
distribution is much broader than the width of the function
L(k, k′) and that it is nearly flat in the region of the support of
L(k, k′). In this case, we can take the seed out of the integral
in Eq. (17), which becomes

〈(N̂A − N̂B)〉 = 2 Re

[
γB2

∫∫
L(k, k′)dk dk′

]

= 2 Re[γB2L̃(0, 0)], (18)

where L̃(q, q′) = ∫∫
L(k, k′)eiqkeiq′k′

dk dk′ is the Fourier
transform of the function L(k, k′) and B is the value of the

amplitude of the seed which is taken as a constant for k and
k′ in support of L(k, k′).

Equation (18) provides information about only one point of
the modal distribution’s Fourier transform, given by q = q′ =
0. Of course this is not enough to completely characterize the
modal state of the produced field. Accessing the whole modal
function’s Fourier transform requires measuring all the points
of the function L̃(q, q′). In order to do so, we will adapt the
interferometer as depicted in Fig. 2.

We first apply a phase difference between the two arms
of the interferometer and, say, the idler mode is transformed
as âi(k) → Û †

qη
âi(k)Ûqη

, where Û †
qη

is the unitary operator
that implements a phase difference between the two arms
of the interferometer. This phase can be considered to be
proportional to a parameter qη. By choosing Ûqη

such that
Û †

qη
âi(k)Ûqη

= eikqη âi(k), it is easy to check that Eq. (17)
becomes

〈(N̂A − N̂B)〉= 2 Re

[
γ

∫∫
L(k, k′)α∗(k)α∗(k′)eik′qη dk dk′

]
.

(19)

We can now add another phase factor, but this time to the seed
pulse and before it interacts with the nonlinear medium. This
corresponds to providing a relative phase factor of qσ between
the seed and the pump beam so that α(k) → α(k)e−ikqσ . The
complete measurement scheme is represented in Fig. 2, where
all the phase factors are identified. It consists of a configu-
ration analogous to the one implemented in [35,36], where
it is shown that transformations implemented on the seed’s
transverse field profile are transferred to the signal’s.

The produced output signal is then given by

〈(N̂A − N̂B)〉 = 7S̃(qσ , qσ + qη )

= 2 Re

[
γ

∫∫
L(k, k′)α∗(k)eikqσ

×α∗(k′)eik′qσ eik′qη dk dk′
]
, (20)

where S̃(q1, q2) is the Fourier transform of the function
L(k1, k2)α∗(k1)α∗(k2). As before, we first discuss the situ-
ation of a seed beam with a broad and flat modal distribution,
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which leads directly to

〈(N̂A − N̂B)〉 = L̃(qσ , qσ + qη )

= 2 Re

[
γB2

∫∫
L(k, k′)eikqσ eik′qσ eik′qη dk dk′

]
.

(21)

The function L̃(qσ , qσ + qη ) is the Fourier transform of the
modal function L(k, k′) at points qσ and qσ + qη. As a conse-
quence, once the real part of L̃(qσ , qσ + qη ) is also measured,
the proposed scheme enables the complete measurement of
the modal function L(k, k′) and/or its Fourier transform, in-
cluding its phase information. We can see that the required
modal properties of the seed are opposite to the ones used
in the direct detection configuration. While in that case the
seed was supposed to have a narrow modal distribution, in
the present one we consider it to have a broad, nearly flat
one. This is somehow intuitive, since in the direct detection
configuration we accessed the absolute value of the function
L(k, k′), while in the interferometric setup we can measure its
Fourier transform L̃(qσ , qσ + qη ).

We now mention a second method to extract the spectrum
L(k, k′) which loosens the assumptions about the temporal
width of the idler beam. We suppose that the seed beam is
known, since it can be independently measured completely
with tomography techniques, such as the ones described in
[37–39]. Then if we measure both real and imaginary parts of
the signal, we obtain the function

S̃(qσ , qη + qσ ) = 2γ

∫∫
L(k, k′)α∗(k′)

×α∗(k)eikqσ eik′qη eik′qσ dk dk′. (22)

By performing a double Fourier transform on the obtained
function and dividing it by the (known) spectrum of the seed
beam, we obtain the spectrum of interest

L(k, k′) = 1

8π2γ

∫∫
S̃(qσ , qσ )e−ikqσ e−ik′qη e−ik′qσ dk dk′

α∗(k′)α∗(k)
,

(23)

thus providing a direct measurement of the modal function at
all points.

We have presented a general method to directly measure
the function L(k, k′). The proposed solution provides all the
modal properties associated with the field produced by a
quadratic interaction between a nonlinear medium and a pump
beam in the low-gain regime using intensity measurements
only, circumventing coincidence measurements. We notice
that errors due to expansion on γ depend on γ 3. A discussion
about precision and sampling requirements and the effects
of noise and measurement imperfections can be found in
Appendix C.

The description and discussion presented apply to any de-
gree of freedom of the electromagnetic field in the low-gain
regime and in the undepleted pump approximation. In the next
section we will discuss in detail the case of frequency and time
degrees of freedom.

IV. JOINT TEMPORAL AMPLITUDE RECONSTRUCTION

We now study in detail the case of frequency and time
modes, which is particularly interesting due to the experimen-
tal difficulties in manipulating these degrees of freedom, and
thus measuring the modal function in all points with phase
information, when compared, for instance, to the polarization
or the transverse position and momentum. Also, frequency
modes and states have many applications in different exper-
imental setups described by the interaction (2). In the intense
pump coupling regime, for instance, it is possible to create
multimode squeezed states of the radiation both in the bulk
or in the circuit configurations [13,40–43], and the choice of
different frequency mode basis adapts the squeezed and highly
mode-entangled produced state [44,45] to applications such
as quantum metrology, quantum information, and quantum
communication.

In the weak-coupling regime, such as the SPDC one, fre-
quency also plays an important role. In this case, the unitary
operator (2) is expanded until the first order and the state pro-
duced is postselected by coincidence measurements, which
excludes the vacuum part of the state. The resulting posts-
elected state becomes a valuable non-Gaussian resource in
quantum optics and quantum information. This state can be,
for instance, highly entangled in different modes, such as po-
larization, which can be used to encode qubits, or frequency,
which can be used to encode qubits or qudits [46,47] or
for continuous variables for quantum computing [48–50] and
metrology [51].

In order to analyze the time and frequency mode case,
we change the notation so that L(k, k′) ≡ L(ω,ω′) and
L̃(qη, qσ ) ≡ L̃(τ, t ) are the JSA and the joint temporal ampli-
tude, respectively. ln order to do so, we now identify how the
different terms appearing in Eq. (20) can be experimentally
implemented. The first point to be addressed is the pump’s
spectral width. By inverting Eq. (20) and using this section’s
notation, we see that

L(ω,ω′) = 1

8π2γ

∫∫
S̃(τ, t + τ )e−iτωe−i(t+τ )ω′

dt dτ

α∗(ω)α∗(ω′)
(24)

can be inferred by varying t and τ and reconstructing S̃(τ, t +
τ ) from the measurement results. Of course, α(ω) should be
known, and it must have a support larger than the one of
L(ω,ω′); otherwise S̃(τ, t + τ ) cannot be reconstructed.

The second point to be discussed is how to implement the
temporal delay τ . This term is associated with an optical path
difference between the pump and the seed (see Fig. 2). We can
assume, for instance, that both the pump and seed come from
the same laser and the pump is frequency doubled while the
seed is attenuated. In this case, we ensure the phase coherence
between both classical beams and the possibility to choose the
relative phase proportional to the parameter τ between both
wave packets. This time delay between pump and seed beams
can occur before the nonlinear interaction and is inherited by
the photons created by it. This is a situation similar to the one
studied in [35] but in the context of the beam’s transverse
profile. Finally, experimentally, the phase difference propor-
tional to the time delay t can be obtained after the nonlinear
interaction by placing an optical path difference in the idler’s
arm, as is usually done in interferometers.
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In addition, one cannot determine t and τ with infinite
precision. Typical values of the size of each time step are of
the order of 0.3 fs (which corresponds to 100 nm of optical
path), with a typical precision of 0.03 fs. In [52], for instance,
smaller time steps corresponding to an optical path of 30 nm
were implemented.

Concerning the pump spectral profile, in the case of a
pulsed pump, we can use pump shaping techniques to use a
seed beam broader than the pump. Using the numbers of [4],
for instance, we can use a laser with 0.5 ps pulse duration
for the seed and stretch the impulsions coming from the same
laser by a factor of 10 to pump the nonlinear structure; this
leads to a seed beam whose spectrum is 10 times larger than
the pump’s one and consequently the JSA’s.

A general discussion of the experimental requirements can
be found in Appendix C for arbitrary modes, together with the
main idea of how to sample results experimentally.

V. CONCLUSION

We have extended the principles of SET and proposed an
interferometric method to obtain full phase information about
the modal function L(k, k′) avoiding single-photon coinci-
dence detection. The results obtained are analogous to those
for two-dimensional homodyne detection but acting on the
mode profile of the field instead of its quadratures. We have
discussed in detail the case of the time and spectral properties
of the field as well as the role of noise and imperfections (see
Appendix C). In addition, the proposed method in principle
can also be used to directly infer the JSA from the joint
temporal amplitude simply by reversing the roles of frequency
and time.

We believe that the present work will be useful for differ-
ent experimental configurations and setups where the modal
properties of the field play a role in quantum information,
metrology, and imaging.

APPENDIX A: FIELD QUANTUM STATE GENERATED BY
THE NONLINEAR DEVICE

In this Appendix we show that the quantum state of the
light |ψout〉 emitted by the nonlinear device can be written as

|ψout〉 = Û |ψin〉 = eŜ−H.c.|ψin〉, (A1)

where |ψin〉 is the quantum state of the light incident upon the
nonlinear device and

Ŝ = γ
∑
ν,η

∫
d�k1d�k2Lν,η(�k1, �k2)b̂†

ν�k1
b̂†

η�k2
.

In this relation, the couple (ν, �k) labels a plane-wave mode
of the field with wave vector �k and ν = ±1 labels the
two orthogonal polarization. The function Lν,η(�k1, �k2) which
characterizes the state of the emitted field is such that∑

ν,η

∫
d�k1d�k2|Lν,η(�k1, �k2)|2 = 1. The factor γ can be written

as γ = χA, where χ is a characteristic of the nonlinear device
and |χ |2 represents the number of photon pairs generated per
photon of the pump pulse. Further, A is a characteristic of
the pump pulse and |A|2 is the mean number of photons in

the pump pulse. Therefore, |γ |2 is the total number of photon
pairs generated by the pump pulse.

As in Ref. [30] or [19], we consider that the device is
characterized by a Hamiltonian ĤL + ĤNL, where ĤL collects
the linear interactions responsible for the propagation and
dispersion and ĤNL collecting the nonlinear interactions is
given by

ĤNL=−
⎡
⎣∑

ν,η,μ

∫
d�k1d�k2d�kSνημ(�k1, �k2, �k)b̂†

ν�k1
b̂†

η�k2
â

μ�k + H.c.

⎤
⎦,

(A2)

where the function Sνημ(�k1, �k2, �k) encompasses the nonlinear
coupling and phase-matching condition. We proceed as in
Ref. [30], where only the spontaneous process was consid-
ered and we generalize to the stimulated case, where the
incident field is not necessarily the vacuum. For the sake of
self-contentedness, we briefly summarize the methodology
which relies on scattering theory and backward propaga-
tion. The states |ψin〉 and |ψout〉 are scattering states [30,53];
|ψin〉 is the field state at t = 0 which develops from |ψ (t−)〉
but considering that the nonlinear device has been removed,
that is, |ψin〉 = exp[−iĤL(0 − t−)]|ψ (t−)〉 (throughout this
Appendix we consider h̄ = 1). In the same way, |ψout〉 is
the state at t = 0 which will develop to |ψ (t+)〉, without the
nonlinear device, that is, |ψ (t+)〉 = exp[−iĤL(t+ − 0)]|ψout〉.
The times t− and t+ are considered as t± → ±∞. In that way,
the effect of the nonlinear device is completely described by
the transition from |ψin〉 to |ψout〉 at t = 0.

The relation between the in and the out states can be
written as

|ψout〉 = lim
t±→±∞ Û (t+, t−)|ψin〉, (A3)

where Û (t+, t−) is given by

Û (t+, t−) = exp(iĤLt+) exp[−iĤ (t+ − t−)] exp(−iĤLt−).

(A4)

The unitary operator Û (t+, t ), as a function of t , fulfills the
differential equation

−i
∂

∂t
Û (t+, t ) = Û (t+, t )V̂ (t ), (A5)

with

V̂ (t ) = exp(iĤLt )ĤNL exp(−iĤLt ).

Using Eq. (A2), we have

V (t ) = −
⎡
⎣∑

ν,η,μ

∫
d�k1d�k2d�kSνημ(�k1, �k2, �k) exp[−i(ω

μ�k

−ω
ν�k1

− ω
η�k2

)t]b̂†
ν�k1

b̂†
η�k2

â
μ�k + H.c.

⎤
⎦. (A6)

As in Ref. [30], we will use backpropagation (from t+ to
t−) because our objective is to express expectation value of
observables which are written as a function of output mode’s
annihilation and creation operators (at t+ → +∞).
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Before starting the calculations, let us state the as-
sumptions. We suppose that the function Sνημ(�k1, �k2, �k)
characterizing the nonlinear device in Eq. (A2) is nonzero
only when the pump (μ, �k), the signal (ν, �k1), and the idler
(η, �k2) modes satisfy the phase-matching condition imposed
by the nonlinear medium and the device geometry. Further-
more, the following assumptions are in order.

(1) The pump mode is orthogonal to the other modes, i.e.,
the seed, signal, and idler modes. Moreover, the frequency
range of the pump mode does not overlap with the other
modes.

(2) The seed mode overlaps with the idler mode and is
orthogonal to the signal mode.

(3) The probability to emit a photon pair, per pump photon,
is very small.

To obtain |ψout〉 using Eq. (A3), we must specify the in
state of the field |ψin〉. We consider that before entering the
nonlinear device the state of the field is well described by
a coherent state, corresponding to the pump and the seed
pulse. Because of assumptions 1 and 2, we can write the in
state as |ψin〉 = |ψp〉 ⊗ |ψs〉, where |ψp〉 refers to the pump
pulse coherent state and |ψs〉 to the seed coherent pulse. To
describe the field states corresponding to the pump pulse, we
first define the creation operator A[ fp]† as

Â†[ fp] =
∑

μ

∫
fp(μ, �k)â†

μ,�kd�k, (A7)

where the function fp(μ, �k) characterizes the mode of the
pump and is normalized as

∑
μ

∫ | fp(μ, �k)|2d�k = 1. The in
field state |ψp〉 corresponding to the pump pulse is then writ-
ten as |ψp〉 = D[A, fp]|vac〉, where the displacement operator
D[A, fp] is defined as

D[A, fp] = exp(AA†[ fp] − H.c.)

and |A|2 is the mean number of photon in the mode fp, that
is, 〈ψp|

∑
μ

∫
a†

μ�ka
μ�kd�k|ψp〉 = |A|2.

The seed pulse coherent state |ψs〉 is defined in the
same way but with the help of the normalized mode func-
tion fs(μ, �k) and the corresponding displacement operator

D[B, fs] as |ψs〉 = D[B, fs]|vac〉, where

D[B, fs] = exp(BB†[ fs] − H.c.).

The creation operator B†[ fs] is defined as in Eq. (A8) but
replacing fp by fs:

B†[ fs] =
∑

μ

∫
fs(μ, �k)b†

μ,�kd�k. (A8)

We have used the denotation b†
μ,�k for the creation operators to

remember that they commute with the annihilation operator
a

μ,�k because the support of the functions fs and fp is orthogo-

nal,
∑

μ

∫
d�k f ∗

s (μ, �k) fp(μ, �k) = 0, by assumption 1.
Finally, the in state is thus written as

|ψin〉 = D[A, fp] ⊗ D[B, fs]|vac〉. (A9)

Setting B = 0 gives the spontaneous parametric conversion
process and when B �= 0 the stimulated process is considered.

To calculate the out state we follow the work by Yang et al.
in [30]. Let us define two operators

Ka = AA†[ fp], Kb = BB†[ fs]. (A10)

Then

|ψout〉 = U (t+, t−)eKa−H.c.eKb−H.c.|vac〉
= U (t+, t−)eKa−H.c.eKb−H.c.U †(t+, t−)|vac〉
= eK̄a(t− )−H.c.eK̄b(t− )−H.c.|vac〉, (A11)

where

ˆ̄Ka(b)(t ) = Û (t+, t )K̂a(b)Û
†(t+, t ) (A12)

and the second equality in Eq. (A11) follows from the fact that
HL|vac〉 = HNL|vac〉 = 0.

The backpropagated operator ˆ̄Ka(b)(t ) satisfies

K̂a(b)(t ) = Û (t+, t )K̂a(b)Û
†(t+, t ) (A13)

where ˆ̄V (t ) = Û (t+, t )V̂ (t )Û †(t+, t ). Using Eqs. (A4), (A2),
and (A6), it can be written as

ˆ̄V (t ) = −
⎡
⎣∑

ν,η,μ

∫
d�k1d�k2d�kSνημ(�k1, �k2, �k) exp

[−i(ω
μ�k − ω

ν�k1
− ω

η�k2
)t

] ˆ̄b†
ν�k1

(t ) ˆ̄b†
η�k2

(t ) ˆ̄a
μ�k (t ) + H.c.

⎤
⎦, (A14)

where the bar above an operator means its backpropagation as in Eq. (A12). In the following it is convenient to distinguish the
pump and seed mode annihilation operators as c

μ,�k and d
μ,�k , respectively. In the following calculation the commutators of these

operators can be considered as zero, that is, [c
μ,�k, d

η,�k′ ] = [c†
μ,�k, d

η,�k′ ] = 0, because the ranges of �k and �k′ will never overlap.

With this notation V̄ (t ) can be rewritten as

ˆ̄V (t ) = −
⎡
⎣∑

ν,η,μ

∫
d�k1d�k2d�kSνημ(�k1, �k2, �k) exp

[−i(ω
μ�k − ω

ν�k1
− ω

η�k2
)t

] ˆ̄b†
ν�k1

(t ) ˆ̄b†
η�k2

(t ) ˆ̄c
μ�k (t ) + H.c.

⎤
⎦

−
⎡
⎣∑

ν,η,μ

∫
d�k1d�k2d�kSνημ(�k1, �k2, �k) exp

[−i(ω
μ�k − ω

ν�k1
− ω

η�k2
)t

]
b̄†

ν�k1
(t ) ˆ̄b†

η�k2
(t ) ˆ̄d

μ�k (t ) + H.c.

⎤
⎦. (A15)
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The backpropagated creation and annihilation operators all fulfill the same differential equation as the one fulfilled by K̄ (t ) given
in Eq. (A13). In addition, in the integral we have the commutation relations (see rules 1 and 2)

[
ˆ̄c
μ�k (t ), ˆ̄b†

ν�k1
(t )

] = [
ˆ̄c†
μ�k (t ), ˆ̄b†

ν�k1
(t )

] = [
ˆ̄c
μ�k (t ), ˆ̄b†

η�k2
(t )

] = [ ˆ̄c†
μ�k (t ), ˆ̄b†

η�k2
(t )] = 0,

[ ˆ̄d
μ�k (t ), ˆ̄b†

ν�k1
(t )

] = [ ˆ̄d†
μ�k (t ), ˆ̄b†

ν�k1
(t )

] = 0. (A16)

The overlap of the seed mode with the idler mode can be characterized by an overlap function fμ,μ′ (�k, �k′) as

[ ˆ̄d†
μ�k (t ), ˆ̄b

μ′ �k′ (t )
] = fμ,μ′ (�k, �k′). (A17)

Therefore, the differential equations fulfilled by ˆ̄c†
μ�k (t ), ˆ̄d†

μ�k (t ), and ˆ̄b†
μ�k (t ) are

i
d

dt
ˆ̄c†
μ�k (t ) =

∑
ν,η

∫
d�k1d�k2Sνημ(�k1, �k2, �k) exp

[−i
(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
t
] ˆ̄b†

ν�k1
(t ) ˆ̄b†

η�k2
(t ), (A18)

i
d

dt
d̄†

μ�k (t ) =
∑
ν,η,μ′

∫
d�k1d�k2d�k′ fμ,η(�k, �k2)S∗

νημ′ (�k1, �k2, �k′) exp
[
i
(
ω

μ′ �k′ − ω
ν�k1

− ω
η�k2

)
t
]
ˆ̄c†
μ′ �k′ (t ) ˆ̄b

ν�k1
(t )

+
∑
ν,η,μ′

∫
d�k1d�k2d�k′ fμ,η(�k, �k2)S∗

νημ′ (�k1, �k, �k′) exp
[
i
(
ω

μ′ �k′ − ω
ν�k1

− ω
η�k2

)
t
] ˆ̄d†

μ′ �k′ (t ) ˆ̄b
ν�k1

(t )

+
∑
ν,η

∫
d�k1d�k2Sνημ(�k1, �k2, �k) exp

[−i
(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
t
] ˆ̄b†

ν�k1
(t ) ˆ̄b†

η�k2
(t ), (A19)

i
d

dt
ˆ̄b†
ν�k1

(t ) =
∑
η,μ

∫
d�k d�k2

[
S∗

νημ(�k1, �k2, �k) + S∗
ηνμ(�k2, �k1, �k)

]
exp

[
i
(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
t
][

ˆ̄c†
μ�k (t ) + ˆ̄d†

μ�k (t )
] ˆ̄b

η�k2
(t ). (A20)

In principle, solving these differential equations with the initial conditions ˆ̄d†
μ�k (t+) = d̂†

μ�k , ˆ̄c†
μ�k (t+) = ĉ†

μ�k , and ˆ̄b†
μ�k (t+) = b̂†

μ�k
allows us to compute ˆ̄Ka(b)(t−) defined by Eqs. (A12) and (A10) and then |ψout〉 by Eq. (A11). Indeed,

ˆ̄Ka(t−) = A
∑

μ

∫
d�k fp(μ, �k) ˆ̄c†

μ�k (t−), ˆ̄Kb(t−) = B
∑

μ

∫
d�k fs(μ, �k) ˆ̄d†

μ�k (t−). (A21)

Using assumption 3, as in Ref. [30] we solve the differential equations (A18) and (A19) at first order in V with time-dependent
perturbation theory. We obtain

ˆ̄c†
μ�k (t−) � ĉ†

μ�k + 1

i

∑
ν,η

∫
d�k1d�k2Sνημ(�k1, �k2, �k)

[∫ t−

t+
exp

[−i
(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
t
]
dt

]
b†

ν�k1
b†

η�k2
, (A22)

ˆ̄d†
η�k (t−) � d̂†

μ�k + 1

i

∑
ν,η,μ′

∫
d�k1d�k2d�k′ fμ,η(�k, �k2)S∗

νημ′ (�k1, �k2, �k′)
[∫ t−

t+
exp

[
i
(
ω

μ′ �k′ − ω
ν�k1

− ω
η�k2

)
t
]
dt

]
ĉ†
μ′ �k′ b̂ν�k1

+ 1

i

∑
ν,η,μ′

∫
d�k1d�k2d�k′ fμ,η(�k, �k2)S∗

νημ′ (�k1, �k2, �k′)
[∫ t−

t+
exp

[
i
(
ω

μ′ �k′ − ω
ν�k1

− ω
η�k2

)
t
]
dt

]
d̂†

μ′ �k′ b̂ν�k1

+ 1

i

∑
ν,η

∫
d�k1d�k2Sνημ(�k1, �k2, �k)

[∫ t−

t+
exp

[−i
(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
t
]
dt

]
b̂†

ν�k1
b̂†

η�k2
, (A23)

where all the operators appearing on the right-hand side of the equality are taken at time t = t+. We note that the operator d̄+
η�k (t−)

will be applied to the vacuum; therefore, the second and third terms of Eq. (A23) do not contribute.
The last term of Eq. (A23) will give a nonzero contribution only for frequencies ω

μ�k in the range of the pump frequencies

[this is a property of function Sνημ(�k1, �k2, �k)]. However, at the end, the operator d̄†
η�k (t−) will be used in the integral of Eq. (A21)

defining K̄b(t−), where the effective range of integration is limited by the support of the function fs(μ, k) defining the seed mode.
Because of hypothesis 1 this range does not overlap with the one of the pump. The resulting integral is therefore zero. Therefore,
we obtain that d̄†

η�k (t−) = d†
μ�k and

ĉ†
μ�k (t−) � ĉ†

μ�k + 2π

i

∑
ν,η

∫
d�k1d�k2Sνημ(�k1, �k2, �k)δ

(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
b̂†

ν�k1
b̂†

η�k2
. (A24)
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Finally, we obtain the expected result for |ψout〉,

|ψout〉 = exp

⎛
⎝A

∑
μ

∫
d�k fp(μ, �k)ĉ†

μ�k − H.c.

⎞
⎠|vac〉 ⊗ exp

⎡
⎣

⎛
⎝Aχ

∑
ν,η

∫
d�k1d�k2Lν,η(�k1, �k2)b̂†

ν�k1
b̂†

η�k2
− H.c.

⎞
⎠

⎤
⎦

× exp

⎛
⎝B

∑
μ

∫
d�k fs(μ, �k)d̂†

μ�k − H.c.

⎞
⎠|vac〉, (A25)

where we have defined the normalized function Lν,η(�k1, �k2) as

Lν,η(�k1, �k2) = −2π i

χ

∑
μ

∫
d�k fp(μ, �k)Sνημ(�k1, �k2, �k)δ

(
ω

μ�k − ω
ν�k1

− ω
η�k2

)
, (A26)

with χ a normalization factor defined as

χ = 2π

⎛
⎝∑

ν,η

∫
d�k1d�k2

∣∣∑
μ

∫
d�k fp(μ, �k)Sνημ(�k1, �k2, �k)δ(ω

μ�k − ω
ν�k1

− ω
η�k2

)
∣∣2

⎞
⎠

1/2

(A27)

such that
∑
ν,η

∫
d�k1d�k2|Lν,η(�k1, �k2)|2 = 1.

Here |χ |2 is the probability of a photon pair generation per
pump pulse photon in mode fp(μ, �k). Thus, |χA|2 is the total
number of generated pairs of photons. We thus can identify the
coefficient γ in main text [see also Eq. (A1)] to the product
χA. We stress that the validity of perturbation expansion
[Eqs. (A22) and (A23)] is independent of the intensities |A|2
and |B|2 of the pump and the seed, respectively. It relies only
on the smallness of |χ |2 (assumption 3).

APPENDIX B: SCHMIDT DECOMPOSITION

We provide here some useful information about the
Schmidt mode decomposition. In order to perform a basis
change to decompose Eq. (1) in the Schmidt basis we used that
Ŝ = γ

∫∫
L(k, k′)â†

s (k)â†
i (k′)dk dk′ = ∑

n

√
λnb̂†

nĉ†
n, where

b̂†
n = ∫

ψn(k)â†
s (k)dk and ĉ†

n = ∫
φn(k)â†

i (k)dk are the
Schmidt modes.

In addition, L(k, k′) = ∑
n

√
λnψn(k)φn(k′). The ψn and

φn form a basis in the spaces of the signal and the idler modes,
respectively, with

√
λn = ∫∫

L(k, k′)ψ∗
n (k)φ∗

n (k′)dk dk′ and√
λnψn(k) = ∫

L(k, k′)φ∗
n (k′)dk′ and analogously for φn(k).

Using these relations, one can reproduce the results presented
in Secs. II and III.

APPENDIX C: NOISE

We now discuss possible measurement imperfections. For
this, we consider two independent sources of imperfections.
The first one can be seen as noise in the qi variables and may
have different physical origins depending on the considered
setup. For example, when measuring the spectral properties
of photons, q ≡ t , which is an optical path delay that is cen-
tered around some value, say, τ with a distribution P(τ + δτ ),
where δτ is distributed around τ . The second one concerns the
intrinsic discreteness of physical apparatuses, which means

that the parameter q varies in finite steps and qi+1 = qi + �q.
Taking again as an example the case of spectral measurement,
this would correspond to the minimum path difference be-
tween the interfering pulses.

We start by discussing the first case, which can be modeled
as a random phase in the argument of, say, (21) as

∫∫∫ ∫
L(k, k′)eik(qη+δqη )eik′(qη+δqη )eik′(qσ +δqσ )

× P(δqη )P(δqσ )dk dk′dδqσ dδqη, (C1)

where P(δqα ) is a distribution. We can for instance consider
it as a Gaussian function, with P(δqα ) = N e−δqα

2/�α . In this
case, Eq. (C1) can be easily computed, leading to

∫∫
L(k, k′)eikqη eik′qη eik′qσ e−(k+k′ )2�η e−k′2�σ dk dk′. (C2)

The expression above sets a relationship between the fre-
quency range that can be detected and the precision of the
measurement, since the widths �−1

η and �−1
σ are the cutoff

frequencies, setting an effective width to the integral Eq. (C2).
This is the usual condition observed in interferometric detec-
tion and can be met in different setups.

We now discuss the effect of a finite variation of qα vari-
ables. This leads to a sampling of L̃(q, q′), in a number of
(relevant) values that is proportional to the ratio between the
width of the function L̃(q, q′) and the intervals �q. A sam-
pling rate of 1/�q ensures the reconstruction of L̃(q, q′) from
its Fourier coefficients through the Nyquist-Shannon sampling
theorem.

With these relations in mind, it is possible to estimate
the requirements a given experimental setup should meet to
employ the presented method.
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