
PHYSICAL REVIEW A 106, 063705 (2022)

Light-matter entanglement after above-threshold ionization processes in atoms
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Light-matter entanglement plays a fundamental role in many applications of quantum information science.
Thus, finding processes where it can be observed is an important task. Here, using a one-dimensional model, we
address this matter by investigating theoretically the entanglement between light and electrons generated in the
above-threshold ionization (ATI) process. The study is based on the backaction of the ATI process on the quantum
optical state of the system, and its dependence on the kinetic energy and direction of the emitted photoelectrons.
Taking into account the dynamics of the process, we demonstrate the creation of hybrid entangled states. The
amount of entanglement has been studied in terms of the entropy of entanglement. Additionally, we use the
Wigner function of the driving field mode to motivate the entanglement characterization when considering
electrons propagating in opposite directions.
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I. INTRODUCTION

Above-threshold ionization (ATI), first observed in 1979
[1], has been one of the most studied processes in strong-laser-
field physics (see, cf. Refs. [2–4] and references therein). In
ATI, a bound electron is released from the parent system due
to its interaction with an intense electromagnetic field (typ-
ically of intensity I � 1013 W/cm2). This interaction leads
to the production of photoelectrons with kinetic momentum
pointing towards the direction of the driving field polariza-
tion [2], and with kinetic energies corresponding to photon
absorption above the ionization threshold of the system. The
final kinetic energy, as well as the momentum distribution of
these electrons, is determined by the ionization time within a
cycle of the driving field, and on the sign of the laser electric
field at that moment. Depending on whether the electron gets
ionized at a maxima or a minima of the applied field, it is
driven in opposite directions along the polarization direction,
which are denoted as forward and backward photoelectrons
respectively.

From a theoretical perspective, the numerical analysis of
ATI processes can become ponderous, due to the different
time, length, and energy scales that are involved in the prob-
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lem (cf. Ref. [5]). Instead, one can rely on the strong-field
approximation (SFA), which introduces some approxima-
tions based on the highly intense nature of the driving field
and greatly simplifies the analysis of the time-dependent
Schrödinger equation (TDSE). This approach, which was
initially proposed in Ref. [6], has been widely used in the
literature for the study of ATI [7], and for a wide plethora
of strong-field processes such as high-harmonic generation
(HHG) [8], where high harmonics of the driving frequency are
generated upon the recombination of the freed electron with
its parent ion. Moreover, apart from being very successful in
describing the experimental observations, the SFA provides
an extension to the classical three-step model or simple man’s
model [9–11] in terms of quantum trajectories that are fol-
lowed by the laser-ionized electron [8,12,13].

Most of the theoretical analysis that has been done so
far considers a semiclassical framework, where the interact-
ing system is treated quantum mechanically, while the field
is described classically [14]. However, in the recent years,
particular attention has been paid to the interplay between
quantum optics and strong-field physics. From an experi-
mental perspective, the first measurement of quantum optical
signatures in strong-field physics was obtained upon con-
ditioning on HHG processes, in particular when looking at
the photon number statistics of the driving field after its in-
teraction with the atomic medium [15,16]. Later on, other
experiments have studied the photon counting statistics of
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the harmonics generated in HHG [17]. From a theoretical
perspective, different analysis have been proposed that are
related to the study of the particular effects that arise when
taking into account the quantum nature of the field in this
strongly driven laser-matter interactions [18–25] or when
driving laser-matter interactions with highly intense nonclas-
sical light [26–28]. In the intersection between theory and
experiment, we highlight the set of works [23,29–33], which
show the generation of highly nonclassical states of light, in
the form of coherent-state superpositions, when conditioning
to HHG and ATI processes. Specifically, and regarding ATI,
in Ref. [23] it was shown that ATI processes induce a dis-
placement in the quantum optical state of the field, and in
Ref. [30] it was found that the generated displacement de-
pends on the final kinetic energy of the photoelectron, as well
as on its propagation direction. All these studies have opened
the door for the interface between strong-field physics and
quantum optics towards applications in quantum information
science.

In most of the applications of quantum information sci-
ence, the presence of entanglement in a quantum state that
is shared between two or more parties plays a fundamental
role [34]. For instance, it is crucial in quantum teleportation
protocols [35–37] and is a necessary, although not sufficient,
resource for sharing nonlocal correlations between two or
more systems, and which therefore allows them to perform
quantum communication in a secure way [38]. In strong-
laser-field physics, the existence of electron-electron [39–43],
electron-ion [44–52], and atom-atom [53,54] entanglement in
ultrashort timescales (femtosecond and attosecond regimes)
has been studied over the years within a semiclassical frame-
work. However, recently the quantum optical treatment of
the electromagnetic field was included to show that intense
laser-atom interactions can lead to the generation of entangled
states between the different optical field modes [31,55].

In this work, we aim to study the light-matter entanglement
between photoelectrons generated in ATI processes and the
electromagnetic field modes, which gets displaced differently
depending on the final kinetic momentum of the electron. We
first study the regime of laser parameters for which quantum
optical effects are visible at the single-atom level. We then
proceed to study the quantum optical properties of the driving
electromagnetic field after ATI processes by means of its
displacement in phase space, and the corresponding Wigner
function of the respective field state. We further consider
a phenomenological treatment of many-atoms to take into
account more realistic experimental conditions. Finally, we
perform an entanglement characterization for the single-atom
case by means of the entropy of entanglement [34,56].

The article is organized as follows: In Sec. II, we present
the theoretical background, where we also study the effect
of the electronic motion on the electromagnetic field modes.
In Sec. III, we present our results, where we discuss the
regime of laser parameters for which we get non-negligible
quantum optical effects over the electromagnetic field modes
at the single-atom level. With this, we compute the Wigner
function of the quantum optical states, and use it to motivate
the entanglement characterization between the field modes
and the generated photoelectrons. Finally, we end with the
conclusions and a brief outlook in Sec. IV.

II. THEORETICAL BACKGROUND

In this section, we describe the theoretical model used in
this paper for characterizing the final state of the total system
after the interaction with the strong laser field. We study the
light-matter interaction in the so-called length gauge form and
within the single active electron (SAE) and dipole approxi-
mations. More details about how to derive this form of the
Hamiltonian starting from the minimal-coupling Hamiltonian
can be found in Ref. [30].

A. Hamiltonian of the light-matter interaction

The Hamiltonian characterizing the light-matter interaction
within the SAE and dipole approximations is given by

Ĥ = Ĥat + Ĥint + Ĥfield, (1)

where Ĥat ≡ h̄2P̂
2
/(2m) + V (R̂) is the atomic Hamiltonian

with m being the electron’s mass and V (R̂) the atomic
potential, Ĥfield ≡ ∑

k,μ h̄ωkâ†
k,μâk,μ is the electromagnetic

free-field Hamiltonian with âk,μ (â†
k,μ) the annihilation (cre-

ation) operator acting over the mode with wave vector k and
polarization μ, and Ĥint ≡ eR̂ · Ê is the interaction Hamil-
tonian within the so-called length gauge, with e being the
absolute value of the electronic charge and Ê the electric-
field operator. In the following, we consider a discrete-mode
version for the electric-field operator:

Ê = −i
∑
k,μ

√
h̄c|k|
2ε0V

εk,μ(â†
k,μ − âk,μ), (2)

where V is the quantization volume, c is the speed of light,
and ε0 is the vacuum permittivity. Although the above Hamil-
tonian can be generalized to tackle the interaction with other
systems, such as molecules or solids, we restrict ourselves to
the case of gases and, for this reason, we consider a linear
dispersive relation ωk = c|k|, where ωk is the frequency of
the field mode.

B. Solving the time-dependent Schrödinger equation

In the most common strong-field experimental realization,
an intense low-frequency laser field, usually in the infrared
(IR) spectral region, interacts with an atomic medium which
is initially in the ground state |g〉. Thus, we describe the initial
state of the system by

|�(t = t0)〉 = |g〉
⊗

k,μ∈IR

|αk,μ〉
⊗

k,μ∈HH

|0k,μ〉 , (3)

where we denote the IR modes belonging to the laser pulse
and that are initially in a coherent state of amplitude αk,μ with
the label IR. Note that the amplitude αk,μ is a function of the
mode k and polarization μ and hence describes the spectral
behavior of the laser pulse employed [30]. On the other hand,
all the other modes that could be potentially excited by means
of strong-field processes but initially lie in a vacuum state
|0k,μ〉 are denoted with the label HH.
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The time-dependent Schrödinger equation describing the
dynamics of this system is given by

ih̄
∂ |�(t )〉

∂t
= (Ĥat + Ĥint + Ĥfield) |�(t )〉 , (4)

and in order to solve it, we (i) move to the interaction picture
with respect to the free-field term Ĥfield, such that the electric
field becomes time-dependent and given by

Ê(t ) = −i
∑
k,μ

√
h̄ωk

2ε0V
εk,μ (â†

k,μeiωkt − âk,μe−iωkt ), (5)

and (ii) work in the displaced frame of reference with respect
to the input IR field, so that the electric-field operator splits
into a classical term Ecl(t ) describing the mean value of the
field,

Ecl(t ) = −i
∑
k,μ

√
h̄ωk

2ε0V
εk,μ (α∗

k,μeiωkt − αk,μe−iωkt ), (6)

and another term Ê(t ) describing the quantum fluctuations
[see Eq. (5)]. Thus, the Schrödinger equation reads

ih̄
∂ |ψ (t )〉

∂t
= (Ĥat + eR̂ · Ecl(t ) + eR̂ · Ê(t )) |ψ (t )〉 , (7)

where, under the considered transformations, the initial state
of the above equation reads |ψ (t = t0)〉 = |g〉⊗k,μ |0k,μ〉,
which we shall also refer to as |ψ (t = t0)〉 = |g〉|0̄〉, with |0̄〉
representing the vacuum state in all the modes.

In the spirit of the semiclassical description of strongly
driven laser-matter interactions with low-frequency laser
sources [8], we solve the Schrödinger equation in Eq. (7) by
considering the following ansatz:

|ψ (t )〉 = a(t ) |g〉 |�g(t )〉 +
∫

d3vb(v, t ) |v〉 |�(v, t )〉 , (8)

where a(t ) describes the probability amplitude of finding
the electron in the ground state at the end of the process,
and b(v, t ) describes the probability amplitude of finding the
electron in a continuum state |v〉. The ansatz we propose
here is based on the standard SFA formulation, which con-
siders that the strong laser field does not couple with any
bound state apart from the ground state |g〉 such that, together
with the continuum (scattering) states |v〉 satisfying 〈v|v′〉 =
δ(v − v′), they are the only states contributing to the dynam-
ics [8,14]. However, and unlike the semiclassical description,
each of the electronic contributions within our ansatz is ac-
companied by a quantum optical component [|�g(t )〉 and
|�(v, t )〉 for the |g〉 and |v〉, respectively] that describes the
field state conditioned on the corresponding electronic state.
If we considered classical fields and neglected the effects of
the quantum optical fluctuations, this ansatz would recover the
semiclassical one under the SFA since the quantum optical
part of the state would remain on its initial state. Therefore,
the ansatz we consider in Eq. (8) represents the most general
state one can have in light-matter interactions within the SFA
approach.

To solve the differential equation in Eq. (7) by means of
the ansatz shown in Eq. (8), we introduce some approxima-
tions. First, we consider that the depletion of the ground-state

population is almost negligible, i.e., |a(t )| � 1.1 Second, we
assume that the quantum orbits followed by the electron when
ionized are not affected by the quantum optical fluctuations of
the applied field. Furthermore, in the present study we neglect
rescattering events, which imposes a limit on the range of
photoelectron kinetic energy E (p) = h̄2 p2/(2m), in particular
E (p) � 2.5Up where Up = e2E2

0 /(4mω2
L ) is the ponderomo-

tive energy, i.e., the average kinetic energy of an electron that
oscillates embedded in a laser field, E0 being the peak ampli-
tude of the laser electric field and ωL the central frequency
of the applied field. In this regime, high-order ATI processes
(HATI) [2,57] do not provide a significant contribution, and
direct ionization processes are dominant. Under these consid-
erations, we find that the quantum state of the system is given
by (see Appendix A for a detailed derivation)

|ψ (t )〉 = e− i
h̄ Ip(t−t0 )|g〉|0̄〉 − i

h̄

∫
d3p

×
∫ t

t0

dt ′e− i
h̄ S(p,t,t ′ )D̃(δ(p, t, t ′))[Ecl(t

′) + Ê(t ′)]

· d
(

p + e

c
A(t ′)

)∣∣∣∣p + e

c
A(t )

〉
|0̄〉 (9)

where v = p + (e/c)A(t ) with p the canonical momen-
tum, d(p + (e/c)A(t )) ≡ 〈p + (e/c)A(t )|R̂|g〉, S(p, t, t ′) is
the semiclassical action

S(p, t, t ′) =
∫ t

t ′
dτ

(
1

2m

[
p + e

c
A(τ )

]2

+ Ip

)
, (10)

with Ip being the ionization potential of the atom considered,
and where

D̃(δ(p, t, t ′)) =
∏
k,μ

eiϕk,μ(p,t )D̂(δk,μ(p, t, t ′)), (11)

with D̂(·) being the displacement operator [58,59], which is
defined as

D̂(α) := exp[αâ† − α∗â]. (12)

In Eq. (11), ϕk,μ(p, t ) is a phase prefactor that arises
when solving the quantum optical part of the Schrödinger
equation (see, for instance, Ref. [30]), and δk,μ(p, t, t ′) is
the Fourier transform of the electronic displacement in the
continuum [�r(p, τ, t ′) = ∇pS(p, t, t ′)] from the ionization
time t ′ up to the final time t . Both quantities are explicitly
given by

δk,μ(p, t, t ′) = − e

h̄

√
h̄ωk

2ε0V

∫ t

t ′
dτ�r(p, τ, t ′)eiωkτ , (13)

ϕk,μ(p, t ) = e2

h̄2

h̄ωk

2ε0V

∫ t

t ′
dt1

∫ t1

t ′
dt2[εk,μ · �r(p, t1, t ′)]

× [εk,μ · �r(p, t2, t ′)]

× sin (ωk (t1 − t2)). (14)

In the context of this work, we are working within the
strong-field regime, where the amplitude of the input electric

1The depletion of the ground state can be easily incorporated by
using, for instance, the ADK or PPT ionization models.
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field is on the order of 107 V/cm or larger. For this reason,
we expect the mean value of the field Ecl(t ) to dominate

over the quantum optical fluctuations Ê(t ). Consequently, we
approximate Eq. (9) by

|ψ (t )〉 � e− i
h̄ Ip(t−t0 ) |g〉

⊗
k,μ∈IR

|αk,μ〉
⊗

k,μ∈HH

|0k,μ〉

− i

h̄

[∏
k,μ

D̂(αk,μ)

]∫
d3p

∫ t

t0

dt ′e− i
h̄ S(p,t,t ′ )Ecl(t

′) · d
(

p + e

c
A(t ′)

)∣∣∣p + e

c
A(t )

〉
D̃(δ(p, t, t ′)) |0̄〉 , (15)

where we have further undone the displacement with respect
to the input IR field.

Equation (15) has two contributions: the first one describes
the situation in which the electron is completely unaffected
by the field, and in consequence the quantum optical state
of the field does not experience any change [60]; the sec-
ond one describes ionization processes, where the electron
reaches the continuum at time t ′ and accelerates. During
the latter, the electron motion in the continuum leads to a
displacement δ(p, t, t ′) on the state of the electromagnetic
field modes. To have an idea of how big this quantity is,
let us consider the case of a linearly polarized laser field
with a sinusoidal squared envelope that has ωL = 0.057 a.u.
(corresponding to a wavelength λL ≈ 800 nm), five cycles of
duration (corresponding to �t ≈ 15 fs for this frequency) and
an electric-field peak amplitude E0 = 0.053 a.u. (correspond-
ing to a laser intensity I = 1 × 1014 W/cm2). The typical
value of |α| that we have for these fields is on the order of
106, which allows us to obtain an estimate of V ≈ 1014 a.u. for
the quantization volume. For such fields, because the electron
dynamics develops mainly in the direction of the driving field,
we modeled the atomic system with a soft-core potential in
1D (see, for instance, Ref. [61]). Any atom can be modeled
in an hydrogenic-like way, just tuning the parameters in or-
der to match its associated ionization potential. Using these
quantities, we show in Figs. 1(a) and 1(c) the absolute value
of δk,μ(p, t, t ′) for the fundamental mode, the second- and the
third-harmonic modes when the final kinetic momentum of
the electron (at the end of the pulse) is p = 0.43 a.u. [Fig. 1(a)]
and p = −0.43 a.u. [Fig. 1(c)], these two values satisfying
E (p) < 2.5Up. On the other hand, in Figs. 1(b) and 1(d) we
show the real and imaginary parts of δk,μ(p, t, t ′) for the
fundamental mode with the two values of momentum shown
before. From these figures we see that, at the single-atom
level, the radiation generated during the electronic oscillation
has very small amplitudes (≈10−4) and, hence, barely affects
the initial coherent state of the field. On the other hand, an
interesting feature is that, depending on the direction along
which the electron ionizes, the imaginary part of δk,μ(p, t, t ′)
differs in a minus sign. We see that, the earlier the ionization
time is, the bigger the contribution to the input field would
be. This is an expected behavior as the electron spends more
time in the continuum. Finally, we observe that the effect on
the harmonic modes becomes smaller as the harmonic order
increases.

In Fig. 2 we attempt to relate the behavior of |δkL,μ(p, t, t ′)|
of the fundamental with the characteristics of the electronic
motion. More concretely, we consider three different values

of p [p = 0.43 a.u., p = 0.00 a.u., and p = −0.43 a.u. in
Figs. 2(a)–2(c), respectively], where the real part of the ion-
ization time, computed by solving the saddle-point equation,
is shown with the red dots (see Appendix B for details). As we
can see, depending on the outgoing electron’s momentum, the
value of |δkL,μ(p, t, t ′)| differs. For instance, for p = 0.00 a.u.
we see that, between each possible ionization time, there is
a step in the value of |δkL,μ(p, t, t ′)|, which is not observed
at all ionization times for the other two nonzero values of
momentum shown in Figs. 2(a) and 2(c). Furthermore, for
the nonzero values of momentum, depending on the direction
along which the outgoing electron propagates we might find
that, two consecutive ionization times lead approximately to
the same value of |δkL,μ(p, t, t ′)|. Using the two ionization
times located at the right and left of t ′ = 300 a.u. (∼ 7 fs)
in Fig. 2(a) [the same discussion holds for Fig. 2(c)] we see
that, if the electron ionizes close to a maximum of the field,

(a)

(c)

(b)

(d)

FIG. 1. Behavior of δk,μ(p, t, t ′). In panels (a) and (c) we show
the norm of this quantity for p = 0.43 a.u. and p = −0.43 a.u.,
respectively. The different curves correspond to distinct frequency
modes, namely, the red solid curve corresponds to the fundamental
mode (nharm = 1), the green dashed curve to the second-harmonic
mode (nharm = 2) and the purple dash-dotted curve to the third har-
monic mode (nharm = 3). In panels (b) and (d) we show the real
(blue dashed curve) and imaginary (orange solid curve) parts of
δk,μ(p, t, t ′) when considering the fundamental mode, for p = 0.43
a.u. and p = −0.43 a.u., respectively. For these calculations, we
considered a 1D hydrogen system (Ip = 0.5 a.u.) driven by a lin-
early polarized laser field (shown with the green dashed line) with
a sinusoidal squared envelope, that has five cycles of duration ωL =
0.057 a.u. for the central frequency and E0 = 0.053 a.u. for the field’s
amplitude.
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(a)

(b)

(c)

FIG. 2. Norm of δk,μ(p, t, t ′) (black solid line) for three dif-
ferent values of momentum: (a) p = 0.43 a.u., (b) p = 0.00 a.u.,
and (c) p = −0.43 a.u. shown in the different subplots. The red
bullet points show the value of the corresponding function evaluated
at the real part of the ionization time, which has been computed
numerically using the semiclassical equations (see Appendix B).
For these calculations, we have considered a 1D hydrogen system
(Ip = 0.5 a.u.) driven by a linearly polarized laser field (shown with
the green dashed line) with a sinusoidal squared envelope that has
five cycles of duration, ωL = 0.057 a.u. for the central frequency,
and E0 = 0.053 a.u. for the field’s amplitude.

its contribution to |δkL,μ(p, t, t ′)| will be almost the same as
if ionizes at the minimum of the field. We note that, for the
ionization time placed at the left of t ′ = 300 a.u. the field
is pointing in the same direction as that of the photoelectron
momentum, since we are in a maximum and does not provide
any significant contribution to |δkL,μ(p, t, t ′)| compared with
the ionization time place at the right-hand side, for which
field and momentum are pointing towards different directions.
This contrasts with what happens for p = 0.00 a.u. [Fig. 2(b)],
where, for ionization times placed at maximum or minimum
values of the field, the value of |δkL,μ(p, t, t ′)| increases the
earlier the ionization takes place.

III. RESULTS

A. Dependence of light-field displacement on electronic motion

So far, in the plots presented in Figs. 1 and 2, we have
worked with laser parameters for which the displacement
δkL,μ(p, t, t ′) generated over the quantum optical state is
negligible (|δkL,μ(p, t, t ′)| ≈ 10−4). These effects could be
naturally enhanced, for instance, by considering a many-
body picture where more than one atom participates in the
ATI process. In this section, we instead restrict ourselves to
single-atom dynamics, and seek for a regime of parameters
for which the generated displacement δkL,μ(p, t, t ′) becomes
non-negligible.

As mentioned before, the displacement defined in Eq. (13)
appears as a consequence of the coupling between the elec-
tronic motion and the electromagnetic field modes. Thus, the
longer the trajectories of the electron in the continuum, the
higher is the kinetic energy that the electron acquires, and
hence the bigger the value of |δkL,μ(p, t, t ′)|. In consequence,
we expect this quantity to depend on the ponderomotive

(a) (b) (c)

FIG. 3. In panel (a) we show the dependence of |δkL ,μ(p, t, t/2)|
with the central frequency of the employed laser field, for three
different values of the electric-field amplitude; in particular, E0 =
0.053 a.u. (orange dashed curve), E0 = 0.079 a.u. (green dash-dotted
curve), and E0 = 0.106 a.u. (blue solid curve). In panel (b) we show
instead the dependence of |δkL ,μ(p, t, t/2)| with the field’s amplitude
for three different frequencies: ωL = 0.011 a.u. (orange dash-dotted
curve), ωL = 0.010 a.u. (green dashed curve), and ωL = 0.009 a.u.
(blue solid curve). In panels (a) and (b) we have set p = √

2Up a.u. In
panel (c) we show the dependence of |δkL ,μ(p, t, t/2)| with the final
kinetic energy of the measured electron. Here, we have restricted to
p > 0. For these calculations, we have considered a 1D hydrogen
system (Ip = 0.5 a.u.) driven by a linearly polarized laser field with
a sinusoidal-squared envelope that has five cycles of duration. We
have restricted to frequencies ωL low enough such that tunneling
events are the dominant ones. Furthermore, we have kept E0 < 0.147
a.u. such that over-the-barrier ionization events are less likely than
tunneling ones.

energy Up ∝ E2
0 /ω2

L. In Fig. 3(a) we show the behavior of
|δkL,μ(p, t, t ′)| on the frequency for p = √

2Up a.u., t ′ = t/2
a.u., i.e., at the maximum value of the field, and three different
field peak strengths E0. We have restricted to the regime
E0 < 0.147 a.u. such that over-the-barrier ionization events
are less likely than tunneling ones when considering hydro-
genic atoms [62]. Furthermore, we have used ωL low enough
(ωL ∈ [0.008, 0.04] a.u., corresponding to a wavelength in the
range of 1–5 μm) such that tunneling events are more likely
than multiphoton ionization processes. Within this regime we
see that, for a fixed value of the field peak strength, the
displacement |δkL,μ(p, t, t ′)| is approximately inversely pro-
portional to ω2

L, unlike the electron displacement, which is
inversely proportional to ωL. This is a consequence of the
fact that the displacement we get in the field is the Fourier
transform of the trajectory that is followed by the electron,
which follows an oscillatory movement with the frequency
of the field. On the other hand, in Fig. 3(b) we present the
behavior of |δkL,μ(p, t, t ′)| with respect to the field’s peak
amplitude for three different frequencies which belong to the
MIR regime (λL ≈ 4–5 μm). As we can see, the generated
displacement is directly proportional to E0 which, together
with the previous plot, allows us to see that the displacement
behaves as |δkL,μ(p, t, t ′)| ∝ √

Up/ωL. Thus, the bigger the
kinetic energy acquired by the electron in the continuum,
the greater |δkL,μ(p, t, t ′)| would be. Therefore, by increasing
the intensity and reducing the frequency of the driving field,
we enter in a regime where, for the same number of cycles
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in a laser field, the electron follows longer trajectories and
acquires more kinetic energy. This translates into a greater
impact onto the final quantum optical state of the sys-
tem, leading to |δkL,μ(p, t, t ′)| ∼ 10−2 when working with
ω ≈ 0.01 a.u., and whose effects could be, in principle,
measured.

Apart from the laser parameters, the final value of
|δkL,μ(p, t, t ′)| is also determined by the kinetic energy with
which the electron is found in the continuum. In this dis-
cussion, we assume the electron to be in the continuum at
time t ′ = t/2 a.u., and that is found with momentum p � 0
by the end of the pulse. In Fig. 3(c), we show how the
displacement changes with the final kinetic energy of the
electron for three different field peak strengths and for a fixed
frequency, ωL = 0.009 a.u. (λL ≈ 5 μm). As we can see, for
increasing values of E0 and p, the bigger is the effect on
the final value of |δkL,μ(p, t, t ′)|. In particular, we observe
a linear dependence on the electron momentum, i.e., on the
square root of the photoelectron energy E (p). We note that
at p = 0.00 a.u., we still get nonzero contributions to the dis-
placement, which originate from the oscillation of the electron
with the field. Finally, although this analysis has been done
considering p > 0, the same features are found for p < 0
as well.

To work with |δkL,μ(p, t, t ′)| ≈ 10−2, in the following we
restrict ourselves to the use of MIR laser sources unless oth-
erwise stated. We note that, in the strong-field literature, this
regime of parameters has been already implemented experi-
mentally in the analysis of above-threshold ionization [63,64].
These studies have shown that, in the low-energy region of
the spectrum (around zero values of the electron kinetic en-
ergy), a spike-like low-energy structure (LES) appears that
is not captured by the SFA model. These effects have been
attributed to a disturbance of the electron momentum due to
the Coulomb potential soon after ionization takes place [65].
Although this effect may alter the final displacement obtained
in the quantum optical state, we expect this perturbation to
be relatively small given that, for small values of momentum,
|δkL,μ(p, t, t ′)| < 10−2 [see, for instance, Fig. 3(c)]. Hence,
hereupon we keep working under the SFA.

B. Conditioning onto electrons with a fixed kinetic energy

In Eq. (9), we presented the state of the system after
the interaction with the applied laser field. Here, we restrict
our study to the characterization of the quantum state of the
system after ATI processes. In particular, we want to study
the light-matter entanglement for an electron that propagates
either along the forward or the backward direction and the
displacement it generates on the quantum optical state of the
field. For simplicity, we restrict our analysis to electrons that
have a fixed value of final kinetic energy. Additionally, we
consider a 1D analysis and interaction with linearly polarized
laser fields.

To restrict ourselves to ATI processes, we need the electron
to be found in the continuum. We impose this constraint by
means of the following projective operation

P̂ATI =
∫

d p

∣∣∣∣p + e

c
A(t )

〉〈
p + e

c
A(t )

∣∣∣∣, (16)

such that the conditioned to ATI state reads

|ψATI(t )〉 = P̂ATI |ψ (t )〉

=
[ ∏

k,μ∈IR

D̂(αk,μ)

]∫
d p

∫
dt ′M(p, t ′)

×
∣∣∣p + e

c
A(t )

〉 ⊗
k,μ

eiϕk,μ (p,t ′ ) |δk,μ(p, t, t ′)〉 ,

(17)

where M(p, t ) corresponds to the integrand of the semi-
classical probability amplitude of finding an electron in the
continuum, which is given by

M(p, t ′) = e− i
h̄ S(p,t,t ′ )E (t ′)d

(
p + e

c
A(t ′)

)
. (18)

Hereupon, we impose the measurement time t to identify
with the end of the laser pulse such that A(t ) = 0. Having this
in mind, we now introduce the projector that restricts us to the
situation where the electron is found with a given value of the
kinetic energy,

P̂(p) = |−p〉〈−p| + |p〉〈p|, (19)

where each term distinguishes between electrons propagat-
ing in the backward or forward direction, respectively, with
kinetic energy h̄2 p2/(2m) and satisfying 〈p|p′〉 = δ(p − p′).
When applying this operator on the state shown in Eq. (17)
we get

|ψATI(p, t )〉 = P̂(p) |ψATI(t )〉

= 1√
N

[ |p〉 |�(p, t )〉 + |−p〉 |�(−p, t )〉 ],

(20)
where N is a normalization factor, and we have defined

|�(±p, t )〉 =
[ ∏

k,μ∈IR

D̂(αk,μ)

]∫
dt ′M(±p, t ′)

⊗
k,μ

eiϕk,μ(±p,t ′ ) |δk,μ(±p, t, t ′)〉 . (21)

We observe that the above quantum optical state is given
as superposition where, for a fixed momentum, the amplitude
of each of the coherent states appearing in the expression
depends on the electron’s ionization time t ′. As we have seen
before, the phase of δk,μ(p, t, t ′) varies with the direction
along which the electron is moving. Thus, up to a more thor-
ough entanglement characterization, the state in Eq. (20) has
the general form of an entangled state between the electronic
momentum and the quantum optical state of the system.

C. Wigner function characterization

To gain intuition on how different the states
{|�(p, t )〉, |�(−p, t )〉} are, in this section we study their
Wigner function representation. The Wigner function is a
quasiprobability distribution of a wave function in phase
space [66,67]. We refer to it as a quasiprobability distribution
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as there are some properties central to the definition of proper
probability distributions that the Wigner function does not
satisfy. For instance, certain quantum states have associated
Wigner functions which show negative values in some regions
of phase space [68]. Quantum states that show this kind of
behavior are usually referred to as nonclassical states. In
the field of quantum optics, Wigner functions have played a
fundamental role for characterizing different kind of radiation
sources [69].

Following the approach shown in Ref. [70], the Wigner
function of a quantum state ρ̂ can be written as

W (β ) = 2

π
tr(D̂(β )�̂D̂(−β )ρ̂ ), (22)

where �̂ is the parity operator. In our case, we are interested
in looking at the Wigner function representation of the driving
field mode when we look at electrons propagating either in the
forward or backward direction. Therefore, we denote by ρ+
(ρ−) the quantum optical state of the system we get when the
electron propagates in the forward (backward) direction, such
that

ρ̂± = |ψ±
ATI(p, t )〉〈ψ±

ATI(p, t )|, (23)

where |ψ±
ATI(p, t )〉 = 〈±p|ψATI(p, t )〉. In the following, and

in order to tackle the numerical calculations, we perform
a single-mode approximation such that the input coherent
state in Eq. (3) is written as |α〉 and populates the mode
of frequency ωL, i.e., the central frequency of the employed
laser pulse. Thus, we can express the Wigner function of the
considered states as

W (β̃, t ) =
∫ t

t0

dt1

∫ t

t0

dt2M∗(p, t1)M(p, t2)CHH(p, t, t1, t2)

× ei[ϕkL ,μ(p,t2 )−ϕkL ,μ(p,t1 )]e− 1
2 |2β̃−δ1−δ2|2

× eβ̃∗(δ2−δ1 )−β̃(δ2−δ1 )∗e
1
2 (δ1δ

∗
2−δ∗

1δ2 )
, (24)

where β̃ = β − α and CHH(p, t, t1, t2) is a function defined
as the overlap between the coherent states in which the har-
monics can be found, evaluated at different ionization times
t1 and t2 (see Appendix C for details). Furthermore, we
used δi as a shortened notation for δkL,μ(p, t, ti ). To compute
these integrals, we used the saddle-point approximation (see
Appendix C 2 for more details).

In Figs. 4(a) and 4(b) we show the Wigner function com-
puted from the state shown in Eq. (23) when using E (p) =
2.2Up. Here, we have used a linearly polarized laser field
of five cycles of duration, ωL = 0.009 a.u. for the central
frequency and E0 = 0.106 a.u. for the field’s amplitude. The
generated Wigner function presents a Gaussian-like behavior
which lacks from nonclassical signatures in terms of negative
regions. However, there exists a difference between the gener-
ated distributions when considering electrons propagating in
the forward or in the backward direction. In particular, we
observe that, for positive values of momentum [Fig. 4(a)],
the quasiprobability distribution is slightly shifted towards
positive regions of the x axis, while for negative values of
momentum [Fig. 4(b)], it is slightly shifted towards negative

FIG. 4. Wigner function representation of the driving field mode
when conditioning on electrons propagating in different directions.
Specifically, in panel (a) we have considered the projection onto |p〉,
while in panel (b) we have considered the projection onto |−p〉.
The intersection between the dashed lines points the origin of our
phase-space frame of reference. We have used a laser source with
a sinusoidal squared envelope, five cycles of duration, ωL = 0.009
a.u. for the central frequency and E0 = 0.106 a.u. for the field’s
amplitude. In these plots, the Wigner function has been normalized
by its maximum value.

regions of the x axis. We note that this lack of nonclassical
features in the Wigner function representation contrasts with
what it was observed in Ref. [23]. This is due to the difference
between the amplitudes of the coherent states appearing in the
superposition state given in Eq. (21), which in the present case
are much smaller compared with Ref. [23].

In the many-body situation, where more than one atom par-
ticipate in the ATI process, we expect to observe nonclassical
features in the Wigner function representation. This is because
the coherent displacements generated due to the electronic
motion add up and would generate small enough overlaps
between the different terms in the superposition obtained in
Eq. (21). This leads to a linear combination of distinguish-
able coherent states, which generally show negative regions
in their Wigner function representation. However, in general
the many-body characterization becomes computationally de-
manding as the average number of atoms N that one could
get in the experimental gas jets can easily surpass the or-
der of 106. Thus, in order to perform a proof-of-principle
analysis, we instead consider a situation where all the atoms
participate collectively in the process such that we can take
into account the many-body effects in a phenomenological
way by multiplying the generated displacement δk,μ(p, t, t ′)
by a factor N . Thus, instead of working with Eq. (21), we
consider now

∣∣�(N )(±p, t )
〉 = D̂(α)

∫
dt ′M(±p, t ′)

⊗
k,μ

eiN2ϕk,μ(±p,t ′ ) |Nδk,μ(±p, t, t ′)〉 , (25)

which corresponds to the ideal scenario where all N electrons
ionize collectively and propagate along the same direction.

In Fig. 5 we show the Wigner functions obtained from
the state in Eq. (25) when considering that the total num-
ber of atoms that undergo ATI is N ≈ 104 (upper row) and
N ≈ 2 × 104 (lower row). On the other hand, in each of

063705-7



J. RIVERA-DEAN et al. PHYSICAL REVIEW A 106, 063705 (2022)

(a) (b) (c)

(d) (e) (f)

FIG. 5. Wigner function of the state shown in Eq. (25). In the
first row [panels (a)–(c)], we have set N ≈ 104 atoms, while in the
second row [panels (d)–(f)], we have used N ≈ 2 × 104. Each of
the columns correspond to different values of the canonical momen-
tum employed. In particular, we used p = 0.00 a.u. [panels (a) and
(d)], p = 0.43 a.u. [panels (b) and (e)], and p = −0.43 a.u. [panels
(c) and (f)]. For the numerical calculations we have used a linearly
polarized electromagnetic field with a sinusoidal squared envelope
of five cycles of duration, E0 = 0.053 a.u. for the field’s amplitude,
ωL = 0.057 a.u. for the central frequency. For the atomic system, we
used a 1D model of hydrogen with Ip = 0.5 a.u. for the ionization
potential. We have set in our calculations the final time to coincide
with the end of the pulse. Furthermore, we have normalized the
results to the maximum value found for the Wigner function. More
details about the generation of the Wigner plots can be found in
Appendix C 3.

the columns we consider different values of the momentum
p; in particular (from left to right), p = 0.00 a.u. (first col-
umn), p = 0.43 a.u. (second column), and p = −0.43 a.u.
(third column). There are two main features to highlight in
these plots. First, already for N ≈ 104, highly nonclassical
behavior can be found in the state, which are witnessed in
terms of the Wigner function negativities. These negativities
are a consequence of the structure of the state in Eq. (25).
We have a superposition of coherent states whose amplitude
depends on when has the electron left the atom and which are
weighted by the probability amplitude of having an ionization
event at time t ′, i.e., M(p, t ′). Furthermore, the amplitude of
these states depend as well on the number N of atoms collec-
tively contributing to the process. The more atoms participate,
the bigger the corresponding amplitudes would be. Thus,
for N ≈ 104, a small number of coherent states for which
〈NδkL,μ(p, t, ti )|NδkL,μ(p, t, t j〉 → 0, with ti �= t j , appearing
in the superposition and, in consequence, the final Wigner
function depicts a behavior which can be reproduced by the
unbalanced superposition of two coherent states with close,
but yet different, amplitudes. As N increases, the real and
imaginary parts of δkL,μ(p, t, ti ) cover a bigger range of val-
ues, and therefore we get more terms in the superposition for
which 〈δkL,μ(p, t, ti )|δkL,μ(p, t, t j )〉 → 0. This translates in a
more complicated structure for the obtained Wigner functions
with more minima and maxima, which are more spread along
the phase space.

On the other hand, and as the second main feature, we
get differences between the distinct values of the canonical
momentum. For N ≈ 104 (first row), we see that the differ-
ences are mainly due to the form of the Wigner function
itself: its orientation and the depth of the obtained minimum.
These differences are a consequence of the contribution of the
different ionization times of the electron, which gives rise to
distinct relative phase amplitudes among the different coher-
ent states in the superposition. We note that, if a change of π

is implemented in the carrier-envelope phase (CEP), i.e., the
phase difference between the envelope and the carrier wave,
of the employed pulse the behavior for positive and negative
momentum interchanges [71]. Furthermore, if we use instead
a constant laser field with no envelope, then the differences
regarding the form of the Wigner function for positive and
negative momentum would vanish, as in this case the ion-
ization times are, for the same value of the kinetic energy,
symmetric with respect to the maximum values of the field’s
intensity. However, there is another main difference between
the plots similar to the one observed in Fig. 4, which can be
seen clearly for N ≈ 2 × 104 (second row), and involves the
location of the Wigner function in phase space. In particular,
we see that, for positive values of momentum Fig. 5(e)], the
maximum peak is located in positive regions of the Im(β − α)
axis, while for negative values it is located along the nega-
tive direction. Furthermore, for p = 0.00 a.u. [Fig. 5(d)], it
is centered around zero. All the behavior we have discussed
so far are a consequence of the radiation generated by the
electron during its oscillation in the continuum, which de-
pends on its final kinetic momentum. However, we stress that
different contributions can be interchanged by implementing
a modification of π in the CEP [71].

D. Entanglement characterization

The Wigner function characterization we have done in the
previous section has allowed us to see that the quantum optical
part of the state appearing in Eq. (20) differs depending on
the propagation direction of the electron. This implies that
the aforementioned state cannot be written in general as a
product state, and therefore is entangled. In particular, the
structure this state presents is that of an hybrid entangled
state [72], as we have the tensor product of an effective finite-
dimensional Hilbert space (spanned by {|p〉, |−p〉}),2 and an
infinite-dimensional Hilbert space (spanned, for instance, by
the Fock basis).

The entanglement characterization of hybrid entangled
states is in general an open problem, and has to be stud-
ied carefully depending on the particular form of the state,
as it may involve the definition of specific entanglement

2We note that, in our analysis, we are considering an experimental
setup that uses linearly polarized fields. For this kind of field, it is a
good approximation to consider only the momentum along the po-
larization direction for the ATI electrons. Thus, due to this particular
experimental arrangement, we are allowed to make this assumption
of considering only two components, which propagate along the
forward and backward direction with respect to the polarization’s
direction.
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witnesses [72–74]. However, for the case of pure states, this
entanglement characterization can be performed by means
of the entropy of entanglement [34,72]. Instead of working
with the states {|�̃(p, t )〉, |�̃(−p, t )〉}, where |�̃(±p, t )〉 =
|�(±p, t )〉/√N± with N± being the normalization of the
state, which in general have a nonvanishing overlap, we in-
stead work with the orthonormal set {|u〉, |v〉}. This allows us
to treat effectively our Hilbert space as being of dimension
2 ⊗ 2.

The relation between the orthonormal set {|u〉, |v〉} and
{|�̃(p, t )〉, |�̃(−p, t )〉} is given by

|u〉 = 1

2μ
( |�̃(p, t )〉 + e−iθ |�̃(−p, t )〉 ),

(26)

|v〉 = 1

2ν
( |�̃(p, t )〉 − e−iθ |�̃(−p, t )〉 ),

where we have defined

μ =
√

(1 + |〈�̃(p, t )|�̃(−p, t )〉|)/2,

ν =
√

1 − μ2, (27)

〈�̃(p, t )|�̃(−p, t )〉 = eiθ |〈�̃(p, t )|�̃(−p, t )〉|,
such that in this new basis the state in Eq. (20) can be rewritten
as follows:

|ψATI(p, t )〉 = 1√
N

[μ |u〉 (
√
N+ |p〉 + eiθ

√
N− |−p〉 )

+ ν |v〉 (
√
N+ |p〉 − eiθ

√
N− |−p〉 )]. (28)

The entropy of entanglement is defined as S :=
−Tr[ρ̂ log2 ρ̂] [34,56], where ρ̂ is the reduced density
matrix obtained by doing the partial trace with respect to
either the electron or the quantum optical degrees of freedom
of |ψATI(p, t )〉〈ψATI(p, t )|. From here, we get that the amount
of entropy of entanglement our state has is given by (see
Appendix D)

S(ρ̂ ) = −λ2
+ log2 λ2

+ − λ2
− log2 λ2

−, (29)

where we define

λ± = 1

2

[
1 ±

√
1 − 4(1 − |〈�̃(p, t )|�̃(−p, t ) 〉|2)

N+N−
N

]
.

(30)

Because of normalization conditions, we have that λ+ +
λ− = 1 and, therefore, we say that a state is maximally en-
tangled if S(ρ̂) = 1, i.e., λ± = 1/2, and it is a separable
state if S(ρ̂ ) = 0, i.e., λ± = 1 and λ∓ = 0. From Eq. (30),
we see that the degree of entanglement is determined by the
amount of population N+ and N− that we have respectively
in the |p〉 and |−p〉 states, and on the overlap between their
associated quantum optical contributions. First, we note that
the populations N+ and N− depend on the probability of an
electron being ionized with momentum p, and on the overlaps
|〈�̃(±p, t )|�̃(±p, t )〉|. Since for multicycle laser fields the
photoionization spectrum is symmetric against a change in
sign of the momentum [2,75], we expect both populations to
be almost identical and close to 1/2 after adding the proper

(a) (c)

(b)

FIG. 6. Behavior of (a) S(ρ̂ ), (b) |〈�̃(p, t )|�̃(−p, t )〉|, and
(c) N+ with respect to the photoelectron energy for different frequen-
cies. In particular, we considered ωL = 0.009 a.u., ωL = 0.010 a.u.,
and ωL = 0.011 a.u., which are respectively shown with the blue
solid, green dash-dotted, and orange dashed curves in the three
plots. To do these calculations, we considered a linearly polarized
electromagnetic field for the input, with a sinusoidal squared enve-
lope of five cycles of duration and E0 = 0.106 a.u. for the field’s
amplitude. For the atomic system, we used a 1D model of hydrogen
with Ip = 0.5 a.u. for the ionization potential.

normalization factor. Thus, this leaves the overlap between the
two quantum optical states in Eq. (21) as the most important
quantity in determining the final degree of entanglement. As
we saw in Fig. 4, the bigger the value of p, the further away
the two states are in phase space, and therefore the smaller we
expect their overlap to be.

In Fig. 6(a) we show the entropy of entanglement
following Eq. (29) for a laser field of amplitude E0 =
0.106 a.u., and three different frequencies, namely, ωL =
0.009 a.u. (blue solid curve), ωL = 0.010 a.u. (green dash-
dotted curve), and ωL = 0.011 a.u. (orange dashed curve).
We observe that the entropy of entanglement is zero when
E (p) = 0 and becomes bigger for increasing values of the
photoelectron energy. We also observe that, for smaller fre-
quencies, the amount of entanglement increases as well.
This is a consequence of how important the quantum
optical displacement becomes when modifying the pondero-
motive energy, as discussed in Sec. III A. In Figs. 6(b)
and 6(c), we present the overlap |〈�̃(p, t )|�̃(−p, t )〉| and
the normalization constant N+, respectively, for the three
frequencies we have considered. Note that the behavior
of N− can be obtained by considering 1 − N+. We see
that, in all the cases, the normalization constant remains
around 0.5 for all values of the photoelectron energy.
As we mentioned, this is an expected feature since we
are working with multicycle pulses, and the normaliza-
tion constant is related to the probability of measuring
an electron propagating along one of the possible direc-
tions. On the other hand, the overlap between the two
possible states starts being unity, when the generated dis-
placement is very small [see Fig. 3(c)], and decays for
increasing values of the photoelectron energy. We therefore
confirm the importance of this parameter in determining
the amount of entanglement we find in the state. We re-
mark that all the integrals involved in the calculation of
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the normalization constant and the overlap between the
states, have been done under the saddle-point approximation
(see Appendix C 2).

From this analysis we have observed that the state in
Eq. (20) is entangled, although the amount of entanglement
we find is small. We have seen that this quantity is mainly
determined by the overlap between the quantum optical states
appearing in the superposition, which in this case is close,
but yet different, to unity. However, we note that the en-
tropy of entanglement can be further increased by considering
bigger values of the kinetic energy. Going beyond the range
of values for the kinetic energy we consider here requires the
introduction of rescattering effects in ATI, which are typi-
cally non-negligible for E (p) > 3Up, and that are out of the
scope of the present work. We also note that in the multi-
atomic case, one would in general expect that incoherent
averaging could act like noise and reduce the amount of
entanglement we get, although this is not always the case
in attosecond science, see, for instance, Ref. [43]. On the
other hand, in strongly correlated materials one could expect
robust entanglement signals due to the collective behavior of
the involved particles [76]. Finally, the experimental charac-
terization of this entanglement measure would require full
tomography of the state in Eq. (28) or, at least, of the cor-
responding reduced density matrix with respect to one of the
subsystems in order to obtain experimental values for λ± in
Eq. (30).

IV. CONCLUSIONS AND OUTLOOK

In this work, we have studied light-matter entanglement
after ATI processes. We have studied the effects of the freed-
electron’s motion on the quantum optical state of the field, and
found that in the MIR regime these effects can be observed
at the single-atom level, with typical values for the field am-
plitude [64]. To motivate the entanglement characterization,
we have studied the Wigner function of the quantum optical
state of the driving field mode when the generated electrons
are either propagating in the forward and backward direction.
We have also implemented a phenomenological many-body
analysis to understand the regime at which nonclassical fea-
tures could be observed. Finally, we have used the entropy
of entanglement as an entanglement witness, and show how
it varies for different values of the photoelectron energy and
frequency of the employed laser field.

While the generated coherent-state superpositions in ATI
processes are already of interest per se for a wide variety of
quantum technology applications [77–83], we have checked
that, when including as well aspects related to the electronic
features of the state, ATI processes could potentially lead
to hybrid entangled states which show a small but nonzero
amount of entanglement even at the single-atom level. This
feature, together with the attosecond timescales which are as-

sociated with strong-field processes, could extend the current
applicability of hybrid entangled states [72] to unprecedented
timescales, while using the same experimental architectures
that have been used thus far in the strong-field community
[84]. Therefore, this work can be understood as a first step
towards this direction.
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APPENDIX A: SOLVING THE TIME-DEPENDENT SCHRÖDINGER EQUATION

In this Appendix, we explicitly solve the time-dependent Schrödinger equation presented in the main text, considering the
ansatz shown in Eq. (8). We also introduce the approximations that we consider in order to evaluate this differential equation.
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1. Conditioning onto a continuum state

To find the different coefficients appearing in the considered ansatz, we first condition the above Schrödinger equation on
finding the electron in a continuum state |v〉, such that Eq. (7) reads

ih̄
∂

∂t
[b(v, t ) |�(v, t )〉 ] = v2

2m
b(v, t ) |�(v, t )〉 + e(Ecl(t ) + Ê(t )) · 〈v|R̂|g〉a(t ) |�g(t )〉

+ ih̄e(Ecl(t ) + Ê(t )) · ∇v[b(v, t ) |�(v, t )〉 ], (A1)

where we have written the continuum-continuum transition term from v′ to v as 〈v|R|v′〉 = ih̄∇vδ(v − v′) + (h̄/e)g(v, v′) [8,14],
where the second term includes the effects due to the rescattering with the core center and it can be treated perturbatively. This is
because, along the paper, we work with photoelectron energies �3Up, where Up = e2E2

0 /4mω2
L is the ponderomotive energy for

which rescattering events that lead to high-order ATI processes (HATI) [2,57] do not play an important role. Thus, we neglect
them in the following.

The differential equation presented in (A1) has a well-defined homogeneous and inhomogeneous part. Since the solution of
this equation can be written as the solution of the homogeneous part plus a solution to the inhomogeneous one, we first focus on
the former. To solve the homogeneous equation, we expand it as

ih̄
∂b(v, t )

∂t
|�(v, t )〉 + ih̄b(v, t )

∂ |�(v, t )〉
∂t

= v2

2m
b(v, t ) |�(v, t )〉 + ih̄eEcl(t ) · {[∇vb(v, t )] |�(v, t )〉 + b(v, t )[∇v |�(v, t )〉 ]}

+ ih̄eÊ(t ) · {[∇vb(v, t )] |�(v, t )〉 + b(v, t )[∇v |�(v, t )〉 ]}. (A2)

On the right-hand side, we have the sum of three different terms. The first one introduces the energy of the scattered
electron; the second term defines the influence of the average value of the field on the electron’s trajectory; finally, the third
term characterizes the quantum fluctuations. In particular, for the third term we find different contributions. In the first place,
the first one introduces the backaction of the electron’s trajectory on the quantum optical state of the field, while the second
governs the backaction of the quantum optical perturbations in the semiclassical trajectories. In the following, we work under
the assumption that the electron trajectory does not get affected by the quantum optical perturbations, so that the last term we
have just described can be omitted. Therefore, hereupon we work with the following approximated version of the Schrödinger
equation shown in Eq. (A2):

ih̄
∂b(v, t )

∂t
|�(v, t )〉 + ih̄b(v, t )

∂ |�(v, t )〉
∂t

= v2

2m
b(v, t ) |�(v, t )〉 + ih̄eEcl(t ) · {[∇vb(v, t )] |�(v, t )〉 + b(v, t )[∇v |�(v, t )〉 ]}

+ ih̄eÊ(t ) · [∇vb(v, t )] |�(v, t )〉 , (A3)

such that we write the differential equation as a sum of two contributions:[
ih̄

∂b(v, t )

∂t
− ih̄eEcl(t ) · [∇vb(v, t )] − v2

2m
b(v, t )

]
|�(v, t )〉

+
[

ih̄b(v, t )
∂ |�(v, t )〉

∂t
− ih̄eEcl(t ) · [∇v |�(v, t )〉 ]b(v, t ) − ih̄eÊ(t ) · [∇vb(v, t )] |�(v, t )〉

]
= 0. (A4)

To solve this equation, we first solve it for b(v, t ) by setting the first bracket to zero. By doing this, we recover the Schrödinger
equation which describes the evolution of the scattered electron in the continuum, that is,

ih̄
∂b(v, t )

∂t
− ih̄eEcl(t ) · [∇vb(v, t )] − v2

2m
b(v, t ) = 0, (A5)

which is solved by

b(v, t ) = b(v, t0) exp

[
− i

h̄

∫ t

t0

dτ
1

2m

(
p + e

c
A(τ )

)2
]
, (A6)

where p = v − (e/c)A(t ) is the canonical momentum and A(t ) the classical vector potential of the applied field. By implement-
ing Eq. (A6) into Eq. (A4), the latter gets simplified to

ih̄b(v, t )
∂ |�(v, t )〉

∂t
− ih̄eEcl(t ) · [∇v |�(v, t )〉 ]b(v, t ) − ih̄eÊ(t ) · [∇vb(v, t )] |�(v, t )〉 = 0. (A7)

Before proceeding further, let us first compute the gradient with respect to v of b(v, t )

∇vb(v, t ) = − i

h̄
�r(v, τ, t0)b(v, t ), (A8)
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where �r(v, t, t0) denotes the electronic displacement in the continuum between times t0 and t , and is given by

�r(v, t, t0) = 1

m

∫ t

t0

dτ
(

v − e

c
A(t ) + e

c
A(τ )

)
. (A9)

Introducing the above functions in Eq. (A7), we find

ih̄
∂ |�(v, t )〉

∂t
− ih̄eEcl(t ) · ∇v |�(v, t )〉 = eÊ(t ) · �r(v, t, t0) |�(v, t )〉 , (A10)

which, after writing the kinetic momentum in terms as the canonical momentum as we did before, leads to a linear equation in
the creation and annihilation operators that can be solved by (see, for instance, Refs. [23,30])

|�(v, t )〉 = D̃(δ(v, t, t0)) |�(v, t0)〉 =
∏
k,μ

eiϕk,μ(v,t )D(δk,μ(v, t, t0)) |�(v, t0)〉 , (A11)

where ϕk,μ(v, t ) is a phase prefactor that arises when solving the quantum optical part of the Schrödinger equation (see, for
instance, Ref. [30]), and δk,μ(v, t, t0) is the Fourier transform of the electronic displacement from the initial time t0 up to t . Both
quantities are given by

δk,μ(v, t, t0) = − e

h̄

√
h̄ωk

2ε0V

∫ t

t0

dt ′�r(v, t ′, t0)eiωkt ′
, (A12)

ϕk,μ(v, t ) = e2

h̄2

h̄ωk

2ε0V

∫ t

t0

dt1

∫ t1

t0

dt2[εk,μ · �r(v, t1, t0)][εk,μ · �r(v, t2, t0)] sin (ωk (t1 − t2)). (A13)

According to the above expression, the main effect we can observe on the quantum optical state comes from the radiation
generated by the electron when it freely oscillates in the field, described by δk,μ(v, t, t0). We now use this solution to the
homogeneous equation in order to find the solution to the inhomogeneous one shown in Eq. (A1). After introducing the initial
conditions, we find

b(p, t ) |�(p, t )〉 = − i

h̄

∫ t

t0

dt ′e− i
h̄
∫ t

t0
dτ

1
2m [p+ e

c A(τ )]
2

D̃(δ(p, t, t ′))(Ecl(t
′) + Ê(t ′)) · d

(
p + e

c
A(t ′)

)
a(t ′) |�g(t ′)〉 , (A14)

where we have expressed the kinetic momentum of the electron in terms of the canonical momentum. We have also expressed
the dipole matrix element connecting the ground state with a continuum state as d[p + (e/c)A(t )].

2. Conditioning onto the ground state and characterization of the final state

Similarly to what we had before, the differential equation we get after projecting onto the ground state is given by

ih̄
∂

∂t
[a(t ) |�g(t )〉 ] = −Ipa(t ) |�g(t )〉 +

∫
d3 p b(p, t )(Ecl(t ) + Ê(t )) · d∗

(
p + e

c
A(t )

)
|�(p, t )〉 , (A15)

and assuming that the depletion of the ground state is very small such that it remains almost unperturbed, we approximate the
previous differential equation by

ih̄
∂

∂t
[a(t ) |�g(t )〉 ] ≈ −Ipag(t ) |�g(t )〉 , (A16)

which is solved by

ag(t ) |�g(t )〉 = e− i
h̄ Ip(t−t0 ) |0̄〉 . (A17)

Thus, we finally find for our initial ansatz

|ψ (t )〉 = e− i
h̄ Ip(t−t0 ) |g〉 |0̄〉 − i

h̄

∫
d3p

∫ t

t0

dt ′e− i
h̄ S(p,t,t ′ )D̃(δ(p, t, t ′))

(
Ecl(t

′) + Ê(t ′)
) · d

(
p + e

c
A(t ′)

)∣∣∣p + e

c
A(t )

〉
|0̄〉 ,

(A18)

where S(p, t, t ′) is the semiclassical action defined in Eq. (10).

3. Undoing the displacement operation

The state presented in Eq. (9) is defined in a displaced frame of reference. Thus, we now proceed to undo the initial
transformation and look for the state of the system in the original frame of reference. In the following, we consider the
transformation on the part of such state that has been already ionized, since the transformation acting upon the part for which
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the electron remains in the ground state is trivial. This way, we get

|ψion(t )〉 = − i

h̄

∫
d3 p

∫ t

t0

dt ′e− i
h̄ S(p,t,t ′ )D̃(δ(p, t, t ′))

(∏
k,μ

eiIm(αδ∗
k,μ )(p,t,t ′ )

)

× d
(

p + e

c
A(t ′)

)
·
[

Ecl(t
′)
∣∣∣p + e

c
A(t )

〉 ⊗
k,μ∈IR

|αk,μ〉
⊗

k,μ∈HH

|0k,μ〉

+
∑
k,μ

√
h̄ωk

2ε0V
εk,μeiωkt ′

[ ∏
k′,μ′∈IR

D(αk′,μ′ )

]
|1k,μ〉

⊗
k′′,μ′′ �=k,μ

|0k′′,μ′′ 〉
]
, (A19)

where we have a first contribution (inside the brackets of the second line) coming from the input electric field acting at the
ionization time, while the other terms incorporate weak quantum optical fluctuations. In the context of this document, we are
working within the strong-field regime, where the amplitude of the input electric field is in the order of 107 V/cm or larger. For
this reason, we expect the first term to be the dominant one and, consequently, we approximate the previous state by

|ψion(t )〉 � − i

h̄

[ ∏
k′,μ′∈IR

D(αk′,μ′ )

]∫
d3 p

∫ t

t0

dt ′e− i
h̄ S(p,t,t ′ )D̃(δ(p, t, t ′))d

(
p + e

c
A(t ′)

)
· Ecl(t

′)
∣∣∣p + e

c
A(t )

〉 ⊗
k,μ

|0k,μ〉 ,

(A20)

where in this last expression we have further moved the displacement characterizing the amplitude of the input field in front of
the state.

APPENDIX B: COMPUTING THE IONIZATION TIMES
ACCORDING TO THE SEMICLASSICAL FRAMEWORK

The semiclassical expressions can be obtained from the
quantum optical description provided in Sec. II by setting
δk,μ(p, t, t ′) = 0 and tracing out the quantum optical degrees
of freedom, which would lie in a vacuum state. Thus, the
probability amplitude of finding an electron in the continuum
is then given by

M̃(p, t ) =
∫

dt ′e− i
h̄ S(p,t,t ′ )d

(
p + e

c
A(t ′)

)
· Ecl(t

′), (B1)

and therefore the associated probability can be found by com-
puting |M̃(p, t )|2. To evaluate this expression, we take into
account that the phase factor is a highly oscillating function,
which motivates the use of the saddle-point approximation
[8]. To apply this method, we need to solve the saddle-point
equation defined by

∂S(p, t, t ′)
∂t ′

∣∣∣∣
t ′=tion

= 0 ⇒
[
p + e

c
A(tion)

]2
+ Ip = 0, (B2)

which defines the ionization time of an electron that undergoes
a tunneling process. In particular, we note that Eq. (B2) can
only be solved for tion ∈ C, such that tion corresponds to the
time where the electron enters the barrier, and its real part
corresponds to the time at which the electron appears in the
continuum, i.e., it exits the barrier [13]. While for monochro-
matic laser fields this equation can be solved exactly, for fields
with limited duration in time (pulses) it needs to be tackled
numerically. The real part of the ionization times found for the
system we consider (hydrogen atom with Ip = 0.5 a.u. excited
by a five-cycle electromagnetic field with ωL = 0.057 a.u.
and E0 = 0.053 a.u.) is shown in Fig. 7 (red circles). In par-
ticular, we consider three cases in Figs. 7(a)–7(c): p = 0.43
a.u., p = 0.00 a.u., and p = −0.43 a.u., respectively. As we
can see, for positive values of the canonical momentum the

real part of the ionization time is located in regions where
A(Re tion) < 0, while for negative values it is located in re-
gions where A(Re tion) > 0. Finally, when p = 0.00 a.u. the
ionization times are located at A(Re tion) ≈ 0.

APPENDIX C: WIGNER FUNCTION COMPUTATION:
ANALYTICAL EXPRESSION AND NUMERICAL

PROCEDURE

In this Appendix, we compute the analytic expression of
the Wigner function for the states shown in Eqs. (21), when
conditioned to a single value of the electron momentum.

(a)

(b)

(c)

FIG. 7. Real part of the ionization times (red circles), found
by solving numerically Eq. (B2) for a 1D hydrogen system with
Ip = 0.5 a.u., which is excited by a five-cycle electromagnetic field
with ωL = 0.057 a.u. and E0 = 0.053 a.u. for the field’s amplitude.
In particular, we show three cases, (a) p = 0.43 a.u., (b) p = 0 a.u.,
and (c) p = −0.43 a.u., in the different subplots. The black solid line
shows the vector potential of the field A(t ) evaluated at all possible
ionization times.
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Furthermore, we present the details of the numerical analysis
for obtaining the plots shown in Figs. 4 and 5. The numerical
implementation has been entirely performed in Python and
can be found in Ref. [85].

1. Analytical expression

According to Ref. [70], the Wigner function of a quantum
state ρ̂ can be written as follows:

W (β ) = 2

π
tr(D(β )�D(−β )ρ̂ ), (C1)

where � is the parity operator, and β is a complex quan-
tity whose real and imaginary parts characterize each of
the quadratures in the photonic phase space. In our case,
we are interested in the case where the quantum state ρ̂ is

given by

ρ̂ = |ψATI(p, t )〉〈ψATI(p, t )|, (C2)

where |ψATI(p, t )〉 is the quantum state of the field when con-
ditioned to ATI processes, and when looking at a single value
of the canonical electron momentum p. More explicitly, under
the approximations considered in the main text and restricting
ourselves to a single-mode analysis for the input coherent state
and a linearly polarized field, this state is given by

|ψATI(p, t )〉 = D(α)
∫ t

t0

dt ′M̃(p, t ′)
⊗

k

eiϕk,μ(p,t ′ ) |δk(p, t, t ′)〉 .
(C3)

Introducing this last expression in the definition of the
Wigner function given in (C1), we get

W (β ) =
∫ t

t0

dt1

∫ t

t0

dt2M∗(p, t1)M(p, t2)CHH(p, t, t1, t2)ei[ϕkL ,μ(p,t2 )−ϕkL ,μ(p,t1 )]

× 〈0|D†(δ(p, t, t1))D†(α)D(β )�D(−β )D(α)D(δ(p, t, t2))|0〉, (C4)

where we have defined

CHH(p, t, t1, t2) =
∏

k �=kL

〈δk(p, t, t1)|δk(p, t, t2)〉ei[ϕk,μ(p,t2 )−ϕk,μ(p,t1 )], (C5)

and δkL (p, t, ti ) ≡ δ(p, t, ti ). If we now introduce in our expressions β̃ = β − α, we can write our Wigner function as

W (β̃ ) =
∫ t

t0

dt1

∫ t

t0

dt2M∗(p, t1)M(p, t2)CHH(p, t, t1, t2)ei[ϕkL ,μ(p,t2 )−ϕkL ,μ(p,t1 )]〈0|D†(δ(p, t, t1))D(β̃ )�D(−β̃ )D(δ(p, t, t2))|0〉

=
∫ t

t0

dt1

∫ t

t0

dt2M∗(p, t1)M(p, t2)CHH(p, t, t1, t2)ei[ϕkL ,μ(p,t2 )−ϕkL ,μ(p,t1 )]w(β̃, δ1, δ2), (C6)

where δi is a shorthand notation for δ(p, t, ti ), and w(β̃, δ1, δ2)
another simplified notation for the matrix element shown after
the first equality in (C6). Furthermore, this expression shows
us that the Wigner function shape remains unperturbed upon
the performance of a unitary operation acting over the whole
quantum state. This is not the case of other quantum optical
observables like the photon number probability distribution.

We present now some properties of the displacement oper-
ator [58,59],

D(β )D(δ) = e
1
2 (βδ∗−β∗δ)D(β + δ), (C7)

which allows us to express the matrix element in w(β̃, δ1, δ2)
as

w(β̃, δ1, δ2) = e
1
2 [β̃∗(δ2−δ1 )−β̃(δ2−δ1 )∗]

× 〈0|D(β̃ − δ1)�D(−β̃ + δ2)|0〉, (C8)

and introducing the following properties of the parity
operator �:

�� = 1, �D(α)� = D(−α), � |0〉 = |0〉 , (C9)

we can write Eq. (C8) as

w(β̃, δ1, δ2) = e
1
2 [β̃∗(δ2−δ1 )−β̃(δ2−δ1 )∗]〈0|D(β̃ − δ1)D(β̃ − δ2)|0〉

= e
1
2 [β̃∗(δ2−δ1 )−β̃(δ2−δ1 )∗]e

1
2 [(β̃−δ1 )(β̃−δ2 )∗−(β̃−δ1 )∗(β̃−δ2 )]〈0|2β̃ − δ1 − δ2 〉

= eβ̃∗(δ2−δ1 )−β̃(δ2−δ1 )∗e
1
2 (δ1δ

∗
2−δ∗

1 δ2 )e− 1
2 |2β̃−δ1−δ2|2 . (C10)

Thus, writing everything together, we find for the final expression of the Wigner function as

W (β̃ ) =
∫ t

t0

dt1

∫ t

t0

dt2M∗(p, t1)M(p, t2)CHH(p, t, t1, t2)ei[ϕi,kL ,μ(p,t2 )−ϕi,kL ,μ(p,t1 )]eβ̃∗(δ2−δ1 )−β̃(δ2−δ1 )∗e
1
2 (δ1δ

∗
2−δ∗

1δ2 )e− 1
2 |2β̃−δ1−δ2|2 .

(C11)
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2. Numerical procedure: The saddle-point approximation

In the Wigner function presented in Eq. (C11), we have
contributions from two kinds of terms. On the one hand, we
have the semiclassical terms which are provided by the prob-
ability amplitudes M(p, t ). On the other hand, we have the
quantum optical terms which are provided by the other terms
appearing in the expression. Both of them contribute with a
certain phase to the integrals. In particular, the semiclassical
terms provide a phase which depends on the semiclassical
action S(p, t, t ′) and that scales with

√
Up, while the quantum

optical ones provide a phase that depends on the displacement
and which scales as |δk,μ(p, t, t ′)|2. For the range of laser
parameters we work with in Fig. 4, we have that

√
Up ≈ 10

while |δk,μ(p, t, t ′)| ≈ 10−1. Thus, we expect the semiclassi-
cal phase to play a dominant role in the phase of the integrand.
Thus, for the sake of simplicity, we rewrite our integral as

W (β̃ ) =
∫ t

t0

dt1

∫ t

t0

dt2M̃(p, t1, t2, β̃ )e
i
h̄ S(p,t,t1 )e− i

h̄ S(p,t,t2 )
,

(C12)
where we have explicitly separated the dominant phase terms
from the rest, which has been compressed in the complex
function M̃(p, t1, t2, β̃ ). Thus, since this function changes
slowly in comparison with the highly oscillatory term, we
perform the saddle-point approximation in order to compute
the integrals, such that we write

W (β̃ ) �
∑

t1,ion,t2,ion

√
2π

i|S′′(p, t, t1,ion)|

√
2π i

|S′′(p, t, t2,ion)|

× M̃(p, t1,ion, t2,ion, β̃ )e
i
h̄ S(p,t,t1,ion )e− i

h̄ S(p,t,t2,ion )
.

(C13)

In this last expression, ti,ion are the ionization times com-
puted from the evaluation of the saddle points as presented
in Eq. (B2). Since the two phases are exactly the same, the
ionization times ti,ion coincide for i = 1 and i = 2, although in
the sum we have to consider all possible combinations.

We note that the same approach can be done for the evalu-
ation of the overlap between the quantum optical states shown
in Eq. (21). The only difference appears in the definition of the
M̃(p, t1, t2, β̃ ), which instead of having a Wigner element for
the fundamental mode, this function is replaced by an overlap
between two coherent states.

3. Numerical procedure: Using a numerical integrator

Unlike the Wigner function plots presented in Fig. 4,
in Fig. 5 we are working with a different regime of laser
parameters and, more importantly, we are considering the phe-
nomenological contribution of N atoms participating in the
process. Therefore, the requirements for applying the saddle-
point approximation as done in the previous section are not
met now. Thus, in order to perform these plots, we instead
opted for a full numerical approach where the integration is
done with numerical approaches. In particular, we used the
NQUAD integration routine defined in SCIPY [86] in order to
perform the double integration shown in Eq. (C11). With the
aim of speeding up the code, we used the NUMBA package

(a) (b) (c)

FIG. 8. Evolution of the Wigner function (for p = 0.00 a.u. and
N ≈ 104) throughout each of the different processing steps. We
initially considered a grid of size 20 × 40 for which we evaluated
the Wigner function according to Eq. (C11). This leads to panels
(a) and (b), which respectively show a scatter and a surface plot
of the data obtained. Afterwards, in order to smooth the functions
obtained, we use an interpolation scheme which is evaluated over a
grid of size 500 × 500 over the range defined by the initial grid. The
corresponding output is shown in panel (c). In these plots, we have
normalized the Wigner function to its maximum value.

[87], which accelerates the evaluation of the different func-
tions needed for computing the integral.

In general, the functions that appear within the integral are
complex and in principle, the NQUAD function does not admit
the evaluation of complex integrands, which means that the
real and imaginary parts of the integrand have to be evaluated
separately. However, since the Wigner function is real because
it describes a quasiprobability distribution, for the numerical
analysis we first checked within a grid that this statement was
satisfied (as a sanity check), but in order to generate the plots
we avoid the integration over the complex part. With this said,
the generation of the plots consists of two parts:

(1) First, we generate a two-dimensional (2D) grid of
points, namely, {x0, . . . , xm} and {y0, . . . , yn}, where n �= m in
general, which define the real and imaginary parts of β, i.e.,
β ≡ x + iy. For each of these points, we numerically perform
the integral shown in Eq. (C11). The evaluation has been done
in a single 2 GHz CPU core, and the same process has been
performed in parallel for different values of the canonical
momentum in each of the remaining cores. For an initial grid
of size 10 × 40, the evaluation of the Wigner function takes
around a day (for p = 0.00 a.u. and N = 104). Note that the
size of the grid, as well as its limits, has to be adapted ac-
cordingly depending on the value of the canonical momentum
p and the number N of atoms that are considered, such that
increasing the values of these two quantities requires bigger
matrices with larger limits and therefore more computational
resources. For the grid considered, and using p = 0.00 a.u.
and N = 104 together with a five-cycle linearly polarized
pulse with E0 = 0.053 a.u., ωL = 0.057 a.u. and a sinusoidal
squared envelope, we find Fig. 8(a), which shows the value of
the Wigner function in each of the evaluated points such that
the corresponding surface plot is shown in Fig. 8(b). Note that
we have normalized the Wigner function to its maximum in
the studied region.

(2) The second part consists of smoothing the Wigner
function plot. This can be done in the hard but exact way, or
in the easy but less accurate way. The first implies increasing
the integration grid, such that more points are introduced in
the evaluation of the Wigner function itself. Thus, we get
more points in the plot and thus we obtain an exact way
of smoothing the plot. However, the main drawback here is
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that a larger number of points implies more computational
resources. Thus, the less exact alternative, but more flexible,
approach is to perform an interpolation of the points we have
already calculated for the initial grid. This way, and within
the considered range, we can artificially increase the number
of evaluation points (in our case we move from a grid of
10 × 40 to another one of size 500 × 500 within the same
limits) without the need of performing again the numerical
integration in Eq. (C11). To implement this feature, we used
the interpolate.griddata function provided by the SCIPY

package, which allows us to perform this interpolation ac-
cording to different methods for two-dimensional data. Note
that, the finer the initial grid is, the more exact would be the
interpolation scheme. Thus, different values of momentum p
and number of atoms N of atoms require a different number of
initial evaluation points in order for this approach to be valid.
After the smoothing, we get Fig. 8(c).

APPENDIX D: ENTROPY OF ENTANGLEMENT

In this Appendix, we explicitly compute the analytic ex-
pression for the entropy of entanglement presented in the
main text. Our starting point is the light-matter state given
in Eq. (28), which is written in the orthonormal basis
{|p〉, |−p〉} ⊗ {|u〉, |v〉}. Note that this basis representation
allows us to treat our state as effectively lying in a 2 ⊗ 2
Hilbert space, which then allows for a simple characterization
of the entanglement by means of the entropy of entanglement
measure. To do so, we first compute the reduced density

matrix with respect to one of the subsystems. Here, we
trace out the {|u〉, |ν〉} modes such that the reduced state
reads

ρ̂ = N+
N |p〉〈p|+N−

N |−p〉〈−p| + e−iθ (μ2 − ν2)

√
N+N−
N |p〉

× 〈−p| + eiθ (μ2 − ν2)

√
N+N−
N |−p〉〈p|. (D1)

Here, the associated Schmidt matrix is given by

S = 1

N

( N+ e−iθ (μ2 − ν2)
√
N+N−

e−iθ (μ2 − ν2)
√
N+N− N−

)
,

(D2)

whose eigenvalues are given by

λ± = 1

2

[
1 ±

√
1 + 16ν2(ν2 − 1)

N+N−
N

]
. (D3)

From this expression, we see that the amount of entangle-
ment in our state depends on two elements: the overlap among
the distinct continuous variable components, and on the rela-
tive population between the |+〉 and |−〉 states. In particular,
if the overlap between the two states tends to one, then ν → 0
which leads to λ+ = 1 and λ− = 0. On the other hand, in the
case they do not overlap at all, but the relative population is
completely unbalanced, then we recover the definition of a
pure state and we get λ+ = 1 and λ− = 0. Likewise, if the
superposition is completely balanced, the generated state is
maximally entangled.
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Sanpera, and M. Lewenstein, Feynman’s path-integral ap-
proach for intense-laser-atom interactions, Science 292, 902
(2001).

[13] O. Smirnova and M. Ivanov, Multielectron high harmonic gen-
eration: Simple man on a complex plane, in Attosecond and
XUV Physics (John Wiley & Sons, Ltd, Weinheim, Germany,
2014), Chap. 7, pp. 201–256.

[14] K. Amini, J. Biegert, F. Calegari, A. Chacón, M. F. Ciappina,
A. Dauphin, D. K. Efimov, C. F. d. M. Faria, K. Giergiel, P.
Gniewek, A. S. Landsman, M. Lesiuk, M. Mandrysz, A. S.
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