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We investigate the Landau-Zener tunneling (LZT) of a self-interacting two-level system in which the coupling
between the levels is nonreciprocal. In such a non-Hermitian system, when the energy bias between two levels is
adjusted very slowly, i.e., in the adiabatic limit, we find that a quantum state can still closely follow the eigenstate
solution until it encounters the exceptional points (EPs) at which two eigenvalues and their corresponding
eigenvectors coalesce. In the absence of the nonlinear self-interaction, we can obtain explicit expressions for
the eigenvectors and eigenvalues and analytically derive the adiabatic LZT probability from invariants at EPs. In
the presence of the nonlinear interaction, the dynamics of the adiabatic evolutions are explicitly demonstrated
with the help of classical trajectories in the plane of the two canonical variables of the corresponding classical
Josephson Hamiltonian. We show that the adiabatic tunneling probabilities can be precisely predicted by the
classical action at EPs in the weak nonreciprocal regime. In a certain region of strong nonreciprocity, we find
that interestingly, the nonlinear interaction effects can be completely suppressed so that the adiabatic tunneling
probabilities are identical to their linear counterparts. We also obtain a phase diagram for large ranges of
nonreciprocity and nonlinear interaction parameters to explicitly demonstrate where the adiabaticity can break
down, i.e., the emergence of the nonzero tunneling probabilities even in adiabatic limit.
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I. INTRODUCTION

Landau-Zener tunneling (LZT) is a well-known phe-
nomenon discussed in quantum mechanics textbooks that
describes a system that crosses from one side of an avoided
level to the other side at a certain sweeping rate [1,2].
The LZT model has many important applications in vari-
ous physical systems, demonstrated by recent progress in
experiments—for example, in superconducting qubits [3–5],
nitrogen-vacancy centers [6], quantum dots [7,8], waveguide
arrays [9], and Bose-Einstein condensates [10–27], to name
only a few.

The LZT model has many extensions by taking diverse
physical conditions into account, such as in multilevel sys-
tems [28–36], in a nonlinear interacting system with level
energies depending on the occupation of the levels [10–12],
and in a time-dependent sweeping scheme [37,38]. All of
the above studies focus on Hermitian systems that are as-
sumed to be conservative, obey time-reversal symmetry, and
obviously exhibit real-valued eigenvalues. However, in many
situations, nonconservative elements arise in various forms,
so that non-Hermitian physics have recently attracted consid-
erable attention [39–46]. Recently, the extensions of LZT to
non-Hermitian systems have also been studied by considering
level decay and the dephasing effect [47–50].
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In the present paper, we attempt to investigate LZT in a
nonreciprocal self-interacting two-level system, in which non-
Hermiticity is induced by nonreciprocal coupling between the
levels in contrast to the level decay and dephasing effects
[48–50]. The nonreciprocity of state transitions can be har-
nessed to engineer an effective non-Hermitian Hamiltonian
[45,46,51,52] that maintains the time-reversal symmetry but
violates the parity symmetry. The Bogoliubov–de Gennes
equation that describes the dynamics of noncondensed atoms
in a Bose-Einstein condensate [53–55] has this type of
symmetry. This approach has also been used to realize a
non-Hermitian Su-Schrieffer-Heeger model with asymmet-
ric intra-unit-cell hopping amplitudes [56]. Nonreciprocity
plays an important role not only in fundamental studies such
as investigations of topological photonics [57,58] and chiral
quantum optics [59] but also in applied research such as
optical communication and information processing [60–63].
Recently, tunable nonreciprocal hopping has been realized
in cold atoms in optical lattices [45,64,65] and in synthetic
momentum lattices [66].

Additionally, quantum adiabatic evolution is an impor-
tant concept in quantum mechanics [67,68] that has been
widely applied in the preparation and control of quantum
states [69–72]. According to the adiabatic theorem of quan-
tum mechanics, an initial nondegenerate eigenstate remains
an instantaneous eigenstate if a Hamiltonian is changed suf-
ficiently slowly compared to the level spacings. It predicts
a zero quantum transition between the energy levels in the
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FIG. 1. Schematic illustration of nonreciprocal LZT based on a
two-level system with nonlinear interactions. The two solid curves
(red and black) represent the adiabatic energy levels (upper and lower
levels, respectively). The shadow box represents the region in which
the two levels closely approach each other and quantum tunneling
emerges due to the complicated interplay between nonreciprocal
coupling and nonlinear interactions. The level bias varies linearly in
time as γ = αt (α is the so-called sweeping rate). Assuming that the
system is initially on the lower (upper) energy level, the transition
probability from the lower (upper) to the upper (lower) level during
the sweeping process is denoted by PLU (PUL). (1, 0)T [or (0, 1)T ]
represents the eigenstate when γ → ±∞.

adiabatic limit of the Hamiltonian change. Adiabatic theory
has been extended to quantum systems with nonlinear interac-
tions [16,73], showing many applications [74–76]. Recently,
in the context of non-Hermitian systems, several studies on
possible new phenomena of adiabatic evolution have been
carried out [72,77–79]. In this paper, we address this issue
by investigating an extended LZT model with nonreciprocal
coupling, emphasizing the impact of the interplay of nonre-
ciprocity and nonlinear interactions on the adiabatic evolution.
Interestingly, we find that the emergence of exceptional point
(EP) singularities dramatically alters the tunneling process,
leading to the breakdown of adiabaticity, i.e., the emergence
of nonzero tunneling probabilities even in the adiabatic limit
of the energy bias change. Our results are of significance in
the fields of quantum optics and quantum transport. They also
have potential application in quantum devices for quantum
information processing.

The paper is organized as follows. In Sec. II, we intro-
duce the physical model of nonreciprocal LZT and derive its
corresponding classical Josephson Hamiltonian. In Sec. III,
we study the nonreciprocal LZT in the absence of nonlinear
interactions. In Sec. IV, in the adiabatic limit, we study the
nonreciprocal LZT in the presence of nonlinear interactions.
In Sec. V, we present some remarks on the normalization
issues of the non-Hermitian systems. A summary is presented
in Sec. VI.

II. PHYSICAL MODEL AND JOSEPHSON HAMILTONIAN

A. Nonreciprocal Landau-Zener model

We consider a nonreciprocal Landau-Zener model as il-
lustrated by Fig. 1, whose Hamiltonian takes the following

form:

H (γ ) =
(

γ

2 + c|a|2 v
2

v
2 (1 − δ) − γ

2 + c|b|2
)

, (1)

where (a, b) is the two-mode wave function, v is the constant
for hopping between the two levels, γ is the level bias, c
denotes the nonlinear self-interaction parameter indicating the
population-dependent level energy, and δ > 0 is the nonre-
ciprocity parameter that results in non-Hermiticity. Since the
Hamiltonian can be scaled by dividing by v, for convenience,
we can set v = 1 as the energy unit hereafter.

The dimensionless Schrödinger equation is i d
dt (a

b) =
H (γ )(a

b). As in the standard Landau-Zener model, the param-
eter of the level bias γ changes linearly with time as γ = αt .
The constant rate α is the sweeping rate.

When γ → ±∞, the nonlinear and off-diagonal terms in
Hamiltonian (1) can be ignored. The two branches of eigen-
states can be readily obtained: One has the eigenvalue of γ

2
and the eigenvector of (1, 0)T , the other has the eigenvalue of
− γ

2 and the eigenvector of (0, 1)T . As illustrated in Fig. 1,
we assume that the system is initially found in the lower
(or upper) energy level, i.e., [a(t → −∞), b(t → −∞)]T =
(1, 0)T (or [a(t → −∞), b(t → −∞)]T = (0, 1)T ). Since
Hamiltonian (1) is non-Hermitian, the distinct feature is the
appearance of complex eigenvalues. Thus, the time evolution
of such a non-Hermitian system is no longer unitary and the
total population (i.e., N = n2

a + n2
b with na = |a| and nb = |b|)

is not a conserved quantity. Thus, the transition probability
from the lower to the upper or from the upper to the lower
level can be denoted by the following:

PLU ≡ n2
a(t → +∞)

N (t → +∞)
; PUL ≡ n2

b(t → +∞)

N (t → +∞)
. (2)

In the absence of nonreciprocity δ and nonlinear interaction
c, Hamiltonian (1) degenerates into a standard linear LZT
two-level system. The probability of the transition between
the two energy levels is represented by the formula [1,2]
PLU = PUL = exp(−πv2

2α
) ≡ PLZ. In the adiabatic limit, that is,

as the sweeping rate α tends to zero, the transition probability
tends to zero, indicating that an initial quantum state can
closely follow the instantaneous eigenstate and remain in the
adiabatic (upper or lower) energy level.

The presence of a nonlinear interaction c can dramati-
cally alter the tunneling dynamics [10–27]. The most striking
feature is the breakdown of adiabaticity for a large nonlin-
ear parameter, which is intimately linked to the hysteresis
phenomena and the existence of the swallowtail loops in
the adiabatic energy levels [10,12,13,16,80]. The underlying
mechanism has been revealed by investigating an equivalent
classical Josephson Hamiltonian, in which the nonzero adia-
batic tunneling probability can be explained as a jump in the
classical canonical action [12,16].

The presence of nonreciprocity parameter δ in Hamilto-
nian (1) can result in nonreciprocal state transitions between
two levels. In contrast to the PT -conserved non-Hermitian
systems [39], this non-Hermitian system maintains the time-
reversal symmetry but violates the parity symmetry.

In the present paper, we focus on the adiabaticity
in the nonreciprocal LZT by investigating the tunneling

063708-2



ADIABATICITY IN NONRECIPROCAL LANDAU-ZENER … PHYSICAL REVIEW A 106, 063708 (2022)

probabilities in the adiabatic limit of the energy bias change,
i.e., Pad

LU = limα→0 PLU and Pad
UL = limα→0 PUL. According to

the adiabatic theorem, when adiabaticity is maintained, the
adiabatic tunneling probabilities should be zero. Neverthe-
less, the emergence of EPs can cause the breakdown of the
adiabaticity and lead to nonzero adiabatic tunneling proba-
bility. Our theoretical analysis is facilitated by the following
Lagrangian representation that help us to derive a classical
Josephson Hamiltonian.

B. Lagrangian and classical Josephson Hamiltonian

The Schrödinger equation that governs the nonrecipro-
cal LZT can be derived from the time-dependent variational
principle, where the action is defined as the time integral
of a Lagrangian and is extremized with respect to the two-
mode wave function ψ (γ = αt ) = [a(t ), b(t )]T . Here, the
Lagrangian is found to be as follows (see Appendix):

L =
〈
ψ

∣∣∣∣iσ d

dt

∣∣∣∣ψ
〉
− 〈ψ |σH0|ψ〉 − c

4
〈ψ |σ (σzρσz + ρ)|ψ〉,

(3)
where σ = (1 − δ 0

0 1), H0 = (
γ

2
v
2

v
2 (1 − δ) − γ

2
) is the linear part of

the original Hamiltonian (1), σz = (1 0
0 −1) is the Pauli matrix,

and ρ = |ψ〉〈ψ | is the density matrix. The wave function can
be expressed in its amplitude and phase by a = naeiθa and b =
nbeiθb , and the Lagrangian is then cast into the following form:

L = i(1 − δ)ṅana − (1 − δ)θ̇anana + iṅbnb − θ̇bnbnb

− 1

2
γ [(1 − δ)nana − nbnb] − v(1 − δ)nanb cos (θb − θa)

− c

2

[
(1 − δ)n4

a + n4
b

]
. (4)

One can naturally obtain a classical Hamiltonian from the
Lagrangian (4) using the relationship Hc = 〈ψ |iσ d

dt |ψ〉 − L.
We then introduce the following four canonical variables:

θ+ = θa + θb, (5a)

θ− = θa − θb, (5b)

ζ+ = n2
a + 1

1 − δ
n2

b, (5c)

ζ− = n2
a − 1

1 − δ
n2

b. (5d)

In terms of θ+, θ−, ζ+, and ζ−, the classical Hamiltonian can
be expressed as follows:

Hc = γ ζ− + v

√
(1 − δ)(ζ 2+ − ζ 2−) cos θ−

+ c(2 − δ)

4
(ζ 2

+ + ζ 2
−) + cδ

2
ζ+ζ−. (6)

We note that the above classical Hamiltonian (6) can be re-
duced to either the famous Josephson Hamiltonian [81–83]
when δ = c = 0, or to its nonlinear extension when δ = 0 and
c �= 0 [12,76].

From the Hamilton’s canonical equations θ̇− =
−∂Hc/∂ζ−, θ̇+ = −∂Hc/∂ζ+, ζ̇− = ∂Hc/∂θ−, and

ζ̇+ = ∂Hc/∂θ+, one can readily obtain the following
equations of motion:

ζ̇+ = 0, (7a)

ζ̇− = −v

√
(1 − δ)

(
ζ 2+ − ζ 2−

)
sin θ−, (7b)

θ̇+ = − c

2
δζ− − c

2
(2 − δ)ζ+ − (1 − δ)vζ+ cos θ−√

(1 − δ)
(
ζ 2+ − ζ 2−

) , (7c)

θ̇− = −γ − c

2
δζ+ − c

2
(2 − δ)ζ− + (1 − δ)vζ− cos θ−√

(1 − δ)
(
ζ 2+ − ζ 2−

) .

(7d)

Clearly, ζ+ is an invariant that is determined by the initial
state. Nevertheless, when the parameters change adiabatically,
an initial state may encounter EPs; in this situation, we find
that the singularity of the EPs may cause a sudden change in
the invariant, as will be shown in the next section.

In terms of ζ+ and ζ−, the total population N = n2
a + n2

b =
2−δ

2 ζ+ + δ
2ζ−. From Eq. (7), we can also deduce the following

differential equation:

Ṅ = −δv

2

√
(1 − δ)

(
ζ 2+ − ζ 2−

)
sin θ−. (8)

III. NONRECIPROCAL LZT IN THE ABSENCE OF
NONLINEAR INTERACTIONS (c = 0)

A. Energy level and nonreciprocal LZT

When c = 0, the eigenvalues and eigenstates of Hamilto-
nian (1) can be readily obtained. The adiabatic levels are given
by the following:

ε± = ±1

2

√
γ 2 + v2(1 − δ). (9)

The corresponding eigenstates are given by the following:

|ε−〉 = C1

(
γ −

√
γ 2 + v2(1 − δ)

v(1 − δ)
, 1

)T

,

|ε+〉 = C2

(
γ +

√
γ 2 + v2(1 − δ)

v(1 − δ)
, 1

)T

. (10)

Here, C1 and C2 are normalization coefficients.
EPs at which two eigenvalues and their corresponding

eigenvectors coalesce and become degenerate are a distinct
feature in non-Hermitian quantum systems. For nonreciproc-
ity parameter δ � 1, the conditions for EPs can be easily
obtained, that is, γEPs = ±v

√
δ − 1. The eigenvalues are real

when |γ | > |γEPs|; otherwise, they are imaginary. The cor-
responding eigenvectors at EPs coalesce as described by the
following:

|εEP〉± =
(

∓ 1√
δ
,

√
δ − 1√

δ

)T

, (11)

where the sign ∓ is for the ±γEPs EPs, respectively. For
nonreciprocity parameter δ < 1, there are no EPs, and the
eigenvalues are always real.
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FIG. 2. Adiabatic levels ε vs bias γ for different nonreciprocity
parameters δ = 0 (black curve), 1 (red curve), and 3 (blue curve).
(a) and (b) present the real and imaginary parts of the adiabatic levels,
respectively. For δ � 1, the imaginary parts of energy are always 0,
and they overlap in (b). For δ > 1, with increasing γ , EPs occur at
±γEPs, and the corresponding eigenvalues coalesce. In both (a) and
(b), the dashed magenta lines mark the location of EPs.

The level bias γ dependence of the energy levels is shown
in Fig. 2. When δ < 1, the imaginary parts of the eigenvalues
are always zero, and the real parts of the eigenvalues show an
avoided level crossing at γ = 0. For δ = 1, the eigenvalues
show a level crossing at γ = 0. For δ > 1, with increasing γ ,
EPs occur at γEPs, and the corresponding eigenvalues coalesce.
Between two EPs, the real parts of the eigenvalues are zero,
whereas the imaginary parts of the eigenvalues are nonzero.

Note that the corresponding eigenstates are not orthogo-
nal to each other. For γ → ±∞, we have ε → ±|γ |/2. For
instance, for the lower level, we have (a, b)T → (1, 0)T

at γ → −∞ and (a, b)T → (0, 1)T at γ → +∞. We now
focus on the nonreciprocal LZT. The numerical results of
the tunneling probability for different sweeping rates α and
nonreciprocity parameters δ are shown in Fig. 3. Figures 3(a)
and 3(b) show the tunneling probabilities PLU and PUL, re-
spectively, as a function of the sweeping rate α for different
nonreciprocity parameters δ = 0, 0.5, 1, and 3. For δ = 0,
both the tunneling probabilities PLU and PUL are consistent
with the standard formula of the LZT probability. For δ �= 0,
nonreciprocity greatly changes the LZT, resulting in breaking
of the symmetry in the tunneling between the two levels, i.e.,
PLU �= PUL. For δ = 0.5, the tunneling probabilities PLU and
PUL are both exponentially small as the value of α approaches
zero. For δ = 1, with the increase in α, the tunneling prob-
ability PLU remains 1, whereas the tunneling probability PUL

is exponentially small as the value of α approaches zero. For
δ = 3, the tunneling probabilities PLU and PUL both decrease
as α decreases. For subcritical values of the nonreciprocity
parameter δ < 1, the tunneling probability still exponentially
vanishes with α. Most strikingly, the tunneling probabilities
PLU and PUL for δ > 1 are both not zero in the adiabatic limit
α → 0, while they are zero for δ < 1. This shows that δ = 1
is the critical point for the adiabatic time evolution.

FIG. 3. Nonreciprocal LZT probability. (a) and (b) present the
tunneling probabilities PLU and PUL, respectively, as a function of
sweeping rate α for different nonreciprocity parameters δ = 0, 0.5,
1, and 3. (c) and (d) present the tunneling probabilities PLU and PUL,
respectively, as a function of nonreciprocity parameter δ for different
sweeping rates α = 0.01, 2, and 10. In both (a) and (b), the cyan
curve indicates the standard LZT probability of PLZ. The cyan curves
in (c) and (d) indicate the functions with forms of 1/δ and (δ − 1)/δ,
respectively.

Figures 3(c) and 3(d) more clearly depict the tunneling
probabilities PLU and PUL, respectively, as a function of the
nonreciprocity parameter δ for different sweeping rates α =
0.01, 2, and 10. In the adiabatic limit, i.e., α = 0.01, the
tunneling probabilities PLU and PUL both remain zero when
δ < 1. At δ = 1, PLU quickly reaches 1, whereas PUL remains
0. For δ > 1, with increasing δ, PLU decreases as a function
with the form of 1/δ, and PUL increases as a function with the
form of (δ − 1)/δ. In the nonadiabatic cases, i.e., α = 2, 10,
as δ increases from 0 to 1, PLU increases continuously. When
δ = 1, PLU reaches the saturation value of 1 regardless of α;
then, as δ continues to increase, PLU keeps decreasing. When
δ reaches a sufficiently large value, PLU decreases to 0. In the
nonadiabatic cases, PUL increases as δ increases.

From the above results, we find that even in the adiabatic
limit α → 0, the tunneling probability can take nonzero val-
ues, depending solely on the nonreciprocity parameter in the
forms of 1/δ and (δ − 1)/δ, as indicated by the cyan curves in
Figs. 3(c) and 3(d).

B. Adiabaticity breaks when δ � 1

To gain insight into the adiabaticity in nonreciprocal LZT,
we calculate the dynamical energy in the temporal evolution
[10,27]. For the wave function ψ (γ = αt ) = [a(t ), b(t )]T of
the Schrödinger equation with Hamiltonian (1), the dynamical
energy can be obtained by calculating the energy expectation
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FIG. 4. Comparison of the dynamical levels εdyn (circles) and the
adiabatic levels εeigen (solid lines) for δ � 1. It is noteworthy that εdyn

and εeigen always are real numbers in this case. (a) and (b) present the
results for δ = 0.5, and (c) and (d) present the results for δ = 1. For
dynamical evolution, we take the adiabatic limit of α = 0.01 as an
example.

values of the dynamic states:

εdyn(γ ) = 〈ψ (γ = αt )|H (γ )|ψ (γ = αt )〉
〈ψ (γ = αt )|ψ (γ = αt )〉 . (12)

According to the adiabatic theorem, when adiabaticity is
maintained, the dynamical energy level at a very small sweep-
ing rate will perfectly follow the adiabatic energy level. A
situation where the dynamical energy cannot follow the adi-
abatic level even for a very small sweeping rate indicates the
breakdown of adiabaticity and the system manifests a nonzero
adiabatic tunneling probability [10,27]. A comparison of the
dynamical levels εdyn and the adiabatic levels εeigen is shown in
Fig. 4. Figures 4(a) and 4(b) show the results for δ = 0.5, and
(c) and (d) show those for δ = 1. The initial state is prepared in
the lower level [i.e., (a, b)T = (1, 0)T ] for Figs. 4(a) and 4(c)
and in the upper level [i.e., (a, b)T = (0, 1)T ] for Figs. 4(b)
and 4(d). The results are shown in Fig. 4 for the adiabatic limit
with α = 0.01. In Figs. 4(a) and 4(b), we observe an excellent
match between the dynamical levels and the adiabatic levels,
which is similar to the reciprocal case of δ = 0 [10]. Our
further calculations demonstrate that for δ < 1, the quantum
state can closely follow the corresponding eigenstates in the
adiabatic evolution, indicating that adiabaticity is maintained.

At the critical value of δ = 1, the upper level and lower
level cross at γ = 0. We calculate the dynamical energy lev-
els, shown in Figs. 4(c) and 4(d). The results show that the
initial state starting from both the upper level and lower level
can finally evolve into the upper level. When δ = 1, the adi-

FIG. 5. Comparison of the dynamical levels εdyn (circles) and the
adiabatic levels εeigen (solid lines) for δ > 1. In this case, the EPs
occur at γ = γEPs, which are marked by two magenta dotted lines.
(a) and (c) present the real parts of the energy levels, and (b) and
(d) present the imaginary parts of the energy levels. For dynamical
evolution, the system is initially prepared in the lower adiabatic levels
for (a) and (b), i.e., (a, b)T = (1, 0)T , whereas the system is initially
prepared in the upper adiabatic levels for (c) and (d), i.e., (a, b)T =
(0, 1)T . Here, we take δ = 3 and the adiabatic limit as α = 0.01 as
an example.

abatic levels of Hamiltonian (1) are given by ε±|δ=1 = ± 1
2γ ,

and the corresponding adiabatic states are given by |ε−〉δ=1 =
(−v/2γ , 1)T and |ε+〉δ=1 = (1, 0)T . For γ → 0, both eigen-
values ε±|δ=1 → 0 and the normalized eigenvectors coalesce
as |ε±〉δ=1 → (1, 0)T , indicating the appearance of an EP.
Because the term of v(1 − δ)/2 in Hamiltonian (1) vanishes
when δ = 1, the Schrödinger equation can be solved analyt-

ically as a(t ) = a0e− iαt2

4 − ( 1
4 + i

4 )
√

πb0ve− 1
4 iαt2

erfi[( 1
2 + i

2 )
√

αt]√
α

, and

b(t ) = b0e
iαt2

4 , where the symbol erfi represents the imaginary
error function, and the coefficient vector (a0, b0)T is given
by the normalized eigenvector (1, 0)T at EP. Then, we have

a(t ) = e− iαt2

4 and b(t ) = 0 for t > 0. Thus, the normalized
wave function is [ã(t ), b̃(t )]T = (1, 0)T . This indicates that
the initial state starting from either the upper level or the lower
level will finally evolve into the upper level.

For δ > 1, EPs occur at γ = ±γEPs. Therefore, when γ

changes from −∞ to +∞, the system will pass through the
EPs; here, the adiabaticity may break. A comparison of the
dynamical levels εdyn and the adiabatic levels εeigen for δ = 3
is shown in Fig. 5. Figures 5(a) and 5(b) show the real part and
imaginary part of the energy levels. It is observed that in the
range of γ < γEPs, the initial state prepared in either the upper
or lower level can perfectly follow the real part of the adiabatic
energy level. However, in the range from −γEPs to +γEPs, both
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FIG. 6. The adiabatic fidelities F ad
U and F ad

L of a normalized
dynamic state |ψ (γ = αt )〉 vs the level bias γ = αt in the adiabatic
limit (i.e., α = 0.01). For dynamical evolution, the system is initially
prepared in the lower and upper adiabatic levels for (a) and (b),
respectively. In both (a) and (b), we adopt logarithmic coordinates
in the range of γ > 4 to clearly exhibit the convergence behavior
of adiabatic fidelities. For the larger enough γ , the adiabatic fidelity
finally converges to a certain value, i.e., F ad

L (γ → +∞) = 1 − Pad
LU

in (a) and F ad
U (γ → +∞) = 1 − Pad

UL in (b), respectively.

states evolve following the imaginary part of the upper level.
This is because, in the non-Hermitian system, the eigenvalue
with a positive imaginary part will dominate the dynamical
evolution [84,85]. More interestingly, when γ > +γEPs, the
quantum states follow neither the upper level nor the lower
level, clearly indicating the breakdown of adiabaticity.

The adiabatic fidelities can be introduced to
measure how close a normalized quantum state
|ψ (γ = αt )〉 is to the adiabatic eigenstate |ε±〉 [76],
i. e., F ad

U (γ ) = limα→0
|〈ψ (γ=αt )|ε+(γ )〉|2
〈ψ (γ=αt )|ψ (γ=αt )〉 and F ad

L (γ ) =
limα→0

|〈ψ (γ=αt )|ε−(γ )〉|2
〈ψ (γ=αt )|ψ (γ=αt )〉 . The convergence of the adiabatic

fidelity to unit uniformly over the range γ ∈ (−∞, +∞)
indicates the preservation of the adiabaticity in the quantum
evolution.

In Fig. 6, we show the adiabatic fidelities F ad
U and F ad

L of
the dynamic state |ψ (γ = αt )〉 versus the level bias γ = αt
for the very small sweeping rate of α = 0.01. In Fig. 6(a),
we suppose that the initial state is the lower adiabatic state,
i.e., [a(γ → −∞), b(γ → −∞)]T = (1, 0)T . For the small
nonreciprocity parameter (δ < 1), i.e., δ = 0.5, the adiabatic
fidelity remains unitary over the range γ ∈ (−∞, +∞),
indicating the preservation of adiabaticity. For the larger non-
reciprocity parameter (δ > 1), i.e., δ = 3, the adiabatic fidelity
remains unitary in the range γ ∈ (−∞, +γEP), whereas it
becomes oscillatory in the range γ > +γEP, indicating the
breakdown of adiabaticity. For large enough γ , the adiabatic
fidelity finally converges to a certain value, i.e., F ad

L (γ →

+∞) = 1 − Pad
LU. In Fig. 6(b), the initial state is prepared in

the upper adiabatic eigenstates, i.e., [a(γ → −∞), b(γ →
−∞)]T = (0, 1)T . We observed that the adiabatic fidelity re-
mains unitary for the small nonreciprocity parameter (δ < 1).
For the larger nonreciprocity parameter (δ > 1), the adiabatic
fidelity remains unitary only in the range γ ∈ (−∞, −γEP),
and becomes oscillatory in the range γ > −γEP, indicating the
breakdown of adiabaticity. For large enough γ , the adiabatic
fidelity finally converges to be F ad

U (γ → +∞) = 1 − Pad
UL.

C. Analytical deductions of the adiabatic
probabilities of Pad

UL and Pad
LU

In terms of ζ+ and ζ−, the formula (2) of the transition
probability can be rewritten as

PLU = ζ+(t → +∞) + ζ−(t → +∞)

(2 − δ)ζ+(t → +∞) + δζ−(t → +∞)
, (13a)

PUL = (1 − δ)[ζ+(t → +∞) − ζ−(t → +∞)]

(2 − δ)ζ+(t → +∞) + δζ−(t → +∞)
. (13b)

Considering that the initial state is on the lower level and
according to Eq. (5) and explicit expressions of the eigenstates
in Eq. (10), we readily obtain

ζ+(t ) = N (γ )

1 − δ
2

(
1 + γ√

γ 2+v2(1−δ)

) , (14a)

ζ−(t ) = 2γ N (γ )

(δ − 2)
√

γ 2 + v2(1 − δ) + δγ
. (14b)

It should be noted that N (γ ) appears in the above formula and
the total population is not always unity in the non-Hermitian
system.

In the weak nonreciprocal regime (δ < 1), in the adia-
batic limit, the quantum state evolves on the lower level.
When γ → +∞, we have ζ+(t → +∞) = N (t→+∞)

1−δ
and

ζ−(t → +∞) = −N (t→+∞)
1−δ

. Substituting these relations into
Eq. (13a), we obtain the following:

Pad
LU = 0 (δ < 1). (15)

Similar analysis applies to the upper level that gives Pad
UL = 0

when δ < 1.
While in the strong nonreciprocal regime (δ > 1), the adi-

abatic quantum state will encounter EPs at γEP = −v
√

δ − 1,
where the denominator of the expression of ζ+ in Eq. (14a)
diverges. This singularity allows ζ+ to suddenly become zero
at γEP. With increasing γ , we observe that ζ+ remains zero
in our numerical experiments; this observation can be under-
stood by considering that ζ+ is an invariant after EP. This is
somewhat similar to the so-called Pancharatnam phenomenon
[86]. The Pancharatnam phenomenon concerns the time de-
velopment of a parameter-dependent non-Hermitian two-level
system and indicates that the quantum state will eventually
evolve into the eigenstate of EP when the system passes
through the EP slowly. Therefore, when γ → +∞, we have
ζ+(t → +∞) = ζ+(γEP) = 0. Substituting this relation into
Eq. (13a), we immediately obtain Pad

LU = 1
δ
. Similar analysis

applies to the upper level. We finally obtain the adiabatic LZT
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probability for δ > 1:

Pad
LU = 1

δ
; Pad

UL = δ − 1

δ
(δ > 1). (16)

The above analytic expressions are in full agreement with the
numerical results, as shown in Figs. 3(c) and 3(d).

IV. ADIABATICITY OF NONRECIPROCAL LZT IN THE
PRESENCE OF NONLINEAR INTERACTIONS (c �= 0)

To investigate the adiabaticity, we need to analyze the
behavior of the adiabatic levels in the nonlinear model. These
levels are the solution of the time-independent version of
the Schrödinger equation obtained by replacing i∂/∂t with

the energy ε, i.e., ε(
a
b

) = H (γ )(
a
b

). We assume that the ini-
tial state is on the lower level, then we obtain a constraint
of |a|2 + |b|2/(1 − δ) = 1 according to the invariant ζ+ = 1.
Then, we find that the eigenenergy ε satisfies the following
quartic equation:

Aε4 − Bε3 + Dε2 + Eε + F = 0, (17)

where A = 16(2 − δ)2, B = 16(2 − δ)[c(1 − δ)(3 − δ) −
γ δ + c],
D = 8{2c2(1 − δ){(1 − δ)[3(1 − δ) + 7] + 3}−
γ cδ{(1 − δ)[3(1 − δ) + 8] + 3} − 2(1 − δ)[γ 2 + (1 −
δ)v2]},
E = 48c3(1 − δ)2δ − 48γ c2(1 − δ)[(1 − δ)2 − 1]+
4cδ[γ 2{(1 − δ)[3(1 − δ) − 8] + 3} − 4(1 − δ)2v2]+
4γ [(1 − δ)2 − 1][γ 2 + (1 − δ)v2], and
F = 16c4(1 − δ)3 − 24γ c3δ(1 − δ)2 − δ2[γ 2 + (1 −
δ)v2)2+
4c2(1 − δ){γ 2{(1 − δ)[3(1 − δ) − 7] + 3} − 4(1 − δ)2v2}−
2γ cδ{γ 2[(3 + δ)(δ − 1) + 1] − 6(1 − δ)2v2}. When δ = 0,
the above equation reduces to that of Ref. [10].

A. In the weak nonreciprocal regime (δ < 1)

We now focus on the adiabaticity in the weak nonrecip-
rocal regime, i.e., δ < 1. We numerically calculate the real
and imaginary parts of the energy levels. In Figs. 7(a) and
7(b), for a nonlinearity of c = −2, we find that the energy
levels undergo a dramatic change: there are four pure real
energy levels in a window near γ = 0, where a loop appears.
Notably, for reciprocal systems, the appearance of a loop
breaks the adiabaticity [10–13,16,80]. The primary mecha-
nism for the breakdown of adiabaticity is that when the state
moves up to the edge of the loop, it cannot proceed any
further except to jump to the upper and lower levels [10].
However, for the nonreciprocal system that we consider here,
as shown in Figs. 7(a) and 7(b), eigenenergies still exist in
the conjugate pair (p2 and p3) beyond the edge of the loop.
Nevertheless, the dynamical evolution does not follow these
eigenlevels.

To analyze adiabatic dynamics in the presence of nonlinear
interactions, in the spirit of Ref. [12], we turn to calculate
the phase plane of the classical Josephson Hamiltonian (6).
In Fig. 8, we show the evolution of the classical trajectories in
the plane of (θ−, ζ−) as γ changes adiabatically. In the plane
of (θ−, ζ−), the fixed points of the equations of motion (7)
correspond to the eigenstates that can be obtained by equating

FIG. 7. In the presence of nonlinear interactions and in the weak
nonreciprocal regime, i.e., δ = 0.5, dynamical levels εdyn (circles)
and adiabatic levels εeigen (solid lines). (a) and (b) present the real part
and imaginary part of the energy levels for c = −2. For dynamical
evolution, the system is initially prepared in the lower adiabatic
levels, i.e., (a, b)T = (1, 0)T . Here, the dynamic evolution is in the
adiabatic limit (α = 0.01). In (b), pi are the fixed points shown in
Fig. 8 corresponding to the eigenstates of the energy level.

the right-hand sides of Eqs. (7b) and (7d) to zero. At the
terminal point of the loop, two fixed points merge [as shown in
Figs. 8(b) and 8(e)], indicating that the corresponding eigen-
states coalesce. The terminal points of the loop are indeed
nonlinearity induced EPs that can also break the adiabaticity
of dynamical evolution.

However, at nonlinear EPs, the mechanism of the break-
down of adiabatic evolution is different from that at linear
EP. The breakdown of adiabaticity is intimately linked to
the collision between the fixed point (i.e., P2 in Fig. 8)
and the additional hyperbolic point (i.e., P3 in Fig. 8), where
the Bogoliubov excitation frequency drops to zero [16].
Moreover, we find that the invariant ζ+ does not show a
sudden change at the singularity of the nonlinearity-induced
EPs.

In Refs. [12,16], the adiabatic evolution of the fixed points
as a function of level bias was proven to correspond to the
adiabatic evolution of the eigenstates. Breakdown of adia-
baticity occurs when two fixed points merge together and
form a homoclinic orbit. The nonzero adiabatic tunneling
probability can then be calculated from the nonzero classical
canonical action (Ic = 1

2π

∫ 2π

0 ζ−dθ−) of the homoclinic orbit.
According to the classical adiabatic theorem, that action or
the area encircled by the classical trajectory is an invariant
during the slowly sweeping of γ . Considering the invariant
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FIG. 8. Evolution of the classical trajectories in the plane of two
reduced variables (θ−, ζ−) for some typical values of γ . Here, we
take c = −2 and δ = 0.5 as examples. The dots and the bold red line
indicate the fixed points. The arrows indicate the shifting direction
of the fixed points pi as γ increases. The curves are the periodic
trajectories. In (b), we take γ = 0.129, corresponding to the position
of γ at the right terminal point in Fig. 7(b). In this case, four fixed
points occur, implying that four eigenstates do not coalesce. In (e),
we take γ = 0.872, corresponding to the left terminal point of the
loop in Fig. 7(b). In this case, the fixed points p2 and p3 merge to
form a new homoclinic orbit sc, implying that these two eigenstates
coalesce.

ζ+ = 1 [or ζ+ = 1/(1 − δ)] indicating the initial state is on
lower (or upper) level, the relation ζ−(t → +∞) + 1 = Ic

[or ζ−(t → +∞) = 1/(1 − δ) − Ic] is obtained. According to
Eq. (13a) [or Eq. (13b)], we have

Pad
LU = Ic

2 − 2δ + δIc
, (18a)

Pad
UL = (1 − δ)Ic

2
1−δ

− δIc
. (18b)

In Fig. 9, we show the adiabatic tunneling probabilities Pad
LU

obtained by directly integrating the time-dependent nonlinear
Schrödinger equation and compare them with the above ana-
lytical formula calculated from the classical canonical action
(Ic) of the homoclinic orbit at an EP. Interestingly, we find that

FIG. 9. Comparison of the adiabatic tunneling probability Pad
LU

obtained by directly integrating the time-dependent nonlinear
Schrödinger equation and the theoretical results obtained using ex-
pression (18).

they match each other well in the weak nonreciprocal regime
(δ < 1).

B. In the strong nonreciprocal regime (δ > 1)

The fixed points of the classical Hamiltonian correspond to
the eigenstates of the nonlinear two-level system [12] only for
Hermitian or weak nonreciprocal systems. In the strong non-
reciprocal regime (δ > 1), our numerical calculations show
that the eigenstates of the nonlinear nonreciprocal Hamilto-
nian (1) are complex and contain nonzero imaginary parts.
Therefore, in this case, the nonzero adiabatic tunneling prob-
ability cannot be viewed as the result of the collision between
fixed points of the classical Hamiltonian. In the strong non-
reciprocal regime, the interplay between the nonreciprocity
and nonlinearity will dramatically complicate the transition
dynamics. Therefore, we use a 4th–5th-order Runge-Kutta
algorithm to trace the quantum evolution numerically and
calculate the transition probability for a wide range of non-
reciprocal and nonlinear parameters.

C. Phase diagram of adiabaticity

Figure 10 shows the phase diagram of adiabaticity for a
large range of nonreciprocity and nonlinearity parameters,
where panels (a) and (b) show the adiabatic transition prob-
abilities Pad

LU and Pad
UL, respectively. Two regions are observed.

In the region where adiabaticity is maintained, the adiabatic
tunneling probabilities are zero, whereas in the region of the
breakdown of adiabaticity, the adiabatic tunneling probabili-
ties are nonzero. In Fig. 10(a), the region where adiabaticity
is maintained is approximately within parameter range c >

δ2 − 1 and δ < 1. In Fig. 10(b), the region where adiabaticity
is maintained is approximately within parameter range c <

1 − δ or δ � 1. In the weak nonreciprocal regime (δ < 1),
the nonzero adiabatic tunneling probabilities are explicitly
demonstrated by the classical action theory (18). In a certain
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FIG. 10. The phase diagram of adiabaticity in the parameter
plane (c, δ). (a) and (b) correspond to adiabatic tunneling probability
Pad

LU and Pad
UL, respectively. In the region where adiabaticity is main-

tained, the adiabatic tunneling probabilities are zero. Here, we still
focus on the adiabatic limit and take the sweeping rate α = 0.01. In
(a), the region where adiabaticity is maintained is estimated within
parameter range c > δ2 − 1 and δ < 1. In (b), the region where adia-
baticity is maintained is estimated within parameter range c < 1 − δ

and δ � 1. In both (a) and (b), in the regions framed by gray dots
(estimated within parameter ranges: 1 < δ < 2 for c � 0 and δ > 2
for c � 0), the nonzero adiabatic tunneling probabilities are identical
to their linear counterparts.

region of the strong nonreciprocity, i.e., (1 < δ < 2; c � 0)
and (δ > 2; c � 0), the regions framed by the gray dots in
Fig. 10, we find that interestingly, the nonlinear interaction
effects can be completely suppressed so that the nonzero
adiabatic tunneling probabilities are identical to their linear
counterparts in Eq. (16). In these regions, our calculations
indicate that both total population N and variable ζ− tend to
∞ when γ → ∞. Considering the invariant ζ+ and according

to Eq. (13), the adiabatic tunneling probabilities actually have
the same form as in the linear case.

V. SOME REMARKS

For the non-Hermitian systems, the distinct feature is the
appearance of complex eigenvalues. Thus, the time evolution
of such a non-Hermitian system is no longer unitary. To trace
the temporal evolution of the probability distribution, a proper
normalization scheme is required. Two approaches are usually
used for the normalization of a quantum state: Scheme I:
normalization of the amplitudes of the wave function only at
the end of time evolution [87], and Scheme II: normalization
of the amplitudes of the wave function in each integration step
[88–90].

Taking the present work on nonreciprocal LZT for an ex-
ample, in the linear case of c = 0, we find that the results
obtained from the two normalization schemes are completely
consistent with each other for both the adiabatic case and the
nonadiabatic case, while for the nonlinear case of c �= 0, the
two normalization schemes usually lead to different results.
Moreover, the results from Scheme II are usually dependent
on the choice of integration step. For the adiabatic system,
Scheme II can give a convergent adiabatic tunneling probabil-
ity when the integration step is set to be small enough.

For most current experiments [42–46], the normalization
of the wave function is not performed at each time step, but
rather is performed at the end of the time evolution. That is,
most experiments are mainly concerned with the fractions of
the populations on different levels at the end of a nonunitary
evolution of a non-Hermitian quantum system. Therefore, in
the present work, we choose to normalize the amplitudes of
the wave function only at the end of time evolution.

VI. CONCLUSION

In this work, we numerically and analytically investigate
adiabaticity in the nonreciprocal Landau-Zener model with
a nonlinear self-interaction. In this model, hopping non-
reciprocity can lead to non-Hermiticity, which is distinct
from the PT system for which non-Hermiticity is induced
by a complex on-site potential. We derive the Lagrangian
and classical Josephson Hamiltonian of the nonreciprocal
non-Hermitian system. In the adiabatic limit of parameter
sweeping, a quantum state is found to still follow the eigen-
state solution until it encounters the EPs that dramatically
alter the tunneling process, leading to the breakdown of
adiabaticity. The EPs can be formed and changed by both
nonreciprocity and nonlinearity parameters. The competition
between nonreciprocity and nonlinearity yields a rich variety
of adiabatic quantum evolutions.

An explicit phase diagram of adiabaticity for a large range
of nonreciprocity and nonlinearity parameters is obtained.
The main results are summarized in Table I. Our work
provides a non-Hermitian extension of the celebrated LZT
model, achieves insight into the adiabatic evolution of the
non-Hermitian system, and may stimulate further explorations
of the non-Hermitian topological properties both theoretically
and experimentally.
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TABLE I. Adiabaticity in nonreciprocal Landau-Zener tunneling.

Adiabatic
Initial state Parameter Encounter Adiabatic Dynamical tunneling
(γ → −∞) region EPs fidelity energy probability Adiabaticity

δ < 1 and c > δ2 − 1 No −∞ < γ < +∞, F ad
L = 1 −∞ < γ < +∞, εdyn(α → 0) = εeigen Pad

LU = 0 MaintainLower level
δ � 1 or c � δ2 − 1 Yes

γ � +γEP, F ad
L = 1;

γ > +γEP, F ad
L �= 1

γ � +γEP, εdyn(α → 0) = εeigen;
γ > +γEP, εdyn(α → 0) �= εeigen

Pad
LU �= 0 Break down

δ � 1 and c < 1 − δ No −∞ < γ < +∞, F ad
U = 1 −∞ < γ < +∞, εdyn(α → 0) = εeigen Pad

UL = 0 MaintainUpper level
δ > 1 or c � 1 − δ Yes

γ � −γEP, F ad
U = 1;

γ > −γEP, F ad
U �= 1

γ � −γEP, εdyn(α → 0) = εeigen;
γ > −γEP, εdyn(α → 0) �= εeigen

Pad
UL �= 0 Break down

ACKNOWLEDGMENTS

We are grateful to Dr. Difa Ye and Dr. Lei Xiao for their
valuable suggestions and discussions. This work was sup-
ported by the National Natural Science Foundation of China
(Grants No. 12005173, No. U1930402, and No. U1930403),
the Natural Science Foundation of Gansu Province (Grant No.
20JR10RA082), and the China Postdoctoral Science Founda-
tion (Grant No. 2020M680318).

APPENDIX: DERIVATION OF THE LAGRANGIAN
OF EQ. (3)

The Schrödinger equation of Hamiltonian H can be derived
from the time-dependent variational principle, where the ac-
tion is defined as the time integral of a Lagrangian. For the
linear Hermitian systems, the Lagrangian takes form of L =
〈ψ |i d

dt |ψ〉 − 〈ψ |H |ψ〉. For the nonlinear Hermitian systems,
the Lagrangian takes form of L = 〈ψ |i d

dt |ψ〉 − H(ψ, ψ∗),
where H is the energy of the system and is usually not equal
to 〈ψ |H |ψ〉 [16,74,91].

For the non-Hermitian systems, due to H �= H†, the La-
grangian usually does not necessarily take the same form as
that in the Hermitian systems. For the two-mode system of the
linear nonreciprocal LZT of Hamiltonian H0, we assume that
the Lagrangian takes following form and attempt to deduce it

according to the time-dependent variational principle,

L =
〈
ψ

∣∣∣∣iσ1
d

dt

∣∣∣∣ψ
〉
− 〈ψ |σ2H0|ψ〉, (A1)

where σ1 and σ2 are two pending matrices.
The time-dependent variational principle directly gives a

pair of the Euler-Lagrange equations: d
dt ( ∂L

∂|ψ̇〉 ) = ∂L
∂|ψ〉 and

d
dt ( ∂L

∂〈ψ̇ | ) = ∂L
∂〈ψ | . From the Euler-Lagrange equations and con-

sidering |ψ〉 = 〈ψ |†, we then have the following pair of
equations:

i
d

dt
|ψ〉 = (

σ
†
1

)−1
H†

0 σ
†
2 |ψ〉 ≡ H0|ψ〉, (A2a)

i
d

dt
|ψ〉 = (σ1)−1σ2H0|ψ〉 ≡ H0|ψ〉. (A2b)

Comparing Eq. (A2a) with (A2b) and considering the concrete
form of H0 in Eq. (3), we immediately obtain σ1 = σ2 = σ =
(1 − δ 0

0 1). When δ = 2, σ = σz. In this situation, the Hamil-

tonian H0 = (
γ

2
v
2− v

2 − γ

2
) has the so called anti-PT symmetry

that is analogous to the Bogoliubov–de Gennes (BdG) system,
where a similar Lagrangian has been given in Ref. [92].

We also extend the above idea to the nonlinear case and
finally obtain the Lagrangian of Eq. (3) after some lengthy
deductions.
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