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We propose a theoretical scheme for photon blockade in a cavity quantum electrodynamic system consisting of
an N-type atomic medium interacting with a single-mode Fabry-Pérot cavity. In contrast to inefficient nonlinear-
dispersion-induced photon blockade suppressed by a large detuning of atomic transitions, the photon blockade in
our scheme is induced by a large nonlinear dissipation of the cavity created by the near-resonant N-type atomic
system. A deep photon blockade is manifested by a vanishing equal-time second-order correlation function
within the cavity linewidth. We also provide an explanation for this dissipation-induced photon blockade. This
work provides an efficient photon blockade because it works in the near-resonance case.
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I. INTRODUCTION

Manipulation of single photons has been one of the key
tasks of quantum information science and technology. It can
be linear operation on photons, such as the storage and state
manipulation of photons [1–7], or nonlinear operations, such
as the generation of single photons via photon blockade (PB)
[8–11] and quantum logic gates [12–17]. The nonlinear con-
trol of photons requires strong photon-excitation interaction
[18–21], or conventionally a giant dispersive Kerr nonlinearity
[22–26], in which the phase of a signal field is modified by an
amount proportional to the photon number in another field or
its own photon number, with both of the two fields containing
few photons. The giant optical Kerr nonlinearity promises a
great number of important applications such as nondestructive
measurement of photons [27–30], generation of photonic chi-
rality [31,32], single-photon switches, and transistors [33–37].
Moreover, it also attracts intense research because it can be
utilized to prepare single photons via the PB effect. The giant
Kerr nonlinearity in an optical cavity can cause energy anhar-
monicity to different photonic Fock states. Thus, absorption
of a first photon introduces a large detuning to the cavity
mode and thus blocks the successive excitation of higher Fock
states. This PB effect therefore only allows the single-photon
state to transmit the system and probabilistically generate a
single-photon field.

However, the dispersive Kerr nonlinearity of optical ma-
terials is typically negligible at the single-photon level [38].
To tackle this problem, various quantum nonlinear systems
such as atom-cavity systems [8,23], Rydberg atomic ensem-
bles [39,40], and single quantum dots strongly coupling to
a photonic crystal cavity [41,42] have been proposed to
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generate a strong PB effect. Among these systems, a cavity
quantum electrodynamics system embedded with an N-type
atomic system has been proposed theoretically [22–25,43]
and demonstrated experimentally [44–47] to induce a giant
Kerr nonlinearity with vanishing one-photon absorption. This
absorptive-free giant Kerr nonlinearity promises significant
practical applications for the PB effect [23,45,48,49]. Nev-
ertheless, it is suppressed by a large detuning in the case of
nonresonance, in order to dominate the two-photon absorp-
tion. As a result, the efficiency of the PB induced by this
dispersive nonlinearity is limited. However, in comparison
with the dispersive Kerr nonlinearity, a larger two-photon
absorption [50–54] can be obtained with the N-type atomic
system in the resonant case, giving rise to a stronger PB effect.

The capability of observing antibunching photons via mul-
tiphoton absorption processes has been discussed in previous
works but very mathematically [50,51,55–57]. In this paper
we show a strong PB by virtue of the two-photon absorption of
an optical cavity induced by the N-type atomic ensemble. In
the conventional PB caused by a dispersive Kerr nonlinearity
in the N-type system, the Kerr nonlinearity is suppressed by
a large detuning of atomic transitions. In contrast, the dissi-
pative nonlinearity in our scheme is obtained in the atomic
resonance case and thus greatly enhanced. We also provide a
transparent physical picture for understanding this PB effect
induced by nonlinear dissipation. Our scheme paves the way
for using nonlinear dissipation as an alternative mechanism
for the PB, which can be used to efficiently extract single
photons from a weak coherent state of light.

Our paper is organized as follows. In Sec. II we describe
our system and the model and use the perturbation method to
analyze the effect of the N-type system on the Fabry-Pérot
cavity: one-photon absorption, dispersion, and two-photon
nonlinearity. In Sec. III we explain the mechanism of the
PB induced by the two-photon absorption. In Sec. IV we
show the results for nonlinear dissipation-induced PB and the
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FIG. 1. (a) Schematic diagram of our system. A cell with an
ensemble of 87Rb atoms is placed in the cavity. (b) Related level
structure of 87Rb atoms.

transmission. In Sec. V we present the experimental imple-
mentation for our proposal. We conclude our work in Sec. VI
with a brief discussion and summary.

II. SYSTEM AND MODEL

Our system for PB is schematically shown in Fig. 1(a).
It consists of a Fabry-Pérot (FP) cavity and an ensemble of
87Rb atoms. The related level structure of the 87Rb atoms is
depicted in Fig. 1(b). The atom in the N-type configuration
has two ground states denoted by |1〉 and |3〉 and two ex-
cited states denoted by |2〉 and |4〉. A strong-coupling laser
with frequency ωc is applied to the |3〉 ↔ |2〉 transition. The
|1〉 ↔ |2〉 and |3〉 ↔ |4〉 transitions are coupled to the cavity
mode simultaneously. A weak probe laser with frequency ωp

drives the cavity via the input mirror with rate κe1. The cavity
field escapes from the output mirror with rate κe2. We assume
that the intrinsic decay rate of the cavity is κi. It is negligible in
our system. For simplicity, we set κe1 = κe2. Thus, the cavity
field decays at a total rate of κ = κe1 + κe2 + κi.

The Hamiltonian of the system in the rotating frame takes
the form

Ĥ = −�â†â +
N∑

j=1

[
�21σ̂

j
22 + (�21 − �23)σ̂ j

33

+ (�21 − �23 + �43)σ̂ j
44 + ig1

(
â†σ̂

j
12 − σ̂

j
21â

)
+ig2

(
â†σ̂

j
34 − σ̂

j
43â

) + i
(
�∗

c σ̂
j

32 − �cσ̂
j

23

)]
+ i

√
κe1εp(â† − â). (1)

The first term in Eq. (1) is the free Hamiltonian of the in-
tracavity field with annihilation and creation operators â and
â†, respectively, with � = ωp − ωcav the detuning between
the probe field and the bare cavity resonance. The first three
terms in square brackets represent the internal energy of the
jth atom with σ̂

j
mn ≡ |mj〉〈n j | (m, n = 1, 2, 3, 4) being the

population operators (for m = n) or the atomic raising and
lowering operators (for m �= n) of the jth atom, in which
�21 = ω21 − ωcav − � and �43 = ω43 − ωcav − � are the de-
tunings between the corresponding transitions and the probe
field and �23 = ω23 − ωc is the detuning between the |3〉 ↔
|2〉 transition and the coupling laser. The fourth (fifth) term
in square brackets describes the coupling between the cavity
mode and the |1〉 ↔ |2〉 (|3〉 ↔ |4〉) transition with the cou-
pling rate g1 (g2). The last term in square brackets expresses
the interaction between the coupling laser and the |3〉 ↔ |2〉
transition, in which �c = μ23Ec/2h̄ is the half Rabi frequency
of the coupling laser. The last term describes the coupling

between the monochromatic continuous-wave probe field and
the cavity mode, the amplitude of the probe field being εp =√

P/h̄ωp, where P is the input power.
The decay and dephasing of the system can be described

by the Lindblad operator

L̂ô = κ

2
[2â†ôâ − â†âô − ôâ†â]

+ γnm

2

N∑
j=1

[
2σ̂ j

nmôσ̂ j
mn − σ̂ j

nnô − ôσ̂ j
nn

]
, (2)

where γnm = {	41, 	43, 	42, 	21, 	23, 	31}, with 	nm denot-
ing the spontaneous decay or dephasing rates from the state
|n j〉 to the state |mj〉 and σ̂mn = {σ̂14, σ̂34, σ̂24, σ̂12, σ̂32, σ̂13}.
Incorporating the Lindblad operator into the Heisenberg’s
equations derived from Eq. (1), the evolution of the system
is given by the quantum Langevin equations

˙̂a =
(

i� − κ

2

)
â + g1

N∑
j=1

σ̂
j

12 + g2

N∑
j=1

σ̂
j

34 + √
κe1εp,

(3a)

˙̂σ j
11 = 	31σ̂

j
33 + 	21σ̂

j
22 + 	41σ̂

j
44 + g1

(
â†σ̂

j
12 + σ̂

j
21â

)
,

(3b)

˙̂σ j
22 = −(	21 + 	23)σ̂ j

22 + 	42σ̂
j

44 − (
�∗

c σ̂
j

32 + �cσ̂
j

23

)
−g1

(
â†σ̂

j
12 + σ̂

j
21â

)
, (3c)

˙̂σ j
33 = −	31σ̂

j
33 + 	23σ̂

j
22 + 	43σ̂

j
44 + (

�∗
c σ̂

j
32 + �cσ̂

j
23

)
+g2

(
â†σ̂

j
34 + σ̂

j
43â

)
, (3d)

˙̂σ j
44 = −(	42 + 	43 + 	41)σ̂ j

44 − g2
(
â†σ̂

j
34 + σ̂

j
43â

)
, (3e)

˙̂σ j
23 = −γ̃23σ̂

j
23 − �∗

c

(
σ̂

j
33 − σ̂

j
22

) − g1â†σ̂
j

13 + g2â†σ̂
j

24,

(3f)

˙̂σ j
14 = −γ̃14σ̂

j
14 + g1σ̂

j
24â − g2σ̂

j
13â, (3g)

˙̂σ j
12 = −γ̃12σ̂

j
12 − �cσ̂

j
13 − g1

(
σ̂

j
11 − σ̂

j
22

)
â, (3h)

˙̂σ j
13 = −γ̃13σ̂

j
13 + �∗

c σ̂
j

12 + g1σ̂
j

23â + g2â†σ̂
j

14, (3i)

˙̂σ j
24 = −γ̃24σ̂

j
24 − �∗

c σ̂
j

34 − g1â†σ̂
j

14 − g2σ̂
j

23â, (3j)

˙̂σ j
34 = −γ̃34σ̂

j
34 + �cσ̂

j
24 − g2

(
σ̂

j
33 − σ̂

j
44

)
â, (3k)

where γ̃12 = i�21 + γ12, γ̃13 = i(�21 − �23) + γ13, γ̃34 =
i�43 + γ34, γ̃24 = i(�43 − �23) + γ24, γ̃23 = −i�23 + γ32,
and γ̃14 = i(�21 − �23 + �43) + γ14. We define γmn = (	n +
	m)/2, with 	n (	m) the total decay rate of population out of
level |n〉 (|m〉).

The atomic degrees of freedom can be adiabatically elim-
inated [58], under the assumption that the spontaneous decay
rates of the atoms are much larger than the atom-field coupling
rates, i.e., 	nm 	 g1, g2, so that the atomic coherence and
population operators σ̂

j
mn evolve much faster than â and reach

their steady state much earlier than â. Solving the steady-state
solutions of σ̂

j
12 and σ̂

j
34 allow us to express the effective

Hamiltonian and the additional decay process induced by
atomic effects in terms of the mode operators. Under the
condition that g1〈â〉, g2〈â〉 
 �c, the atomic operators can be
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perturbatively expanded [59] as

σ̂mn = σ̂ (0)
mn + σ̂ (1)

mn + σ̂ (2)
mn + σ̂ (3)

mn + · · · , (4)

where we neglect the superscript j denoting the jth atom for
convenience. Since the cavity mode couples weakly to each
individual atom, each atom can be assumed to be populated
at the ground state to zeroth order, i.e., σ̂

(0)
11 = 1, σ̂ (0)

nn = 0
(n = 2, 3, 4), and σ̂ (0)

mn = 0 (m �= n). Under this assumption,
we iteratively determine the remaining components of higher
orders in the expansion [59]. Substituting the zeroth-order
population and coherence into Eqs. (3h)–(3k) and (3b)–(3g),
respectively, the first-order perturbation of the coherence and
population operators can be obtained as

σ̂
(1)
12 = −g1â

γ̃12 + |�c|2
γ̃13

, (5a)

σ̂
(1)
34 = σ̂

(1)
24 = 0, (5b)

σ̂ (1)
nn = σ̂

(1)
23 = σ̂

(1)
14 = 0 (n = 1, 2, 3, 4). (5c)

In a closed atomic system, the total population is con-
served, i.e., σ̂11 + σ̂22 + σ̂33 + σ̂44 = 1. Then it can be de-
duced directly that

σ̂
(2)
11 + σ̂

(2)
22 + σ̂

(2)
33 + σ̂

(2)
44 = 0. (6)

substituting Eqs. (5a) and (5b) into Eqs. (3b)–(3e) and com-
bining with Eq. (6) and the assumption of σ̂

(2)
23 = σ̂

(2)
14 = 0, the

second-order correction can be obtained as

σ̂
(2)
22 = g2

1

	21 + 	23

2 Re(F1)

|F1|2 a†a, (7a)

σ̂
(2)
33 = g2

1
	23

	31(	21 + 	23)

2 Re(F1)

|F1|2 a†a, (7b)

σ̂
(2)
11 = −g2

1
	23 + 	31

	31(	21 + 	23)

2 Re(F1)

|F1|2 a†a, (7c)

σ̂
(2)
44 = 0, (7d)

σ̂ (2)
mn = 0 (m �= n), (7e)

where F1 = γ̃12 + |�c|2/γ̃13. Similarly, substituting the
second-order perturbation of the operators (7a)–(7e) into
Eqs. (3h)–(3k), we obtain σ̂12 and σ̂34 to third order

σ̂
(3)
12 = g3

1
	23 + 2	31

	31(	21 + 	23)

2 Re(F1)

F1|F1|2 â†â2, (8a)

σ̂
(3)
34 = −g2g2

1
	23

	31(	21 + 	23)

2 Re(F1)

F2|F1|2 â†â2, (8b)

where F2 = γ̃34 + |�c|2/γ̃24.
If Q̂(t ) is an arbitrary combination of mode operators, the

equation of motion for Q̂(t ) is written from Eq. (1) combined
with the Lindblad operator (2)

˙̂Q = i�[Q̂, â†â]

+ g1[Q̂, â†]
N∑

j=1

σ̂
j

12 − g1

N∑
j=1

σ̂
j

21[Q̂, â]

+ g2[Q̂, â†]
N∑

j=1

σ̂
j

34 − g2

N∑
j=1

σ̂
j

43[Q̂, â]

+ κ

2
[2â†Q̂â − â†âQ̂ − Q̂â†â]

+ √
κe1εp[Q̂, â† − â]. (9)

Substituting Eqs. (8a) and (8b) into Eq. (9) leads to

˙̂Q = i(� − δωcav)[Q̂, â†â] − iη[Q̂, â†2â2]

+ κL
a + κ

2
[2â†Q̂â − â†âQ̂ − Q̂â†â]

+ κNL
a

2
[2â†2Q̂â2 − â†2â2Q̂ − Q̂â†2â2]

+ √
κe1εp[Q̂, â† − â], (10)

where

δωcav = −g2
1N

Im(F1)

|F1|2 , (11a)

κL
a = 2g2

1N
Re(F1)

|F1|2 , (11b)

κNL
a = 4g2

1N

[
−g2

1Y1
Re(F1)2

|F1|4 + g2
2Y2

Re(F2)Re(F1)

|F2|2|F1|2
]
,

(11c)

η = 2g2
1N

[
g2

1Y1
Im(F1)Re(F1)

|F1|4 − g2
2Y2

Im(F2)Re(F1)

|F2|2|F1|2
]
,

(11d)

with Y1 = (	23 + 2	31)/	31(	21 + 	23) and Y2 =
	23/	31(	21 + 	23) for N identical atoms.

We derive the effective Hamiltonian of the system from
Eq. (10) to be

Ĥ = (−� + δωcav)â†â + ηâ†2â2 + i
√

κe1εp(â† − â). (12)

the one-photon decay process of the system, including the
original decay process of the cavity mode and the additional
one-photon absorption induced by atomic effects, is given by
the effective linear Lindblad operator

L̂[κL, â]Q̂ = κL

2
[2â†Q̂â − â†âQ̂ − Q̂â†â], (13)

where κL = κ + κL
a is the overall linear decay rate of the cav-

ity mode. The two-photon absorption process of the system is
given by the effective nonlinear Lindblad operator

L̂
[
κNL

a , â
]
Q̂ = κNL

a

2
[2â†2Q̂â2 − â†2â2Q̂ − Q̂â†2â2]. (14)

Here κNL
a denotes the nonlinear dissipation resulting from

the two-photon absorption. The PB effect in our dissipative
scheme is critically dependent on the decay of Fock states |n〉,
with n = 0, 1, 2, . . . . Replacing the operator Q̂ with Pn|n〉〈n|,
where Pn is the population of the state |n〉, the linear Lindblad
operator in Eq. (13) contributes nκL to the decay rate of the
state |n〉, while the nonlinear one contributes (n − 1)nκNL

a .
This nonlinear term causes strong anharmonicity in the decay
of the cavity mode, namely, the cavity impedance [60–62].

The first term in Eq. (12) indicates that the cavity atomic
system is now simulated as a cavity with a dispersive re-
fractive index, where the resonance frequency dispersively
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changes versus the input field frequency. The resonance fre-
quency of the cavity with a dispersive refractive index is ωq =
q2πc/n(ωq )L = q2πc/

√
1 + (lm/L)Re(χ (1))(ωq)L, where L

is the round-trip length of intracavity photons, lm is the length
traveled by a photon in the atomic medium in a round-trip,
and χ (1) is the linear atomic susceptibility. Then the resonance
frequency of the equivalent dispersive cavity can be ap-
proximated as ω′

cav ≈ q2πc/L[1 − (lm/2L)Re(χ (1) )(ω′
cav)] ≡

ωcav + δωcav(ω′
cav) [63], in which ωcav ≡ q2πc/L is the bare

cavity resonance and δωcav(ω′
cav) denotes the pulling of the

bare cavity resonance which is induced by the atomic phase-
shift effects.

For the case that the equivalent dispersive cavity is
resonantly driven, i.e., ωp = ω′

cav, the detuning in the
first term of Eq. (12) vanishes, as −� + δωcav = ωcav −
ω′

cav + δωcav(ω′
cav) = 0. The related detunings are reduced to

�21 = ω21 − ω′
cav and �43 = ω43 − ω′

cav; then F1 and F2 in
Eqs. (11a)–(11d) are reduced to functions of ω′

cav in the forms

F1 = i(ω21 − ω′
cav) + γ12 + |�c|2

i(ω21 − ω′
cav − �23) + γ13

,

(15a)

F2 = i(ω43 − ω′
cav) + γ34 + |�c|2

i(ω43 − ω′
cav − �23) + γ24

.

(15b)

Therefore, the shift of the cavity resonance, the atomic
one-photon absorption, and the two-photon nonlinearities are
determined by the detunings �21 and �43 or, equivalently, the
frequency ω′

cav of the actually resonant intracavity field.
For a slightly off-resonant frequency component in the

probe laser, the detuning in the first term of Eq. (12) is written
as −� + δωcav ≡ −�′ + δωcav(ωp) − δωcav(ω′

cav), with the
definitions �′ ≡ ωp − ω′

cav and δωcav(ω′
cav) ≡ ω′

cav − ωcav.
We define d (δωcav)(�′) ≡ δωcav(ωp) − δωcav(ω′

cav) as the ef-
fective cavity resonance including the atom-induced shift.
Then the Hamiltonian (12) takes the form

Ĥ = [−�′ + d (δωcav)(�′)]â†â + ηâ†2â2 + i
√

κe1εp(â† − â)
(16)

for the scanning probe field. In the response to the scanning
probe field, d (δωcav)(�′), η, κL

a , and κNL
a change versus the

detuning �′ through F1(�′) and F2(�′), since the related
detunings in F1 and F2 become �21 = ω21 − ω′

cav − �′ and
�43 = ω43 − ω′

cav − �′, and thus F1 and F2 are determined
only by the detuning �′.

III. MECHANISM OF NONLINEAR
DISSIPATION-INDUCED PHOTON BLOCKADE

In this section we explain the mechanism of the PB induced
by the two-photon absorption. The equal-time second-order
correlation function at time t is g(2)(t ) = 〈â†2â2〉(t )/〈â†â〉2(t ),
indicating the performance of the PB and the quantum statis-
tical property of a single-photon field. Thus, it is of the most
interest in our discussion.

We first discuss the influence of the linear dissipation on
the correlation function g(2) without the external driving to
the system. From the linear dissipation process described by

0 1 2 3 4

0

0.5

1

0 1 2 3 4

0

0.5

1
(a) (b)

FIG. 2. Time evolution of the equal-time second-order correla-
tion function during the two-photon absorption process from (a) the
initial coherent state with mean photon number 4 and (b) the initial
|n = 9〉 Fock state.

Eq. (13), we obtain

d〈â†2â2〉
dt

= −2κL〈â†2â2〉. (17)

Here the expectation value of 〈â†2â2〉 implies the joint
counting rate of two coincident photons. Clearly, it damps
exponentially. Then the correlation function is constant,

g(2)(t ) = G0

n̄2
0

, (18)

where G0 = 〈â†2â2〉|t=0 and n̄0 = 〈â†â〉|t=0. The two-photon
correlation of an arbitrary initial cavity field remains un-
changed in the linear dissipation process.

Now we discuss the correlation function when only the
nonlinear dissipation is included. Instead of analyzing the
time derivation d〈â†2â2〉/dt , which involves higher-order op-
erators, we calculate d〈â†â〉/dt . The two-photon absorption
process described by the Lindblad operator (14) gives

d〈â†â〉
dt

= −2κNL
a 〈â†2â2〉. (19)

In the steady state, we have 〈â†2â2〉 = 0 and thus obtain
g(2)

ss (0) = 0. This is caused by the two-photon absorption. In
contrast to a linear dissipation process, an arbitrary initial state
decays to a state only including the vacuum state and the
single-photon state in the two-photon absorption process. In
Fig. 2 we present the time evolution of an initial coherent state
and an |n = 9〉 Fock state as an example. The time evolution of
g(2)(t ) confirms that two-photon absorption can cause a deep
PB.

The underlying physics behind the dissipation-induced PB
is schematically shown in Fig. 3. Under the driving of a
coherent field εp, the cavity mode is excited from transitions
of |n〉 → |n + 1〉. Taking a Fabry-Pérot cavity as an example
for our explanation, we assume that the decay rates due to
the two input and output channels are κe and the intrinsic loss
rate of the cavity is κi. We consider the case of κi 
 κe and
κL = 2κe + κi. In the linear dissipation case, the decay rate
difference between the two successive Fock states is κL. The
external resonant driving can be impedance matching [60,61].
On resonance, the Fock-state transition is driven at a strength
of 2κeεp/(2κe + κi ) ≈ εp. However, the impedance matching
breaks when a large nonlinear dissipation (two-photon ab-
sorption here) is included. The two-photon absorption adds an
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FIG. 3. Schematic for understanding the dissipation-induced PB.
The cascaded red arrows show the single-photon pumping process
of |n〉 → |n + 1〉 transitions by the coherent field. The green (blue)
arrows denote the one-photon (two-photon) decay. The green (blue)
wave packets beside the Fock states represent the linewidths of the
corresponding Fock state due to the linear and nonlinear dissipation.

extra nonlinear decay rate (n − 1)nκNL
a to the Fock state |n �

2〉 of the cavity mode. This extra decay causes impedance
mismatching to the transitions of |n〉 → |n + 1〉 for n � 1. For
κNL

a 	 κL, the excitation probability of |n〉 → |n + 1〉 with
n > 1 reduces to |2κe/(2κe + κi + 2κNL

a â†â)|2. In the non-
linear dispersive scheme, this excitation probability is given
by |2κe/(2iηâ†â + 2κe + κi )|2. As a result, two-photon ab-
sorption prevents the excitation of Fock states |n � 2〉 by the
coherent driving field. Only one photon can enter and pass
the cavity each time. This is the mechanism leading to the PB
effect here.

We also study the distribution of photon-number states
during the PB by solving the cascaded quantum master equa-
tion (see Appendix B for details), as shown in Fig. 4. In this
model, we consider a source cavity mode d̂ and an acceptor
cavity mode â, connected by a one-way quantum bus leading
a quantum field b̂. Here the input coherent field εp in the
normal master equation needs to be replaced by a quantum
field with b̂ = √

κd2d̂ , where d̂ is the annihilation operator
of the source cavity mode. Here the mean photon number
of the source cavity is 2 within a period of κ−1

d1 . The input
photon-number distribution of the acceptor cavity is shown in
Fig. 4(a). The photon-number distribution of the cavity mode
is shown in Fig. 4(b). It can be seen that the cavity has only the
quantum vacuum state and the single-photon state (P1 = 0.4).
The transmitted mode is the same as the cavity mode. Thus,
only the single-photon state exists in the transmission. The
reflected mode is presented in Fig. 4(c). The mean photon
number of the reflected mode is about 0.65. The multiphoton
components in the reflected mode are reduced in comparison
with the Poissonian input field.

IV. RESULTS

As proposed by Imamoǧlu and co-workers [22,23], a
large Kerr nonlinearity based on electromagnetically induced
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FIG. 4. Steady-state photon-number distribution of (a) the source
mode, (b) the acceptor cavity mode, and (c) the reflected mode for
a resonantly driven acceptor cavity with nonlinear dissipation. The
other parameters are κd1 = κd2 = κe1 = κe2 = κ/2 (with κ the bare-
cavity decay rate), κL

a = 0, κNL
a = 10κ , and |α(t )|2/κd1 = 2.

transparency (EIT) has several advantages, including atomic
one-photon loss elimination and vanishing shift of the reso-
nance frequency. If the cavity field at the resonance frequency
ωcav and the coupling laser at ωc are at two-photon resonance
with the |1〉 ↔ |3〉 transition, the transparency or a dark res-
onance is created at the cavity-mode frequency. In Fig. 5
the dispersion-induced shift of the bare cavity resonance
δωcav(ω′

cav) and the one-photon atomic absorption rate κL
a are

plotted versus the effective resonance frequency ω′
cav, under

the condition that the coupling field is resonant with the |3〉 ↔
|2〉 transition. It is verified from Fig. 5(b) that the atomic one-
photon absorption rate is negligibly small (about 0.028 12κ)
when the intracavity field with frequency ω′

cav is also resonant
with the |1〉 ↔ |2〉 transition. Meanwhile, the pulling of the
bare cavity resonance vanishes, as shown in Fig. 5(a), which
indicates a canceled linear atomic polarization of the |1〉 ↔
|2〉 transition. Since the EIT scheme has these advantages,
we use the two-photon resonance condition in the following
context to eliminate linear atomic polarization and preserve
third-order nonlinear polarization simultaneously, so as to
avoid pulling the bare cavity resonance frequency and obtain
a negligible one-photon absorption.

In Fig. 6 the Kerr nonlinear coefficient η and the two-
photon absorption rate κNL

a are plotted as functions of the
detuning between the |3〉 ↔ |4〉 transition and the pulled
resonance frequency ω′

cav under the two-photon resonance
condition. We set the detuning between the |1〉 ↔ |2〉 and
|3〉 ↔ |4〉 transitions to be 4560κ and the two-photon res-
onance condition is taken as ω21 − ω′

cav = �23 = 4560κ to
make the cavity field nearly resonantly coupled to the |3〉 ↔
|4〉 transition. To realize antibunched photons via the two-
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FIG. 5. (a) Resonance frequency shift δωcav and (b) one-photon
absorption rate κL

a as a function of the pulled cavity resonance fre-
quency ω′

cav, under the condition that the coupling laser is resonant
with the |3〉 ↔ |2〉 transition. We use N = 12.5 × 106, g1/κ = 0.15,
�c/κ = 10, 	31/κ = 10−5, 	21/κ = 	23/κ = 4.5, ωp = ω′

cav, and
�23 = 0.

photon absorption instead of a conservative Kerr nonlinearity,
we want a nearly imaginary χ (3) nonlinearity. Therefore,
we choose the parametric point corresponding to η/κ ≈ 0,
marked by a blue circle with the detuning ω43 − ω′

cav =
−0.0219κ and η/κ ∼ 10−4, as shown in Fig. 6. The relevant
nonlinear dissipation rate is κNL

a /κ = 28.12, which is marked
by a green circle. The related one-photon absorption rate and
the pulling of the resonance frequency are κL

a /κ = 0.028 12
and δωcav(ω′

cav)/κ ∼ 10−6, respectively. We take the param-
eter configuration of ω21 − ω′

cav = �23 = 4560κ and ω43 −

-50 0 50
-10

0

10

20

30

FIG. 6. Kerr nonlinear coefficient η (solid line) and two-photon
absorption rate κNL

a (dashed line) versus the detuning between the
|3〉 ↔ |4〉 transition and the pulled resonance frequency ω′

cav under
the two-photon resonance condition. The parameters are N = 12.5 ×
106, g1/κ = g2/κ = 0.15, �c/κ = 10, 	31/κ = 10−5, 	21/κ =
	23/κ = 	43/κ = 4.5, and (ω21 − ω′

cav)/κ = �23/κ = 4560.
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FIG. 7. (a) Transmission of the cavity field (dashed line) and
the equal-time second-order correlation function at the steady state
g(2)

ss (0) (solid line) versus the detuning �′ between the probe
laser and the modified resonance and (b) the steady-state second-
order correlation function with delay time τ versus the delay
time. The parameters are N = 12.5 × 106, g1/κ = g2/κ = 0.15,
�c/κ = 10, 	31/κ = 10−5, 	21/κ = 	23/κ = 	43/κ = 4.5, (ω21 −
ω′

cav)/κ = �23/κ = 4560, and (ω43 − ω′
cav)/κ = −0.0219, which

lead to κL
a /κ = 0.02812, η/κ ∼ 10−4, and κNL

a /κ = 28.12 for the
resonant probe field. In addition, κe1/κ = κe2/κ = 0.45, κi/κ = 0.1,
and εp = √

2κe1.

ω′
cav = −0.0219κ in the following context, which leads to a

resonantly driven cavity with a negligible linear atomic effect
and a large, purely absorptive two-photon nonlinearity. To
briefly summarize, one-photon state propagates without loss
as in vacuum, as the atomic medium is reduced to its �-type
subsystem for one-photon excitation, where EIT eliminates
one-photon absorption, whereas for the simultaneous arrival
of two or more photons, the complete N-type level structure
works, by which the two-photon absorption is switched on.

Then we explore the properties of the transmission spec-
trum and the steady-state second-order correlation function
when the probe light scans around the modified resonance
frequency. The transmission of photons is defined as T =
〈â†

outâout〉/|εp|2, where âout = √
κe2â is the annihilation oper-

ator of the transmitted field. It is shown in Fig. 7(a) that the
cavity linewidth of the transmission is significantly narrowed,
which can be illustrated by the dispersive refractive index.
As known from Eq. (16), although the detuning between the
probe laser and the effective cavity resonance is �′, the actual
detuning is modified by the dispersive shift of the effective
cavity resonance versus the scanning probe frequency, which
is defined as d (δωcav) ≡ δωcav(ωp) − δωcav(ω′

cav) in Eq. (16).
As shown in Fig. 11(a) of Appendix A, the dispersive shift of
the effective cavity resonance is very sharp versus scanning
probe frequency, which switches a slightly off-resonant fre-
quency component out of the cavity resonance, leading to the
significant cavity linewidth narrowing (see Appendix A for a
detailed derivation). For the probe field scanning through the

063707-6



NONLINEAR DISSIPATION-INDUCED PHOTON BLOCKADE PHYSICAL REVIEW A 106, 063707 (2022)

narrowed cavity linewidth, the Kerr nonlinear coefficient and
the atomic one-photon absorption rate are always negligible
compared with the cavity decay rate, while the two-photon
absorption rate remains large, as shown in Figs. 11(b)–(d)
of Appendix A. Namely, the N-type quantum system can be
modeled as a cavity with a dispersive refractive index which
has a large two-photon absorption process in the response
to the scanning probe field. The equal-time second-order
correlation function at the steady state, which is defined
as g(2)

ss (0) = limt→∞〈â†â†ââ〉(t )/〈â†â〉2(t ), measures the vari-
ance of the photon-number distribution of the cavity field and
represents the probability of two-photon transmission. It is
shown in Fig. 7(a) that g(2)

ss (0) reaches its minimum about
0.005 at the resonance and g(2)

ss (0) < 0.05 within the narrowed
cavity linewidth, indicating that the transmitted photons are
well antibunched and sub-Poissonian when the probe laser
drives the nonlinearly dissipative cavity within the linewidth.
The steady-state second-order correlation function with time
delay τ , which gives the joint probability of detecting a
second photon at time τ given a detection event that starts
from the steady state at time t = 0, is defined as g(2)

ss (τ ) =
limt→∞〈â†(t )â†(t + τ )â(t + τ )â(t )〉/〈â†â〉2(t ). In Fig. 7(b)
g(2)

ss (τ ) is plotted versus the delay time τ for the resonantly
driven system. It is shown that g(2)

ss (τ ) increases with the delay
time, indicating photons are more likely to arrive separated in
time, which verifies that the sub-Poissonian photons transmit-
ted within the cavity linewidth are indeed antibunched.

The N-type atoms are widely used to achieve gi-
ant photon nonlinearity. To confirm the advantage of
the nonlinear-dissipation (dissipative) scheme in PB over
the nonlinear-dispersion (dispersive) scheme, we calculate the
Kerr nonlinearity, the corresponding transmission, and the
correlation function using the same atomic and cavity param-
eter regime as for dissipative nonlinearity. To do so, we take
a different detuning of the |3〉 ↔ |4〉 atomic transition in the
parameter regime of the system, to obtain the maximal non-
linear dispersion for a resonant probe field. The transmission
and the second-order correlation function are shown in Fig. 8
for comparison with the dissipative scheme. In comparison,
we consider two cases: (i) the pure dispersive case and (ii)
the combination case with both off-resonance dispersive and
dissipative nonlinearities. In the first case, the two-photon
absorption rate is set to zero to ensure that the PB is com-
pletely induced by the dispersive Kerr nonlinearity [see Fig. 8
(solid lines)]. In the second case, we keep both the calculated
Kerr nonlinearity η/κ = 7 and the dissipative nonlinearity
κNL

a /κ = 13.9. In comparison with the dissipative case shown
in Fig. 7(a), the dispersive case has a very close transmission
spectrum. However, the equal-time second-order correlation
function, as an indicator of the PB effect, in latter case is con-
siderably larger than that in the former. The function g(2)

ss (0)
in the dispersive scheme reaches the minimal value of about
0.02 at �′/κ ∼ 0 [see the solid curve in Fig. 8(b)]. Although
this value is already small, it is still about one order larger than
the minimum 0.005 in the dissipative scheme [see Fig. 7(a)].
In this sense, the nonlinear-dissipation scheme using the same
atom-cavity system is more efficient in PB than the nonlinear
dispersion.

Below we discuss how the PB effect depends on the system
parameters such as the mean photon flux |εp|2 of the input
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FIG. 8. (a) Overall transmission and (b) correlation function
g(2)

ss (0) for the maximally available dispersive nonlinearity η/κ = 7
in an atomic ensemble of N = 12.5 × 106. Solid curves are for the
case without the two-photon absorption, κNL

a = 0 when scanning
the detuning �′, while dashed curves are for κNL

a /κ = 13.9 with a
resonant probe field. Here (ω43 − ω′

cav)/κ = −2.3, which leads to
η/κ = 7 for a resonant probe field, and |εp|2/κe1 = 2.

coherent field and the number N of the atoms. The two-photon
absorption rate κNL

a is proportional to N [see Eq. (11)]. Mean-
while, the one-photon absorption and linear and nonlinear
dispersion of the atomic ensemble are negligible compared to
the bare-cavity decay rate κ .

The populations P1 and P2 of single- and two-photon states
are plotted in Fig. 9(a). We only show P1 and P2 because
Fock states |n � 3〉 are negligibly excited. The population P2

decrease quickly from 2.75% to 0.15% with N increasing
to 6 × 106. In contrast, the population P1 decreases slightly
from 39.4% to 38%. After this point, P1 goes down slowly
and linearly as N increases. Consequently, the weight of
single-photon excitation in all photon excitations P1/(1 − P0)
quickly becomes saturated, almost reaching unity [see the
red dashed curve in Fig. 9(b)]. Here P0 is the population of
the vacuum state of the cavity mode. Correspondingly, the
function g(2)

ss (0) approaches zero with N increasing [see the
blue solid curve in Fig. 9(b)]. At N = 6 × 106, we obtain
g(2)

ss (0) ≈ 0.02 and P1 = 38% in the dissipative scheme. In
comparison, the dispersive scheme yields g(2)

ss (0) = 0.084 and
P1 = 38.3%.

The populations of different Fock states as a function of
the mean photon flux |εp|2 of the incident field are shown
in Fig. 10(a). The population P1 of the single-photon state
quickly reaches a saturated value of 47% with the intensity of
the input field. However, the population P2 linearly increases.
As a result, the weight of the single-photon state decreases
linearly from almost unity, as shown in Fig. 10(b). The cor-
relation function g(2)

ss (0) also increases linearly from nearly
zero to 0.02 at |εp|2/κe1 = 10, implying the PB effect be-
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FIG. 9. (a) Populations P1 (upper panel) and P2 (lower panel) of
single- and two-photon states versus the atom number N . (b) Weight
P1/(1 − P0 ) (dashed line) of single-photon excitation in all |n �
1〉 states and g(2)

ss (0) (solid line) versus the atom number N . The
other parameters are g1/κ = g2/κ = 0.15, �c/κ = 10, 	31/κ =
10−5, 	21/κ = 	23/κ = 	43/κ = 4.5, (ω21 − ω′

cav)/κ = �23/κ =
4560, (ω43 − ω′

cav)/κ = −0.022, κe1/κ = κe2/κ = 0.45, κi/κ = 0.1,
and |εp|2/κe1 = 2.

comes weaker. Thus, the population of the single-photon state
increases but its purity decreases as the input field becomes
stronger. Nevertheless, we can obtain strong PB yielding
g(2)

ss (0) < 0.02 even when |εp|2/κe1 < 10.

V. EXPERIMENTAL IMPLEMENTATION

Our scheme can be implemented with a setup of a
FP cavity with a 87Rb cell placed inside, as depicted in
Fig. 1(a). The two mirrors have the same reflectivity of
99%. End faces of the atomic cell are coated with 99.9%
antireflection layers for the cavity mode. We use the 0.4-m-
long FP cavity. The cavity internal losses is calculated to
be κi = 2π × 0.12 MHz and the external loss rates at the
two ports are κe1 = κe2 = 2π × 0.6 MHz, yielding κ = 2π ×
1.32 MHz. We exploit the D1 line of the 87Rb atom to real-
ize the N-type configuration with |1〉 = |5 2S1/2, F = 1, mF =
−1〉, |3〉 = |5 2S1/2, F = 2, mF = −2〉, |2〉 = |5 2P1/2, F ′ =
1, m′

F = −1〉, and |4〉 = |5 2P1/2, F ′ = 2, m′
F = −2〉. The

coupling laser is left circularly polarized and the probe
laser is linearly polarized. The single-photon atomic coupling
strength is calculated to be about g1 = g2 = 2π × 0.2 MHz
for the mode volume of this cavity and the dipole matrix
element of D1 transition. In the related hyperfine levels in the
D1 line of 87Rb atoms, the detuning between the |1〉 ↔ |2〉
and |3〉 ↔ |4〉 transitions is about 2π × 6020 MHz; thus we
set the detuning between the |1〉 ↔ |2〉 and |3〉 ↔ |4〉 transi-
tions to be 4560κ in the previous context. The decay rates of
the hyperfine-level transitions in the 87Rb D1 line are about
2π × 6 MHz.
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FIG. 10. (a) Populations P1 (upper panel) and P2 (lower panel)
versus the mean input photon flux |εp|2. (b) Weight of single-photon
excitation P1/(1 − P0) (dashed line) and g(2)

ss (0) (solid line) versus
the mean input photon flux. The other parameters are the same as in
Fig. 9 except for N = 12.5 × 106.

VI. DISCUSSION AND CONCLUSION

N-type systems are usually exploited to realize a giant
Kerr nonlinearity owing to the canceled linear susceptibil-
ity and the enhanced nonlinear susceptibility in the EIT
scheme. Subsequently, the PB effect induced by absorptive-
free nonlinear dispersion has been extensively researched; the
mechanism behind it is that the large nonlinear phase shifts of
multiphotons enable an anharmonic eigenenergy level struc-
ture of photons. However, the dispersive Kerr nonlinearity
is suppressed by the large detuning in the nonresonant case.
Counterintuitively, we eliminate the Kerr nonlinearity but
keep a significant two-photon absorption by selecting near-
resonant optical nonlinear processes. In such a configuration,
we achieve deep PB. Our scheme for nonlinear dissipation-
induced PB is easier to implement and more efficient.

In summary, we have proposed a scheme to realize the
deep PB effect by inducing the large nonlinear dissipation
of an optical cavity with N-type atoms. In particular, a large
and dominant two-photon absorption is achieved in the cavity
by means of a near-resonant nonlinear process, whereas the
atomic one-photon absorption is suppressed to be vanishing.
The deep PB is accessible within the linewidth of the N-
type quantum system, which is completely induced by the
nonlinear dissipation, and a high transmission efficiency is
shown simultaneously. The nonlinear-dissipation scheme in
our proposal is demonstrated to be more efficient in inducing
the strong PB than the dispersive scheme using the same atom-
cavity system. The effect of the nonlinear dissipation-induced
PB becomes stronger with the atom number N , but it gets
weaker with the mean photon flux |εp|2. Our proposal pro-
vides a potential protocol for the efficient PB and may provide
an alternate route towards manipulation of single photons.

063707-8



NONLINEAR DISSIPATION-INDUCED PHOTON BLOCKADE PHYSICAL REVIEW A 106, 063707 (2022)

-0.005 0 0.005

-15

0

15

30

-0.005 0 0.005

0.02

0.04

0.06

0.08

-0.005 0 0.005

-0.1

-0.05

0

0.05

-0.005 0 0.005

20

40

60

(d)(c)

(a) (b)

FIG. 11. (a) Dispersive shift of the effective cavity resonance,
(b) atomic one-photon absorption rate, (c) Kerr nonlinear coefficient,
and (d) atomic two-photon absorption rate versus the detuning �′.
All the parameters are the same as in Fig. 7.
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APPENDIX A: CAVITY-LINEWIDTH NARROWING

The dispersive shift of the effective optical resonance, the
Kerr nonlinear coefficient, and the atomic one-photon and
two-photon absorption rates vary versus the detuning �′ as
shown in Fig. 11. A slightly off-resonant probe frequency
with detuning �′ = −0.005κ can see a large dispersive shift
of the effective cavity resonance up to d (δωcav) = 18.22κ ,
which switches itself out of the cavity resonance, leading to
the significant cavity linewidth narrowing effect. The Kerr
nonlinear coefficient and the atomic one-photon absorption
rate are always negligibly small compared to the cavity decay
rate when the probe frequency scans through the narrowed
linewidth, as shown in Figs. 11(b) and 11(c). Nevertheless,
the two-photon absorption rate is always large within the
linewidth, as shown in Fig. 11(d).

We briefly deduce the cavity linewidth narrowing effect
to better understand the results in the main text. Suppose the
atomic medium with the linear susceptibility χ (ω) = χ ′(ω) +
iχ ′′(ω) and the length lm/2 is placed in the FP cavity of length
L/2. Inside the atomic medium, the propagation constant of
the radiation field is βm = β0

√
1 + χ ′(ω) ≈ β0 + �βm(ω),

where �βm(ω) = β0χ
′(ω)/2 and β0 is the propagation con-

stant in the air. The round-trip phase shift φ(ω) in the cavity
is

φ(ω) = ω

c
L + ωχ ′(ω)

2c
lm. (A1)

The complex amplitude of the circulating intracavity field is
related to that of the incident field outside the cavity by

Ẽcirc = it1Ẽinc + g̃rt(ω)Ẽcirc, (A2)

where g̃rt(ω) = r1r2e−αL−i(ωL/c+ωχ ′(ω)lm/2c), with r1, t1, r2, and
α the reflection and transmission coefficients of the input-port
mirror, the reflection coefficient of the second mirror, and the
attenuation constant inside cavity, respectively. The ratio of
the complex amplitude of the circulating intracavity field to
that of the incident field is given by

Ẽcirc

Ẽinc
= it1

1 − g̃rt(ω)
. (A3)

The spectrum of the intracavity field is

T = |t1|2
|1 − g̃rt(ω)|2

= |t1|2
(1 − grt )2 + 4grt sin2[ωL/2c + ωχ ′(ω)lm/4c]

, (A4)

where grt = |g̃rt|. The intracavity field intensity reduces to half
its maximum value when the frequency satisfies

ωL

2c
+ ωχ ′(ω)

4c
lm = qπ ± arcsin

(
1 − grt

2
√

grt

)
; (A5)

thus the frequencies corresponding to the half intracavity field
intensity are

ω± =
q2πc/L ± 2c/L arcsin

( 1−grt

2
√

grt

)
1 + χ ′(ω± )lm

2L

=
[

q
2πc

L
± 2c

L
arcsin

(
1 − grt

2
√

grt

)]

×
[

1 − lm
L

χ ′(ω±)

2

]
, (A6)

leading to

ω+ =
(

ωcav + �ω

2

)(
1 − lm

2L
χ ′(ω+)

)
, (A7a)

ω− =
(

ωcav − �ω

2

)(
1 − lm

2L
χ ′(ω−)

)
, (A7b)

where ωcav = q2πc/L is the bare cavity resonance frequency
and �ω = 4c/L arcsin[(1 − grt )/2

√
grt] is the linewidth of the

bare cavity. Thus the modified cavity linewidth is obtained as

�ω′ = ω+ − ω−

≈ − lm
2L

ωcavχ
′(ω+) + lm

2L
ωcavχ

′(ω−) + �ω

< �ω.

(A8)

In this equation we use the condition that χ ′(ω+) > 0 and
χ ′(ω−) < 0. The modified cavity linewidth is narrowed com-
pared to the bare cavity linewidth.
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FIG. 12. Schematic diagram of the cascaded quantum system.
The output of the first cavity at port 2 is guided to drive the second
cavity at port 3. The second cavity contains atomic ensembles and
thus experiences a nonlinear dissipation process.

APPENDIX B: CASCADED QUANTUM MODEL TO
CHARACTERIZE THE INPUT OF THE NONLINEARLY

DISSIPATIVE CAVITY

To investigate the statistics of the reflected field of the
nonlinearly dissipative cavity, the incident field should be
quantized radiation. We consider a cascaded quantum system
[64–66] which can be decomposed into two subsystems, as
depicted in Fig. 12. The first subsystem is an empty source
cavity driven by the coherent light from port 1, whose fluores-
cent output from port 2 is fed into the input port of the second
subsystem, namely, the localized nonlinearly dissipative ac-
ceptor cavity. The Hamiltonian for the cascaded system is

Ĥ =Ĥsys +
∫ ∞

−∞
dω ωĝ†(ω)ĝ(ω) +

∫ ∞

−∞
dω ωb̂†(ω)b̂(ω)

+
∫ ∞

−∞
dω ωĥ†(ω)ĥ(ω) +

∫ ∞

−∞
dω ωŜ†(ω)Ŝ(ω)

+ i
∫ ∞

−∞
dω γ1(ω){ĝ†(ω)d̂ − d̂†ĝ(ω)}

+ i
∫ ∞

−∞
dω γ2(ω){b̂†(ω)d̂ − d̂†b̂(ω)}

+ i
∫ ∞

−∞
dω γ3(ω){b̂†(ω)e−iωτ â − â†b̂(ω)eiωτ }

+ i
∫ ∞

−∞
dω γ4(ω){ĥ†(ω)â − â†ĥ(ω)}

+ i
∫ ∞

−∞
dω G(ω){Ŝ†(ω)â2 − â†2Ŝ(ω)}, (B1)

where the quantum field b̂ in the quantum data bus includes
the modes b̂(2)

in , b̂(2)
out, b̂(3)

in , and b̂(3)
out; γ j (ω) with j = 1, 2, 3, 4

represents the coupling between the cavity modes and the
baths described by the fields ĝ(ω), b̂(ω), and ĥ(ω) at frequency
ω, respectively; G(ω) is the coupling between the cavity mode
â and the two-photon absorptive bath Ŝ with frequency ω;
Ŝ = Ŝin is for the couple in or Ŝ = Ŝout for the couple out; and
τ is the propagation time for light to travel from the source
cavity to the target cavity.

We adapt the input-output theory. We now introduce the
first Markov approximation, that the coupling constant is in-
dependent of frequency, that is,

γ1(ω) =
√

κd1/2π, γ2(ω) =
√

κd2/2π,

γ3(ω) =
√

κe1/2π, γ4(ω) =
√

κe2/2π,

G(ω) =
√

κNL
a /2π.

(B2)

Then the quantum Langevin equation for an arbitrary operator
of the system q̂ is derived as

˙̂q = − i[q̂, Ĥsys] − [q̂, d̂†]
{κd

2
d̂ + √

κd1ĝin(t ) + √
κd2b̂in(t )

}

+
{κd

2
d̂† + √

κd1ĝ†
in(t ) + √

κd2b̂†
in(t )

}
[q̂, d̂]

− [q̂, â†]
{κa

2
â + √

κd2κe1d̂ (t − τ ) + √
κe1b̂in(t − τ )

}

+
{κa

2
â† + √

κd2κe1d̂†(t − τ ) + √
κe1b̂†

in(t − τ )
}

[q̂, â]

− √
κe2[q̂, â†]ĥin(t ) + √

κe2ĥ†
in(t )[q̂, â]

− [q̂, â†2]

{
κNL

a

2
â2 +

√
κNL

a Ŝin(t )

}

+
{

κNL
a

2
â†2 +

√
κNL

a Ŝ†
in(t )

}
[q̂, â2],

(B3)

in which κd = κd1 + κd2 and κa = κe1 + κe2. The input-output
relations for the cascaded system at the internally connected
ports 2 and 3 are given by

b̂(2)
out(t ) = b̂(2)

in (t ) + √
κd2d̂ (t ), b̂(3)

in (t ) = b̂(2)
out(t − τ ),

(B4a)

b̂(3)
out(t ) = b̂(2)

in (t − τ ) + √
κd2d̂ (t − τ ) + √

κe1â(t ). (B4b)

In the quantum cascaded model, we can neglect the prop-
agation delay τ , setting τ → 0. Considering simultaneously
that b̂in(t ) and ĥin(t ) are vacuum fluctuations and 〈ĝin〉(t ) =
α(t ) for a coherent input, it follows that the cascaded quantum
master equation for the density operator ρ̂(t ) can be derived
by setting 〈 ˙̂qρ̂〉 ≡ 〈q̂ ˙̂ρ〉. The master equation takes the form

˙̂ρ = − i[Ĥsys, ρ̂] − κd

2
[d̂†, d̂ ρ̂] + κd

2
[d̂, ρ̂d̂†]

− κa

2
[â†, âρ̂] + κa

2
[â, ρ̂â†]

− √
κd2κe1[â†, d̂ ρ̂] + √

κd2κe1[â, ρ̂d̂†]

− κNL
a

2
[â†2, â2ρ̂] + κNL

a

2
[â2, ρ̂â†2]

− √
κd1[α(t )d̂† − α∗(t )d̂, ρ̂],

(B5)

where the Lindblad operator in the third line accounts for the
cascaded coupling, that is, the output from the source cavity
can be connected to the input of the target cavity without
there being a corresponding scattering from the target cavity
back into the source cavity. In what follows we check the
case that the target cavity decays only at the two ports to
verify the validity of the numerical simulation of the quantum
cascade method. We set κd1 = κd2, κe1 = κe2, and κNL

a = 0.
Then we extract the Fock-state probabilities of the incident
mode, reflected mode, and transmitted mode of the target
cavity, respectively, where the reflected mode is defined as
ĉ = (

√
κd2d̂ + √

κe1â)/
√

κd2 + κe1. The one-photon state for
the incident mode is

|1d〉〈1d | = |1d 0a〉〈1d 0a| + |1d 1a〉〈1d 1a| + · · ·
+ |1d (Na − 1)a〉〈1d (Na − 1)a|

= |1〉d d〈1| ⊗ Ia, (B6)

063707-10



NONLINEAR DISSIPATION-INDUCED PHOTON BLOCKADE PHYSICAL REVIEW A 106, 063707 (2022)

0 1 2 3 4 5

0.4

0.8

0 1 2 3 4 5

0.4

0.8

0 1 2 3 4 5
0

0.4

0.8

(a)

(c)

(b)

FIG. 13. Fock-state probabilities of (a) the incident mode d̂ ,
(b) the transmitted mode â, and (c) the reflected mode ĉ of the second
cavity.

where Na is the truncated dimension of the Hilbert space of the
target cavity, |1〉d denotes the one-photon state in the source
cavity’s Hilbert space alone, and Ia is the identity matrix in
the target cavity’s Hilbert space. Then the probability of the
one-photon state of the incident mode is given by

P1d = 〈1d |ψ〉〈ψ |1d〉
= Tr{|1d〉〈1d |ρ̂(t )}
= Tr{|1〉d d〈1| ⊗ Iaρ̂(t )}.

(B7)

We extract the Fock-state probabilities of the cavity mode
â and reflected mode ĉ in the same way. Figure 13 shows
the Fock-state probabilities of the incident mode, intracavity
mode (transmitted mode), and reflected mode of the target
cavity. The Fock-state components of the incident mode satis-
fies the Poisson distribution with mean photon number n̄ =
0.6, and the photon-number distribution of the transmitted
mode is almost the same as that of the incident mode, as
shown in Figs. 13(a) and 13(b). Only the vacuum-state com-
ponent in the incident field is reflected, as shown in Fig. 13(c).
These results are consistent with the known conclusion, that
is, the incident field will be totally transmitted when the decay
rates of the cavity at the two ports are the same and the
cavity has no intrinsic loss, which proves the validity of the
numerical simulation of the quantum cascade method.
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[22] H. Schmidt and A. Imamoǧlu, Giant Kerr nonlinearities ob-
tained by electromagnetically induced transparency, Opt. Lett.
21, 1936 (1996).
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