
PHYSICAL REVIEW A 106, 063702 (2022)

Geometrically engineered two-color time orderings in a laser-dressed atomic antenna:
Shaping space-time photon correlations
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The space-time connection between the Mollow cascaded transitions with time orderings and the spatially
directional correlated emissions of Mollow photons is analyzed theoretically in a strong laser-dressed subwave-
length two-atom antenna, which supports only two-level electric dipole transitions. It can be regarded as the most
prototypical collective quantum radiator to exploit the space-time quantum characteristics of the Mollow physics
of resonance fluorescence. By constructing the photon filtering dynamics from the dressed two-atom antenna to
a pair of quantum sensors, the frequency-resolved spatial two-point two-time correlations of different Mollow
spectral lines are examined analytically in terms of the quantum sensor modes. It is shown that a rich significance
of spatial directionality lies in the time orderings of cascaded emissions between different Mollow spectral lines.
This feature enables the time orderings of different Mollow spectral lines to be tailored geometrically and thus
prepared deterministically to produce highly directional temporal bunching effects of the Mollow photons with
giant nonclassicality only for a specific two-photon detection order. The dressed two-atom system is therefore
able to operate as a highly directional atomic antenna that may provide versatile applications in the fields of
atom-photon-based quantum precise measurement physics and Mollow spectroscopy.
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I. INTRODUCTION

How to control and exploit the directional scattering of
radiation fields precisely and effectively has become a hotspot
in the research fields of nanophotonics [1–5] and quantum
optics [6–8]. Only recently has it been shown that the collec-
tive atomic systems with subwavelength geometric structures
can serve as promising candidates—atomic antennas to ef-
fectively engineer directional light scattering in few-photon
and multiphoton levels [9–17]. The advent of this frontier
topic not only brings a new perspective to superresolution
quantum imaging technology [13,15], but also stimulates the
penetration of antennas, a type of electronic devices belong-
ing to the classical category, into the quantum level [9]. In
view of the fact that the well-established atom cooling and
trapping techniques have paved a smooth way for the design
of subwavelength atomic antennas [18–20], the present-day
development of atomic antennas has ushered in a wide range
of opportunities, and has been lying at the intersection of
quantum optics, quantum electronics, and nanophotonics.

The directional characteristics of collective emissions dis-
played by atomic antennas are primarily attributed to the
various forms of interference effect of different radiative
modes to which the atoms radiate, such as the electromag-
netic modes radiated from different atoms [17,21] and the
electromagnetic polarization modes supported by different ex-
ternal field-induced electromagnetic multipole moments [22].
In the light of the quantum nature of atomic antennas, the
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research on the spatially directional collective emissions of
atomic antennas is no longer constrained to the radiation in-
tensity and scattering cross section, which are the ones most
frequently concerned with in classical antenna theory, but
turns to the multiphoton high-order intensity correlations that
characterize the quantum characteristics of collective radia-
tion fields [9–17]. In the in-depth exploration of two-photon
and multiphoton directional collective emissions, it has been
further realized that spatial interference effects can also engi-
neer time-domain properties of collective radiative dynamics,
exhibiting some novel space-time quantum effects [23–26].
Most recently, a new theoretical scheme was proposed by von
Zanthier et al. in a simple three-atom system to skillfully
tune three-photon collective spontaneous emissions by syn-
thesizing the time-domain quantum interference of two-atom
internal states and the spatial interference of three-atom col-
lective radiation fields via a distant auxiliary atom [27]. This
mechanism enables such a subwavelength three-atom system
to carry applicable potentialities for superresolution quantum
imaging technology.

Here we intend to take the problem of space-time quantum
effects of spatially directional collective emissions one step
forward by exploiting photon frequency filtering in the context
of collective resonance fluorescence radiated from an atomic
antenna. This consideration, to a large extent, lies in the in-
herent time-ordering attributes of fluorescent photons, such
as the Mollow photons, which can be resolved by frequency
filtering and render the strong laser-dressed quantum emitters
as excellent cascaded photon sources [28–30]. However, if
the nature of time orderings carried by fluorescent emissions
is further endowed with spatial directionality, a new land-
scape of space-time quantum effects arising from spatially
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directional collective emissions may emerge. Obviously,
atomic antennas have set up a timely and ideal stage for ad-
dressing this problem. Of particular note is that it has recently
become possible to utilize frequency-resolved two-photon
statistical signals to probe into quantum coherent dynamics
in molecular aggregates, such as two-level dimer models,
by exploiting photon frequency filtering [31]. This research
progress further highlights the necessity of the application
of photon frequency filtering in collective atomic systems, of
course including atomic antennas, which in turn bear the po-
tential to advance the emerging field of quantum spectroscopy
[32–34].

In this paper, by constructing photon filtering mechanisms,
we provide an analytic treatment to the spatial-temporal cor-
related quantum behaviors of spectrally resolved two-color
photon statistics of collective resonance fluorescence radiated
from a simple collective quantum radiator, a subwavelength-
spacing two-atom system driven by a strong laser beam.
The access to the obtained analytic formalism solved from
photon filtering dynamics enables us to gain insight into the
underlying physical mechanisms of time orderings of col-
lective fluorescent emissions, which not only embody the
internal-state transition dynamics of quantum radiator, but
also depend critically on the direction of propagation of the
collective radiation fields. We show that the time orderings of
two Mollow spectral combinations are intrinsically different,
both of which, however, can be prepared deterministically by
engineering their directional properties. We then demonstrate
that this feature provides the possibilities for both the Mollow
spectral combinations to be able to exhibit temporal two-color
bunching effects only for a specific two-photon detection or-
der with large violations of classical inequality but completely
different spatially two-point directional properties. In the light
of these highly directional properties, the laser-dressed two-
atom system is able to behavior as a subwavelength atomic
antenna, namely, a highly directional time-ordered cascaded
photon source for quantum spectroscopy, such as Mollow
spectroscopy [32–34].

This paper is organized as follows. In Sec. II we intro-
duce the theoretical model by describing the quantum master
equation from the two-atom collective bare-state picture to
the collective dressed-state picture. In Sec. III we analyze
the connection between the time orderings and spatial di-
rectionality for different Mollow spectral combinations based
on the obtained analytic formalism of the frequency-resolved
intensity-intensity two-time correlations. We then discuss
the geometric schemes for different Mollow spectral com-
binations to produce highly directional temporal two-color
bunching effects and examine their nonclassical correlation
properties. In Sec. IV we compare the subwavelength theo-
retical model we discussed with the Dicke model and atomic
ensemble, and point out their connections and principal differ-
ences in photon statistics and directionality. Finally, in Sec. V
we summarize our results and outline some possible further
ideas based on this work.

II. THEORETICAL MODEL

We construct a quantum radiator which can be treated
as a subwavelength atomic antenna with the most primitive

FIG. 1. Geometry of the theoretical model. The collective quan-
tum radiator is composed of two identical two-level atoms, which are
located at the positions r1 = (−r12/2, 0, 0) and r2 = (r12/2, 0, 0),
respectively, and are illuminated by a strong laser field propagating in
the y direction. The two-atom resonance fluorescence is resolved in
far-field zone by two frequency-tunable two-level quantum sensors
a1 and a2, located at the positions R1 and R2, respectively. The
definitions of the two detection angles (θ1, θ2) in the x−y plane are
labeled in the two-dimensional diagram

few-body geometric configuration. It is composed of two
identical atoms located at their respective positions r1 =
(−r12/2, 0, 0) and r2 = (r12/2, 0, 0) (see Fig. 1). Each of the
atoms is modeled as a two-level system, which supports only
an electric dipole transition between the excited state |e j〉
and the ground state |gj〉( j ∈ {1, 2}), separated by the tran-
sition frequency ω j = ω0 and connected by the spontaneous
emission rates γ j = γ . The two-atom system is pumped by a
strong laser field of the frequency ωL and the Rabi frequen-
cies �(r j ) = �eikL·r j with kL being the wave vector of the
laser field. If we consider a special driving configuration in
which the direction of propagation of the driving laser field
is perpendicular to the interatomic axis, kL · r12 = 0, the Rabi
frequencies experienced by the spatially separated atoms can
be equal and real, i.e., �(r j ) = � [35]. In practical terms, the
subwavelength two-atom antenna can be realized by trapping
two ultracold neutral atoms into separate potential wells of
optical traps or optical lattice sites with relatively fixed posi-
tions but controllable interatomic distances [36–38]. In these
situations, the atomic vibrations can be suppressed such that
the trapped atoms can be treated as motionless with respect to
the spatial scale of the order of an optical wavelength [39,40].

Our objective is to explore the spectrally resolved col-
lective correlated emissions of the two-atom system. This
prompts us to treat it in the Mollow regime, i.e., the strong
driving-field limit. Thus it is more convenient to access
the atomic emission dynamics by introducing the laser-atom
dressed states [41]

|+ j〉 = cos φ|e j〉 + sin φ|g j〉, (1a)

|− j〉 = sin φ|e j〉 − cos φ|g j〉, (1b)
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where we have defined cos φ and sin φ =
√

(�̄ ± �L)/2�̄

with 2φ = arctan(�/�L), the effective Rabi frequency �̄ =√
�2 + �2

L, and the detuning of the laser frequency from
the atomic resonance �L = ω0 − ωL. For two-atom systems,
we recognize that the extremely strong collective coherent
coupling rate may alter the typical line shape of single-atom
Mollow triplet [42]. However, it occurs only when the inter-
atomic distance is much smaller than a resonant wavelength,
giving rise to the divergence of �12. Under such circum-
stances, the two-atom system is deprived of the directionality
of our interest arising from the spatial phase factor eik·r12

[35]. If the two-atom system is able to operate as a highly
directional atomic antenna, the linear dimension should be of
the order of a resonant wavelength.

In the dressed-state picture, by tracing over the free-space
electromagnetic vacuum reservoir, the master equation of the
laser-dressed two-atom system is given by ∂ρ/∂t = LAρ as
follows:

∂ρ

∂t
= − i [HA, ρ] +

2∑
i, j=1

{

+

i j [R
(i)
− ρ, R( j)

+ ]

+ 
−
i j [R

(i)
+ ρ, R( j)

− ] + 
L
i j

[
R(i)

z ρ, R( j)
z

] + H.c.
}
, (2)

with the total Hamiltonian HA including the free part and the
effective coherent dipole-dipole interactions

HA =
2∑

j=1

�̄R( j)
z +

2∑
i �= j=1

[
�+

i jR
(i)
+ R( j)

−

+ �−
i jR

(i)
− R( j)

+ + �L
i jR

(i)
z R( j)

z

]
. (3)

Here the dressed-state transition operators R( j)
± = |± j〉〈∓ j |

and R( j)
z = [|+ j〉〈+ j | − |− j〉〈− j |]/2 can be considered as the

sources of the left (L) and right (R) Rabi sidebands and
the central (C) band of the single-atom Mollow triplet, re-
spectively. The coefficients {�±

i j,�
L
i j} and {
±

i j , 

L
i j} are the

effective coherent coupling rates and dissipative coupling
rates between dressed-state transitions of different dressed
atoms for i �= j or single-atom dressed-state decay rates for
i = j, respectively, of different Mollow characteristic fre-
quencies ωL and ω± = ωL ± �̄. These interatomic effective
coupling rates and single-atom dressed-state decay rates are
given by

�+
i j = �+

i j cos4 φ, 
+
i j = γ +

i j

2
cos4 φ, (4a)

�−
i j = �−

i j sin4 φ, 
−
i j = γ −

i j

2
sin4 φ, (4b)

�L
i j = �L

i j sin2(2φ), 
L
i j = γ L

i j

2
sin2(2φ), (4c)

where �α
i j = �i j (ωα ) and γ α

i j = γi j (ωα ) are the bare inter-
atomic coherent coupling rates (�α

i j ) and dissipative coupling
rates (γ α

i j , i �= j) or bare single-atom decay rates (γ α
j j ), respec-

tively, which are now calculated at the Mollow dressed-state
transition frequencies ωα = ωL and ω±. These vacuum-
induced rates are generally frequency-dependent. However,
since we are working in free space, in which the density
of the electromagnetic vacuum modes is slowly varying (an

infinitely broad spectrum) around the atomic transition fre-
quency (optical frequency for typical atomic systems [35]),
these vacuum-induced rates at different Mollow dressed-state
transition frequencies can be approximated as �α

i j = �i j ,
γ α

i j = γi j for i �= j, and γ α
11 = γ α

22 = γ [43]. For parallel elec-
tric dipole orientations of two atoms, the bare interatomic
coherent and dissipative coupling rates in free space are con-
nected by [24,27,35]

�i j + i

(
γi j

2

)
= 3

4
γ

{
cos2 � − 1

kr12
+ (1 − 3 cos2 �)

×
[

i

(kr12)2
+ 1

(kr12)3

]}
e−ikr12 , (5)

where � is the angle between the parallel electric dipole
moments d j = d and the interatomic distance vector r12 =
r2 − r1, which is set to π/2 in our geometry, and k = 2π/λ

is the wave number of the atomic radiation fields with the
central wavelength λ. Note that the master equation (2) was
obtained in the strong-field limit, i.e., �̄ � {γ , γ12,�12}, for
which the subwavelength interatomic distances are necessary
to ensure that {�12, γ12} ∼ γ . Under this condition, the master
equation (2) transparently reveals that the photon exchange
between two dressed atoms occurs only between resonant
dressed-state transitions, whereas the nonresonant coupling
terms with the rapidly oscillating frequencies �̄ and 2�̄ have
been neglected. This formalism gives rise to the effect of laser-
induced dipole-dipole interactions that can still be described
in terms of the resonant electric dipole-dipole interactions
[44].

Regarding the frequency-resolving part, based on the sen-
sor theory proposed in Ref. [45], we introduce a pair of
quantum sensors in far-field zone at the positions R1 and R2,
respectively. Each of the quantum sensors is modeled as a two-
level bosonic system, and thus described by the annihilation
operator al = |0al 〉〈1al |(l ∈ {1, 2}) with the ground state |0al 〉
and the single-excitation state |1al 〉. The two energy levels of
each quantum sensor are separated by the transition frequency
νl , which is tuned to the central frequency of the Mollow
spectral line to be resolved. Including the dissipation of the
quantum sensors with the decay rates κl , the reduced density
operator of the two-sensor system evolves according to its
master equation ∂ρ/∂t = LF ρ, which takes the form of

∂ρ

∂t
= − i

2∑
l=1

[�l a
†
l al , ρ] +

2∑
l=1

κl

2
{[alρ, a†

l ] + H.c.}, (6)

with the detunings of the quantum sensor modes �l = νl −
ωL. In the following we assume κl = κ for the sake of sim-
plicity. Based on the spirit of the sensor method proposed by
del Valle et al. [45], the quantum filtering dynamics can be
described by the extremely weak coherent coupling between
the quantum sensors and the photon modes emitted from
the quantum emitter, so we therefore construct the photon
frequency-filtering mechanism for our system through the
filtering Hamiltonian

HI =
2∑

l=1

3∑
m=1

gm
(
a†

l R[l]
m + al R

[l]†
m

)
, (7)
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where the coefficients g1 = −gcos2 φ, g2 = g sin2 φ, and
g3 = g sin(2φ) with g → 0 are the effective coupling rates
between the sensor modes and the emitted Mollow photons
of the right Rabi sideband (m = 1), the left Rabi sideband
(m = 2), and the central band (m = 3), respectively. Here R[l]

m
are the collective radiation field operators responsible of the
mth Mollow spectral line resolved by the sensor mode al ,
which take the form

R[l]
1 = R(1)

− eik|Rl −r1| + R(2)
− eik|Rl −r2|, (8a)

R[l]
2 = R(1)

+ eik|Rl −r1| + R(2)
+ eik|Rl −r2|, (8b)

R[l]
3 = R(1)

z eik|Rl −r1| + R(2)
z eik|Rl −r2|. (8c)

One can notice that the spatial phase factors e±ik|Rl −r j | of
the electric dipole radiation fields enter the filtering Hamil-
tonian (7), which play a vital role in the engineering of
directionality. By extending the Hilbert subspaces of the
dressed two-atom system and the sensors to the dressed
atom-sensor combined Hilbert space, we arrive at the master
equation for the dressed atom-sensor combined density oper-
ator ρ,

∂ρ

∂t
= −i[HI , ρ] + L0ρ, (9)

with L0 = LA + LF . If we further perform the unitary dress-
ing transformation for the filtering Hamiltonian (7), we obtain

H̃I =
2∑

l=1

[
g1a†

l R[l]
1 ei(�l −�̄)t + g2a†

l R[l]
2 ei(�l +�̄)t

+ g3a†
l R[l]

3 ei�l t
] + H.c. (10)

The filtering Hamiltonian (10) is general in terms of the
quantum sensor-laser detunings so that both the sensor modes
can be either on resonance or off resonance with the three
Mollow characteristic frequencies ωL and ωL ± �̄. Thus, the
Hamiltonians (7) and (10) have covered all the possible two-
color spectral combinations to be filtered. In the following, we
consider the case of resonant filtering by tuning the frequen-
cies of both the sensors to be on resonance with the central
frequencies of their respective target Mollow spectral lines
for different spectral combinations, i.e., (�1,�2) = (�̄, 0) or
(�̄,−�̄). Under each specific resonance tuning of the sensors
to the dressed-state transition frequencies, the rapidly oscillat-
ing terms of far off-resonance in the filtering Hamiltonian (10)
with the oscillating frequencies �̄ and 2�̄ can be discarded.

The spirit of sensor method lies in the vanishing back
action from quantum sensors to quantum emitter, giving rise
to the weak single-excitation of each quantum sensor mode.
Thus the frequency-resolved N-photon intensity-intensity cor-
relation functions are of the order of g2N , as pointed out in the
perturbation approach of frequency-resolved photon correla-
tions in Ref. [46]. We thus expand the total density operator
of the dressed atom-sensor combined system with respect to
the weak coupling rate g as ρ = ρ (0) + ρ (1) + ρ (2) + · · · , in
which the zeroth-order solution ρ (0) and the correction term
of each order [ρ (1), ρ (2), . . .] are, respectively, governed by the

equations of motion

∂ρ (0)

∂t
= L0ρ

(0), (11a)

∂ρ (n)

∂t
= L0ρ

(n) − i[HI , ρ
(n−1)], (n � 1), (11b)

which serve as the starting point of calculating the frequency-
time-resolved photon correlation functions. In order to gain
insight into the radiative dynamics of the dressed two-atom
system more thoroughly, it is more convenient to further
introduce the two-atom superposed dressed basis |1(4)A〉 =
|±1〉|±2〉 and |2(3)A〉 = [|+1〉|−2〉 ± |−1〉|+2〉]/

√
2. In this

case the dressed two-atom system is transformed as four
decoupled dressed quantum emitters weighted by the steady-
state populations ρkk (k ∈ {1, 2, 3, 4}), which are the zeroth-
order steady-state solution of Eq. (11a). However, the
quantum filtering dynamics described by Eq. (11b) cannot be
classified, in general, according to the diagonalized dressed
states. This is due to the fact that each sensor is weakly excited
by the emitted Mollow photons of same central frequency that
may be generated from the transitions triggered by different
diagonalized dressed states. However, the physical insight in
this situation can still be probed transparently if the timescale
we concentrate on is comparable to the lifetime of the sen-
sors (τ ∼ κ−1) but much smaller than the timescale of the
atomic radiative dynamics (∼γ −1), i.e., the condition of broad
filtering passband κ � γ [47,48]. Such a timescale is usually
necessary for the spectral resolution of resonance fluorescence
with a multipeak line shape generated by a strong driving
laser field, which ensures that all the photons from the target
spectral line are sampled into the spectrometer with equal
probability [47,48]. Even for a more general situation in which
the filtering bandwidth is comparable with atomic linewidth,
the physical pictures revealed by the broad-filtering case are
also instructive [49–51].

III. SPACE-TIME PHOTON CORRELATIONS WITH
TWO-COLOR TIME ORDERINGS

Let us consider the problem that a Mollow photon of fre-
quency ν1 is detected at the time t in the direction θ1 and
how the emission of the another Mollow photon of differ-
ent frequency ν2 depends not only on the direction θ2 but
also on the time delay τ . At the same time, we intend to
explore the crucial role of time orderings of Mollow cascaded
emission in this problem. The frequency-time-resolved two-
photon intensity-intensity correlation function of the dressed
two-atom system is defined as

g(2)
12 (θ1, 0; θ2, τ ) = G(2)

12 (θ1, 0; θ2, τ )

G(1)
1 (θ1)G(1)

2 (θ2)
, (12)

where G(2)
12 (θ1, 0; θ2, τ ) = 〈: a†

1(t )a†
2(t + τ )a2(t + τ )a1(t ) :〉

is the unnormalized intensity-intensity correlation in terms
of the sensor modes, and G(1)

l (θl ) = 〈a†
l al〉(l ∈ {1, 2}) are the

single-photon filtered radiation intensities resolved by the sen-
sor modes al . Here the azimuth functions that describe the
angular pattern of single-atom electric dipole radiation pattern
u(ϑl ) = (3π/8) sin2 ϑl depending on the angle ϑl between the
direction of observation and the direction of the atomic dipole
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TABLE I. Directional functions controlling the two-photon correlation components |C (k)
j (τ )|2 between the right Rabi sideband and the

central band (R, C) for positive and reverse time orderings in the cases of positive and negative time delays. The two-photon cascaded emissions
|kA〉 a1−→ |k′

A〉 a2−→ | jA〉 or |kA〉 a2−→ |k′
A〉 a1−→ | jA〉 are indicated by the corresponding final-state two-photon probability amplitude C (k)

j (τ ).

Two-photon Positive (Reverse) time Reverse (Positive) time Time-ordering
channel ordering for τ > 0(τ < 0) ordering for τ > 0(τ < 0) interference

|C (1)
2 (τ )|2 (1 + cos η1)(1 − cos η2) (1 − cos η1)(1 + cos η2) −2 sin η1 sin η2

|C (1)
3 (τ )|2 (1 − cos η1)(1 − cos η2) (1 + cos η1)(1 + cos η2) 2 sin η1 sin η2

|C (2)
4 (τ )|2 (1 − cos η1)(1 + cos η2) (1 + cos η1)(1 − cos η2) −2 sin η1 sin η2

|C (3)
4 (τ )|2 (1 + cos η1)(1 + cos η2) (1 − cos η1)(1 − cos η2) 2 sin η1 sin η2

moments have been absorbed into the effective coupling co-
efficients gm, which vanish algebraically in the normalized
correlation functions. Nevertheless, we assume that the atomic
dipole moments are all oriented perpendicular to the detection
plane, i.e., ϑl = π/2. Furthermore, it is sufficient to explore
the directionality by restricting our discussion to the case of
|R1| = |R2|, which means that the distances from the far-field
observation points to the coordinate origin are irrelevant.

A. Space-time photon correlations between sideband
and central band

We first examine the frequency-time-resolved two-photon
correlated emission between the central (C) band and the
right (R) Rabi sideband. Assuming that the sensor mode a1

resolves a Mollow photon from the right Rabi sideband at
a given time t , the conditional event of detecting another
Mollow photon from the central band resolved by the sensor
mode a2 at the time t + τ is described by the two-time cor-
relation function G(2)

RC(θ1, 0; θ2, τ ). Based on the perturbation
master equations (11a) and (11b) up to the second order and
under the condition of broad filtering, the analytic form of
G(2)

RC(θ1, 0; θ2, τ ) is calculated as

G(2)
RC(θ1, 0; θ2, τ ) = ρ11

[∣∣C (1)
2 (τ )

∣∣2 + ∣∣C (1)
3 (τ )

∣∣2]
+ ρ22

∣∣C (2)
4 (τ )

∣∣2 + ρ33

∣∣C (3)
4 (τ )

∣∣2
. (13)

Here C (1)
2 (τ ), C (1)

3 (τ ), C (2)
4 (τ ), and C (3)

4 (τ ) can be regarded
as the two-photon probability amplitudes, with the following
analytic forms for positive time delay (τ > 0):

C (1)
2 (τ ) = g23g31F (+)

1→2(τ ) + g21g11F (−)
1→2(τ ),

C (1)
3 (τ ) = g32g21F (+)

1→2(τ ) + g31g11F (−)
1→2(τ ),

C (2)
4 (τ ) = g44g42F (+)

1→2(τ ) + g43g32F (−)
1→2(τ ),

C (3)
4 (τ ) = g44g43F (+)

1→2(τ ) + g42g23F (−)
1→2(τ ), (14)

respectively, whereas the corresponding analytic forms for
negative time delay (τ < 0) turn out to be only the replace-
ment of F (+)

1→2(τ ) and F (−)
1→2(τ ) in Eq. (14) with F (−)

2→1(τ ) and
F (+)

2→1(τ ), respectively, with τ < 0. For positive time delay,
we have introduced the two-photon cascaded emission am-
plitudes of positive time ordering F (+)

1→2(τ ) and reverse time
ordering F (−)

1→2(τ ). Correspondingly, F (+)
2→1(τ ) and F (−)

2→1(τ )
are the two-photon cascaded emission amplitudes of positive
time ordering and reverse time ordering for negative time

delay. The order of their subscripts from left to right (1 → 2
and 2 → 1) indicates the detection order of the sensor modes
a1 and a2. Their analytic forms are given by

F (+)
1→2(2→1)(τ ) = −i


1
2

[
1 − 
1(2)


1 + 
2
e−
2(1)|τ |

]
, (15a)

F (−)
1→2(2→1)(τ ) = −i


2(1)(
1 + 
2)
e−
2(1)|τ |, (15b)

where we have abbreviated 
l = κ
2 + iδl with δ1 = �1 −

�̄ = ν1 − ω+ and δ2 = �2 = ν2 − ωL being the detunings of
the quantum sensor modes a1 and a2, respectively, from the
central frequencies of their respective target spectral lines.
For positive time delay, the two-photon cascaded emission
amplitude of positive time ordering F (+)

1→2(τ ) describes the
physical situation in which the order of two-photon cas-
caded emission |kA〉 a1−→ |k′

A〉 a2−→ | jA〉 corresponds to the
two-photon delayed detection order, i.e., a1 → a2, whereas
the reverse one F (−)

1→2(τ ) describes the opposite situation,
i.e., the first detected photon resolved by the sensor mode a1

in the detection order a1 → a2 is emitted later in the cascaded
emission |kA〉 a2−→ |k′

A〉 a1−→ | jA〉. Regarding negative time de-
lay, the orders of two-photon cascaded emission described by
F (±)

2→1(τ ) are just opposite to those of positive time delay. One
can see from Eq. (14) that the two-photon cascaded emission
amplitudes of time orderings F (±)

1→2(τ ) and F (±)
2→1(τ ) construct

the analytic framework of the two-photon amplitude C (k)
j (τ )

with the form of quantum interference between opposite time
orderings. They are modulated by the direction-dependent
right-sideband effective coupling rates g42 = −g21 = g2χ−,
g43 = g31 = −g2χ+, and the central-band effective coupling
rates g11 = −g44 = (g1χ+)/

√
2, g23 = g32 = (−g1χ−)/

√
2,

where χ± = (eik·r1 ± eik·r2 )/
√

2 are the far-field spatial in-
terference factors with ηl = kl · r12 = kr12 cos θl . In order
to gain insight into the underlying physical mechanisms of
direction-dependent time orderings, we further analyze the
obtained short time-delay analytic formalism in Eqs. (13)–
(15b), which allows us to calculate four directional func-
tions �

(k)
j (θ1, θ2) = �±(θ1)�±(θ2) listed in Table I, where

�±(θl ) = 1 ± cos ηl . Mathematically, these directional func-
tions are the prefactors of |F (±)

1→2(τ )|2 and |F (±)
2→1(τ )|2 when

calculating the two-photon probability component |C (k)
j (τ )|2.

For completeness, the directional functions responsible for
the quantum interference between positive time ordering and
reverse time ordering are also listed in Table I.
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The temporal features of g(2)
RC(θ1, 0; θ2, τ ) are shown by its

analytic solutions and numerical solutions for the cases of
exactly resonant driving in Fig. 2(a) and large laser detuning
in Fig. 2(c), in which the relevant correlation components trig-
gered by the predominant dressed states (steady-state dressed
populations) are also analyzed in Figs. 2(b) and 2(d) with the
help of the short time-delay analytic solutions in Eq. (13). In
Figs. 2(a) and 2(c), both the analytical solutions and numer-
ical solutions of arbitrary time delay are calculated from the
perturbation master equations (11a) and (11b), but the former
and the latter are obtained by ignoring and considering the
atomic decay rates, respectively, in the higher-order pertur-
bation master equation (11b) in the case of broad filtering.
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FIG. 2. Two-photon correlation g(2)
RC(θ1, 0; θ2, τ ) and the corre-

sponding correlation components. (a), (b) Two-photon correlations
for �L = 0 and (θ1, θ2) = (0, π ). (c), (d) Two-photon correlations
for �L = −100γ and (θ1, θ2) = (π/2, 0). Other parameters are � =
100γ , κ = 10γ , δ1 = 0, δ2 = 0, and r12 = λ/2. (a), (c) Comparison
of the analytic solutions of arbitrary time delay (red solid lines)
with broad filtering approximation and the numerical solutions of
arbitrary time delay (black dashed lines) with the spontaneous decay
rates of the atoms being considered in Eq. (11b). (b), (d) Components
of the full value of g(2)

RC(θ1, 0; θ2, τ ) (black solid lines) triggered by
the dressed states |1A〉 (red dashed lines) and |3A〉 (blue circular
lines).

FIG. 3. Energy-level scheme of two-photon cascaded emissions
in the dressed-state picture. (a) Two-photon cascaded emissions
of the right-sideband photons (blue arrows) and the central-band
photons (red arrows) resolved by the sensor modes a1 and a2, respec-
tively, in the direction combinations (θ1, θ2) = (0, 0), (0, π ), (π, 0),
and (π, π ) for the interatomic distance r12 = λ/2. Time orderings are
presented in the form of incoherent superposition between the pos-
itive time ordering triggered by the dressed state |1A〉, in which the
dressed two-atom system is predominantly trapped, and the reverse
time ordering triggered by the dressed state |3A〉. (b) Two-photon cas-
caded emissions of the right-sideband photons (blue arrows) and the
left-sideband photons (green arrows) resolved by the sensor modes
a1 and a2, respectively, triggered by the predominant dressed state
|1A〉. The two-channel quantum interference between positive time
orderings are established.

In order to analyze the relationship between the structure
of time orderings and temporal photon statistics, let us first
examine the case of resonant driving, �L = 0. In this circum-
stance, the distribution of time orderings is fully displayed by
all the evenly populated dressed states that trigger them. One
can see from Table I that each directional function controls
both positive and reverse time orderings triggered by different
dressed states. This suggests that, for a given detection order,
an isolated time ordering cannot be achieved for resonant
driving, leading to the symmetry of temporal photon statis-
tics, as shown in Fig. 2(a). Specifically, it can be checked
from Table I that, for r12 = λ/2, all the two-photon cascaded
emission channels are spatially suppressed at four direction
combinations (θ1, θ2) = (0, 0), (0, π ), (π, 0), and (π, π ) due
to cos η1 = cos η2 = −1, except for the pair of temporally
antisymmetric channels |1A〉 a1−→ |2A〉 a2−→ |3A〉 described by
C (1)

3 (τ ) and |3A〉 a2−→ |2A〉 a1−→ |4A〉 described by C (3)
4 (τ ), as

sketched in Fig. 3(a). These two cascaded emissions channels
behave as each other’s reverse time orderings with the form
of incoherent superposition irrespective of detection orders,
and their contributions to the full two-photon statistics are
extracted in Fig. 2(b). Obviously, this is in contrast to the case
of single-atom Mollow triplet where, for resonant driving,
the completely destructive interference of antisymmetric time
orderings between one of the Rabi sidebands and the central
band gives rise to the complete antibunching effect g(2)

RC = 0
for isochronous detection [47,48,51].

If the atomic population is approximately trapped in a
specific dressed state, the situation is intrinsically different
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from that of evenly triggered time orderings, as shown in
Fig. 2(c). Here we should point out that it has been noticed in
Ref. [52] that a specific time ordering of single-atom Mollow
triplet can be protruded by approximately trapping the dressed
atom in a single dressed state via large laser detuning. This
foundational dressed-state radiative dynamics serves as the
first step in our scheme to prepare desired time ordering.
Considering that the dressed-state transitions generating the
right Rabi sideband cannot be triggered by the collective lower
dressed state |4A〉, we thus enforce the dressed two-atom sys-
tem via properly detuned driving laser to emit preferentially
from the dressed state |1A〉. Consequently, only the probability
amplitudes C (1)

2 (τ ) and C (1)
3 (τ ) with the relevant directional

functions in Table I are privileged, predominantly contributing
to the full two-photon statistics as shown in Fig. 2(d). In
view of the fact that the directional properties of this group
of two-mode photon pair are completely separated such that
�

(k)
j (θ1, θ2) = �±(θ1)�±(θ2), we can determine the geomet-

ric conditions of the two quantum sensors respectively to
control the temporal two-color photon statistics. For positive
time delay, the geometric conditions to achieve enhancement
of only positive time ordering and thus strong bunching effect
only for positive time delay are determined by

∂�±(θ1)

∂θ1
= 0 and

∂2�±(θ1)

∂θ2
1

< 0, (16a)

∂�−(θ2)

∂θ2
= 0 and

∂2�−(θ2)

∂θ2
2

< 0, (16b)

for the sensor modes a1 and a2, respectively, or equivalently

θ1 = n1π, (17a)

or cos θ1 = n1
λ

2r12
, (17b)

for the sensor mode a1 with n1 ∈ {0,±1,±2, . . .}, and

θ2 = n2π, (18a)

or cos θ2 =
(

n2 + 1

2

)
λ

r12
, (18b)

for the sensor mode a2 with n2 ∈ {0,±1,±2, . . .}. Here in
addition to the conditions of principal maximum of the two-
photon probability component |C (1)

2 (τ )|2 or |C (1)
3 (τ )|2 given

by Eqs. (17b) and (18b), the distance-independent conditions
(17a) and (18a) are also considered to determine the sec-
ondary maximum, especially when the condition of principal
maximum (18b) cannot be satisfied if r12 < λ/2. Obviously,
conditioned on the angular combinations (θ1, θ2) determined
by Eqs. (17b) and (18b), if the detection order is reversed,
i.e., for negative time delay, only reverse time ordering can be
probed. This means that the privileged time ordering can be
deterministically prepared. Similarly, for negative time delay,
the conditions to achieve the enhancement of only positive
time ordering are still given by Eq. (16a) or Eqs. (17a) and
(17b), but the corresponding conditions for the sensor mode
a2 are now determined by

∂�+(θ2)

∂θ2
= 0 and

∂2�+(θ2)

∂θ2
2

< 0, (19)
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FIG. 4. (a) Angular distribution of the radiation intensities
G(1)

R (θ1) and G(1)
C (θ2) for the laser detuning �L = −100γ . The blue

dashed line corresponds to G(1)
R (θ1), and its direction-independent

feature is persisted to the variation of the subwavelength interatomic
distance r12(∼ λ). The red solid line and red circular line correspond
to G(1)

C (θ2) for r12 = λ/2 and λ, respectively. All the other param-
eters are the same as in Fig. 2. (b), (c) Angular distribution and
combination of g(2)

RC(θ1, 0; θ2, τ ) for (b) r12 = λ/2 and (c) r12 = λ

at which the strong bunching effect only for positive time delay as
shown in Fig. 2(c) can be achieved. The blue solid arrows and red
dashed arrows represent the emission directions of the right-sideband
photons and central-band photons, respectively.

or equivalently

θ2 = n2π, (20a)

or cos θ2 = n2
λ

r12
, (20b)

with n2 ∈ {0,±1,±2, . . .}. However, whether the bunching
effect can be effectively prepared in each angular combi-
nation determined by Eqs. (18b) and (20b) requires us to
further check the angular distribution of single-photon filtered
radiation intensities, i.e., the first-order field correlations. Fig-
ure 4(a) presents the single-side (0 � θ1, θ2 � π ) angular
distribution of G(1)

R (θ1) and G(1)
C (θ2) under detuned driving,

from which we can observe that the radiation intensity of
the Rabi sideband photons [blue dashed line in Fig. 4(a)]
is drastically insensitive to the spatial directionality in con-
trast to that of the central-band photons [red solid line and
red circular line in Fig. 4(a)]. For r12 = λ/2, the spatially
destructive interference of single-photon emission of central-
band photons occurs along the atomic axis, i.e., the directions
θ2 = 0 and π [see red solid line in Fig. 4(a)], which are
just coincident with the condition of principal maximum
(18b), whereas the directions of principal maximum predicted
by Eq. (20b) for r12 = λ/2 are perpendicular to the atomic
axis, i.e., the directions θ2 = π/2 and 3π/2, corresponding
to the relatively strong directional focusing of single-photon
emissions [see red solid line in Fig. 4(a)] and thus weak
two-photon correlated emissions. Correspondingly, three di-
rections of principal maximum for the sensor mode a1 to
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achieve strong bunching effect can be predicted at θ1 =
0, π , π/2, and 3π/2, of which the angular combinations
(θ1, θ2) = (π/2, 0), (π/2, π ), (3π/2, 0), and (3π/2, π ) are
also generated from the incoherent superposition between the
two-photon cascaded emission channels |1A〉 a1−→ |3A〉 a2−→
|2A〉 and |2A〉 a2−→ |3A〉 a1−→ |4A〉 with opposite time order-
ings. Obviously, this is similar to the cases of (θ1, θ2) =
(0, 0), (0, π ), (π, 0), and (π, π ) corresponding to Fig. 3(a).
The optimum single-side angular combinations are sketched
in Figs. 4(b) and 4(c) for r12 = λ/2 and λ, respectively, to
achieve significant asymmetry of temporal photon statistics
and strong two-color bunching effect only for positive time
delay. Note that the emergence of the two extra directions of
the sensor mode a2 at θ2 = π/3 and 2π/3 in Fig. 4(c) (blue
arrows) is not only predicted by Eq. (18b), but also due to
the suppression of single-photon emissions, as demonstrated
in Fig. 4(a) (red circular line).

B. Space-time photon correlations between sidebands

We now proceed to correlate the Mollow photons from
the right (R) Rabi sideband and the left (L) Rabi sideband
at different space-time points. For the sake of consistency,
positive time delay corresponds to the detection of a left-
sideband photon resolved by the sensor mode a2 at the time
t + τ conditioned on the detection of a right-sideband photon
resolved by the sensor mode a1 at the earlier time t , while
negative time delay corresponds to the reverse detection order.
The perturbation master equations (11a) and (11b) in the case
of broad filtering enable us to analyze the space-time quantum
characteristics of G(2)

RL(θ1, 0; θ2, τ ) by its analytic solution

G(2)
RL(θ1, 0; θ2, τ ) = ρ11

∣∣C (1)
1 (τ )

∣∣2 + ρ44

∣∣C (4)
4 (τ )

∣∣2

+ ρ22
[∣∣C (2)

2 (τ )
∣∣2 + ∣∣C (2)

3 (τ )
∣∣2]

+ ρ33
[∣∣C (3)

2 (τ )
∣∣2 + ∣∣C (3)

3 (τ )
∣∣2]

. (21)

As we expected, its symmetric analytic structure is the em-
bodiment of the physical equivalence of the dressed-state
transitions of opposite Rabi sidebands. In the language of
the two-photon cascaded emission amplitudes of positive and
reverse time orderings introduced in Eqs. (15a) and (15b),
the two-photon probability amplitudes in Eq. (21) for positive
time delay (τ > 0) are solved as

C (1)
1 (τ ) = g12g21F (+)

1→2(τ ) + g13g31F (+)
1→2(τ ),

C (2)
2 (τ ) = g24g42F (+)

1→2(τ ) + g21g12F (−)
1→2(τ ),

C (2)
3 (τ ) = g34g42F (+)

1→2(τ ) + g31g12F (−)
1→2(τ ),

C (3)
2 (τ ) = g24g43F (+)

1→2(τ ) + g21g13F (−)
1→2(τ ),

C (3)
3 (τ ) = g34g43F (+)

1→2(τ ) + g31g13F (−)
1→2(τ ),

C (4)
4 (τ ) = g42g24F (−)

1→2(τ ) + g43g34F (−)
1→2(τ ), (22)

where the analytic forms of F (+)
1→2(τ ) and F (−)

1→2(τ ) are still
given by Eqs. (15a) and (15b), but the sensor detuning δ2

should be redefined as δ2 = �2 + �̄ = ν2 − ω− due to the
near-resonance tuning of the sensor mode a2 to the left Rabi
sideband. Correspondingly, the probability amplitudes for
negative time delay can still be obtained straightforwardly by

replacing F (+)
1→2(τ ) and F (−)

1→2(τ ) in Eq. (22) with F (−)
2→1(τ ) and

F (+)
2→1(τ ), respectively. One can notice clearly from Eq. (22)

that C (2)
2 (τ ), C (2)

3 (τ ), C (3)
2 (τ ), and C (3)

3 (τ ) have the common an-
alytic framework as in Eq. (14), i.e., the quantum interference
between positive time ordering and reverse time ordering.
However, the other two, C (1)

1 (τ ) and C (4)
4 (τ ), are given by

the quantum interference of same time orderings, such as
the quantum interference between the positive time order-
ings |1A〉 a1−→ |2A〉 a2−→ |1A〉 and |1A〉 a1−→ |3A〉 a2−→ |1A〉, as
sketched in Fig. 3(b). This is in contrast to the previous group
of photon pair (R, C). The explicit forms of the left-sideband
effective coupling rates are given by g24 = −g12 = g3χ− and
g13 = g34 = −g3χ+. The directional functions responsible
for the angular properties of each correlation component in
Eq. (21) are listed in Table II, in which the new directional
function �

(1)+
1 (θ1, θ2) = �

(4)−
4 (θ1, θ2) = 2 + 2 cos(η1 + η2),

compared with Table I, is the consequence of the quantum
interference between the two-photon cascaded channels with
same time orderings.

We first consider the case of resonant laser driving to probe
the full distribution of time orderings in this group of Mollow
spectral combination. In order to reveal the contributions of
the new directional function to the full two-photon intensity-
intensity correlation, which arise from the time orderings
triggered by the dressed states |1A〉 and |4A〉, we may consider
the geometric conditions that maximize the new directional
function �(θ1, θ2) = cos(η1 + η2). For a given detection an-
gle θ1, the geometric conditions are given by

∂�(θ1, θ2)

∂θ2
= 0 and

∂2�(θ1, θ2)

∂θ2
2

< 0, (23)

or equivalently

θ2 = n2π, (24a)

or cos θ1 + cos θ2 = n2
λ

r12
, (24b)

under which the secondary maximum of the new directional
function �(θ1, θ2) and the principal maximum �(θ1, θ2) = 1
can be achieved, respectively. One can see that Eq. (24b)
allows the two detection angles to be tuned continuously.
Figure 5(a) shows the strictly symmetric temporal behavior
of the two-color photon statistics g(2)

RL(θ1, 0; θ2, τ ) of arbi-
trary delay for �L = 0, r12 = λ/2, and a possible angular
combination (θ1, θ2) = (0, π ), in which the analytic solution
[red solid line in Fig. 5(a)] and numerical solution [black
dashed line in Fig. 5(a)] are compared. In the short delay
region, two pronounced temporal correlation peaks can be
observed clearly, which are the consequence of the positive
time orderings triggered by the dressed states |1A〉 and |4A〉
respectively. This can be demonstrated in Fig. 5(b) by split-
ting g(2)

RL(θ1, 0; θ2, τ ) into four correlation components in short
delay region according to the dressed populations with the
help of the short-delay analytic solution given by Eq. (21).
It can be seen clearly that the temporal characteristics of
g(2)

RL(θ1, 0; θ2, τ ) are completely determined by the incoherent
superposition of the time orderings triggered by the dressed
states |1A〉 and |4A〉, whereas the direction dependence of time
orderings triggered by the other two dressed states disap-

063702-8



GEOMETRICALLY ENGINEERED TWO-COLOR TIME … PHYSICAL REVIEW A 106, 063702 (2022)

TABLE II. Directional functions controlling the two-photon correlation components |C (k)
j (τ )|2 between the two opposite Rabi sidebands

(R, L) for positive and reverse time orderings in the cases of positive and negative time delays. The two-photon emission channels |kA〉 a1−→
|k′

A〉 a2−→ | jA〉 or |kA〉 a2−→ |k′
A〉 a1−→ | jA〉 are indicated by the corresponding final-state two-photon probability amplitude C (k)

j (τ ).

Two-photon Positive (Reverse) time Reverse (Positive) time Time-ordering
channel ordering for τ > 0(τ < 0) ordering for τ > 0(τ < 0) interference

|C (1)
1 (τ )|2 2 + 2 cos(η1 + η2) 0 0

|C (2)
2 (τ )|2 (1 − cos η1)(1 − cos η2) (1 − cos η1)(1 − cos η2) 2(1 − cos η1)(1 − cos η2)

|C (2)
3 (τ )|2 (1 − cos η1)(1 + cos η2) (1 + cos η1)(1 − cos η2) −2 sin η1 sin η2

|C (3)
2 (τ )|2 (1 + cos η1)(1 − cos η2) (1 − cos η1)(1 + cos η2) −2 sin η1 sin η2

|C (3)
3 (τ )|2 (1 + cos η1)(1 + cos η2) (1 + cos η1)(1 + cos η2) 2(1 + cos η1)(1 + cos η2)

|C (4)
4 (τ )|2 0 2 + 2 cos(η1 + η2) 0

pears completely. This distribution of time orderings indicates
that it is entirely possible for positive time ordering to be
prepared deterministically without the accompany of reverse
time ordering, which may generate more strongly bunched
two-color photon statistics. Figure 5(c) shows the significant
asymmetry of temporal photon statistics prepared by the
laser field with appropriately large detuning, under which
the dressed two-atom system is predominantly trapped in the
dressed state |1A〉. In this case, the stronger temporal two-
color bunching effect can be generated only for the specific
detection order of positive time delay. Figure 5(d) further
reveals the correlation components triggered by each dressed
states. It can be seen that the positive time ordering triggered
by the dressed state |4A〉 [magenta circular line in Fig. 5(d)]
for negative time delay is significantly suppressed, whereas
the full two-photon statistics is predominantly contributed by
the two-photon strongly correlated emissions triggered by the
dressed state |1A〉 [red dashed line in Fig. 5(d)]. In this cir-
cumstance, the constructive quantum interference between the
positive time orderings of two two-photon cascaded emission
channels |1A〉 a1−→ |2A〉 a2−→ |1A〉 and |1A〉 a1−→ |3A〉 a2−→ |1A〉
is established, as sketched in Fig. 3(b), and can be probed only
under the detection order of positive time delay.

Now let us return to the conditions (24a) and (24b) again
for some additional interesting properties. It should be pointed
out that whether the directions at θ2 = 0 or θ2 = π can max-
imize the new directional function �(θ1, θ2) depends on the
first observation angle θ1. Only in the range of 0 � θ1 � π/2
does the direction θ2 = 0 correspond to the secondary maxi-
mum., whereas if π/2 � θ1 � π , the secondary maximum is
switched to the opposite direction θ2 = π . This means that, for
the secondary maximum of two-photon correlation for posi-
tive time delay, the same detection angle cannot be achieved
and the angular combination (θ1, θ2) is always directionally
asymmetric. This is different from the detection angles of
principal maximum of two-photon correlation, which can be
equal or distributed symmetrically. For r12 = λ/2, the angular
combinations (θ1, θ2) = (0, 0), (π, π ), and (θ1, π ± θ1) for
the principal maximum of two-photon correlation can be pre-
dicted by Eq. (24b), at which the two quantum sensors receive
photons synchronously along the atomic axis, as sketched in
Fig. 6(a), or are strictly symmetric with respect to the vertical

line of the atomic axis, as sketched in Figs. 6(b) and 6(c) (blue
solid arrows and green dashed arrows).

C. Space-time nonclassical correlations

We now further explore the space-time nonclassical prop-
erties of the two-atom strongly correlated Mollow photons
generated by the above two schemes. The nonclassical cor-
relation of radiation fields can be effectively tested by the
Cauchy-Schwarz inequality in terms of the intensity-intensity
correlations of radiation fields. In view of the fact that both
the frequency-resolved version and multipoint space-time-
dependent version of the Cauchy-Schwarz inequality have
been proposed in Refs. [53–55], it is straightforward to gen-
eralize the intensity-intensity Cauchy-Schwarz inequality into
the frequency-space-time-resolved version for our system in
terms of the sensor modes, which takes the form of

R12 =
[
G(2)

12 (θ1, 0; θ2, τ )
]2

G(2)
1 (θ1)G(2)

2 (θ2)
� 1, (25)

where the single-point two-photon intensity-intensity correla-
tion functions G(2)

l (θl )(l ∈ {1, 2}) can be obtained by setting
the two quantum sensors to be synchronous, i.e., ν1 = ν2

and R1 = R2. The violation of the Cauchy-Schwarz inequal-
ity, i.e., R12 > 1, indicates the nonclassical correlation of
radiation fields in different space-time points. To investigate
the influence of the intensity-intensity autocorrelations of the
two-atom Mollow photons in Eq. (25) on the space-time
nonclassical correlation properties, we plot their angular dis-
tributions for a large laser detuning in Fig. 7. By comparing
with the single-photon radiation intensities in Fig. 4(a), it
can be found that the angular distributions of intensity and
intensity-intensity autocorrelation are qualitatively similar.
For the central-band Mollow photon, both the intensity and
intensity-intensity autocorrelation are maximal in the direc-
tion θ2 = π/2 and are suppressed in the directions θ2 = 0
and π for r12 = λ/2. However, the intensity-intensity au-
tocorrelation of Rabi sideband photon still cannot display
directionality. This suggests that the spatial-temporal behav-
ior of the Cauchy-Schwarz inequality parameters should be
coincident with that of the two-color two-photon statistics
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FIG. 5. Two-photon correlation g(2)
RL(θ1, 0; θ2, τ ) and the corre-

sponding correlation components. (a), (b) Two-photon correlations
for �L = 0 and (θ1, θ2) = (0, π ). (c), (d) Two-photon correlations
for �L = −100γ and (θ1, θ2) = (0, π ). Other parameters are � =
100γ , κ = 10γ , δ1 = 0, δ2 = 0, and r12 = λ/2. (a), (c) Comparison
of the analytic solutions of arbitrary time delay (red solid lines)
with broad filtering approximation and the numerical solutions of
arbitrary time delay (black dashed lines) with the spontaneous decay
rates of the atoms considered in Eq. (11b). (b), (d) Components
of the full value of g(2)

RL(θ1, 0; θ2, τ ) (black solid lines) triggered by
the dressed states |1A〉 (red dashed lines), |2A〉 (green dotted-dashed
lines), and |4A〉 (magenta circular line).

discussed in the above. In physical terms, the single-photon
emission of central-band photon does not affect the single-
atom dressed state. Thus the two-photon emission triggered
by the initial dressed state |1A〉, for example, is gener-
ated only from the single two-photon cascaded transition
|1A〉 → |1A〉 → |1A〉 without two-channel quantum interfer-
ence, in which the spatial phase congruency of the cascaded
single-photon transitions is maintained. Therefore, the di-
rectionality of two-photon state of the central-band photon
is coincident with that of single-photon state. However, the
sideband photon pairs are generated by the two-channel quan-
tum interference |1A〉 → |2A〉 → |4A〉 and |1A〉 → |3A〉 →
|4A〉, in which the destructive interference of internal-state

1 2 1 2

(a)

(c)

1 2

(b)

FIG. 6. Angular distribution and combination of g(2)
RL(θ1, 0; θ2, τ )

for r12 = λ/2 at which the pronounced asymmetry of temporal pho-
ton statistics and strong bunching effect only for positive time delay
as shown in Fig. 5(c) can be achieved. The blue solid arrows repre-
sent the emission directions of the right-sideband photons. The green
dashed and green dotted arrows represent the emission directions
of the left-sideband photons, at which the principal maximum and
secondary maximum can be probed, respectively. (a) The principal
maximum is determined by cos θ1 + cos θ2 = ±2, i.e., θ1 = θ2 = 0
or π . (b), (c) The principal maximum is determined by cos θ1 +
cos θ2 = 0, i.e., θ1 = π ± θ2, while the secondary maximum is deter-
mined by θ2 = 0 (green dotted arrow) for 0 � θ1 � π/2 (blue solid
arrow) in (b) or θ2 = π (green dotted arrow) for π/2 � θ1 � π (blue
solid arrow) in (c).

transitions eliminates the relative spatial phase of the two-
photon cascaded channels, with the consequence of the
directionally uniform two-photon emission. We present the
spatial-temporal distributions of the Cauchy-Schwarz inequal-
ity parameter RRC between the right Rabi sideband and the
central band in Figs. 8(a) and 8(b) for different interatomic
distances r12 = λ/2 and λ conditioned on the direction θ1 =
0, and the Cauchy-Schwarz inequality parameter RRL be-
tween the opposite Rabi sidebands in Figs. 8(c) and 8(d) for
different directions θ1 = 0 and π/4. It can be seen clearly
that the directions of giant violations of the Cauchy-Schwarz
inequality are in accordance with the directions of bunching
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FIG. 7. Angular distribution of the frequency-resolved intensity-
intensity autocorrelations G(2)

R (θ1) and G(2)
C (θ2) for the laser detuning

�L = −100γ . The blue dashed line correspond to G(2)
R (θ1), and its

direction-independent feature persists to the variation of the sub-
wavelength interatomic distance r12(∼ λ). The red solid line and red
circular line correspond to G(2)

C (θ2) for r12 = λ/2 and λ, respectively.
Other parameters are � = 100γ , κ = 10γ , δ1 = 0, δ2 = 0, and
θ1 = 0.
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FIG. 8. Contour plot of the Cauchy-Schwarz inequality param-
eters RRC and RRL as functions of the time delay τ and the
observation angle θ2. (a), (b) RRC for θ1 = 0 and (a) r12 = λ/2 and
(b) r12 = λ. (c), (d) RRL for r12 = λ/2 and (c) θ1 = 0 and (d) θ1 =
π/4. Other parameters are � = 100γ , �L = −100γ , κ = 10γ , δ1 =
0, and δ2 = 0.

effect predicted by the geometric conditions we discussed
in the above. In particular, one can see from Fig. 8(d) that
the violation of the Cauchy-Schwarz inequality displayed by
the secondary maximum of g(2)

RL(θ1, 0; θ2, τ ) can be also pro-
nounced in the direction θ2 = 0. It is worth noting that the
violations of the Cauchy-Schwarz inequality of the Mollow
resonance fluorescence have been noticed in the Dicke model
[56] and the laser-dressed atomic ensemble [57] led by the
two-photon resonance between two laser photons and Mollow
photon pair.

IV. COMPARISONS

We would like to finish our discussion by comparing the
present work with some previous work to show some con-
nections and principal differences between the subwavelength
laser-dressed two-atom system and the laser-dressed Dicke
model [56,58] and the laser-dressed atomic ensemble [57].

A. Comparison with the Dicke model

In Refs. [56,58] the Mollow spectral correlations and non-
classicality were investigated in the Dicke model in which the
equal-time anticorrelation between the sideband photons and
central-band photons was discovered. However, in the present
work, the bunching effect (strong correlation) of this two-
color spectral combination is predicted in some directions.
This indicates that the Mollow photon pairs of same two-
color spectral combinations can exhibit qualitatively different
photon statistical properties from different atomic geomet-
ric configurations. Let us take two-atom Dicke model as
an example for our analysis. For the subwavelength dressed
two-atom system, if we work in the collective dressed-state
picture |1̃(4̃)A〉 = |±1〉|±2〉 and |2̃(3̃)A〉 = |±1〉|∓2〉, and still
consider the case that the sensor modes a1 and a2 are tuned
to be on resonance with the right Rabi sideband and central
band, respectively, the filtering Hamiltonian is given by

H̃I = g̃1[eik·r1 (R̃31 + R̃42) + eik·r2 (R̃21 + R̃43)]a†
1

+ g̃2[χ+(R̃11 − R̃44) + χ−(R̃22 − R̃33)]a†
2

+ H.c., (26)

where R̃μμ′ = |μ̃A〉〈μ̃′
A| is the transition operator between the

collective dressed states, and g̃1 = g1 = −gcos2 φ and g̃2 =√
2 sin φ cos φ are the effective filtering coupling rates. The

far-field spatial interference factors χ± = (eik·r1 ± eik·r2 )/
√

2
have been introduced in the above analytic formalism. How-
ever, the Dicke model refers to the collective atomic system
in which all the atoms are confined to a small volume with
the spatial scale much smaller than the radiation wavelength
[35]. The filtering Hamiltonian (26) thus can be simplified to
the form of two-atom Dicke model by assuming all the spatial
phase factors to be equal and eik·r j = eik·r12 = 1 [35], yielding
the filtering Hamiltonian of the laser-dressed two-atom Dicke
model

H̃ (Dicke)
I = g̃1(R̃21 + R̃31 + R̃42 + R̃43)a†

1

+
√

2g̃2(R̃11 − R̃44)a†
2 + H.c. (27)

Comparing the Hamiltonians (26) and (27), one can see
that the central-band dressed-state transitions R̃22 and R̃33

vanish in the two-atom Dicke model due to the completely
destructive interference (χ− = 0). As depicted in Fig. 9(a),
according to the Hamiltonian (27), there are four dressed-state
transitions in the two-atom Dicke model that can generate
right-sideband photons (blue arrows), but only two of them
successively trigger the emissions of central-band photons
(red solid arrows). This indicates that, conditioned on a
central-band photon, the conditional probability of detecting
a right-sideband photon is less than the independent prob-
ability of detecting a right-sideband photon, giving rise to
the anticorrelation in Ref. [58]. However, for the subwave-
length two-atom system, as described by the Hamiltonian (26)
and depicted in Fig. 9(a), due to the presence of the spatial
phase factors, two additional two-photon cascaded emission
channels |1̃A〉 → |2̃A〉 → |2̃A〉 and |1̃A〉 → |3̃A〉 → |3̃A〉 are
recovered (red dashed arrows), which can be prominent to
be detected in some directions by preparing the particular
dressed state |1̃A〉 = |+1〉|+2〉. This indicates that once this
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FIG. 9. Energy-level scheme of two-photon cascaded emissions
in laser-dressed two-atom system (the two-atom Dicke model or the
subwavelength two-atom system) in (a) two-atom collective dressed-
state picture and (b) two-atom superposed dressed-state picture. The
blue arrows and red arrows represent the dressed-state transitions
generating the Mollow photons of the right (R) sideband and central
(C) band, respectively, labeled by their respective sensor modes a†

1

and a†
2. The red dashed arrows represent the dressed-state transitions

that cannot occur in the two-atom Dicke model due to completely
destructive interference.

pair of privileged channels operates as positive time ordering,
relatively large bunching can be probed. The same physical
mechanism can also be gained if the energy-level diagram
in Fig. 9(a) is transformed into the superposed dressed-state
picture in Fig. 9(b) and can be generalized to the case of a
large number of atoms in Ref. [58].

B. Comparison with the laser-dressed atomic ensemble

In Ref. [57] the theoretical work was devoted to the di-
rectional two-photon statistical properties and nonclassicality
of the Mollow photons scattered from a strong laser-driven
atomic ensemble, in which the strong correlations between
different Mollow spectral lines of the propagation vectors
k1 and k2 respectively are highly concentrated into the di-
rection of propagation of the laser field, specified by the
condition k1 + k2 ≈ 2kL. This single directionality is due
to the configuration averaging procedure for interatomic dis-
tance vectors ri j with the spatial interference that arises from
the internal geometric structures of the collective radiating
source being washed out. Thus the directionality is deter-
mined only by and with respect to the external laser field,
leading to the more strongly correlated scattering of only
the Mollow photon pairs that satisfy the two-photon reso-
nance k1 + k2 ≈ 2kL. However, in contrast to the atomic
ensemble, for the subwavelength two-atom system as well
as other multiatom systems with regular geometric configu-
rations, such as one-dimensional atomic chains [17,59], the
spatial distribution of their radiative properties is not only

determined by the incident direction of the laser field, but
also determined exquisitely by the spatial coherence led by
the internal geometric structures, i.e., the spatial phase factor
eik·r j , which plays a key role in classical antenna theory [9]. In
other words, the fineness of geometry and the resulting sensi-
tivity of directionality of laser-driven atomic ensembles are
between single-atom systems and subwavelength collective
atomic systems. Compared with single-atom systems, laser-
driven atomic ensembles have been provided with a certain
ability to generate directionality, but it is not as rich as that
generated by subwavelength collective atomic systems with
regular geometry.

V. CONCLUSION AND PERSPECTIVES

We unveiled the space-time relationship between the time-
domain two-color photon statistics and the spatial direction-
ality of the frequency-resolved collective Mollow resonance
fluorescence radiated from a laser-dressed two-atom system,
and proposed the theoretical schemes of generating time-
domain strongly correlated two-color Mollow photon pairs
with high directionality and nonclassicality.

We constructed the spatial two-point photon filtering by
applying a pair of quantum sensors, whose frequencies are
tuned to be on resonance with different characteristic fre-
quencies of the Mollow triplet. Under the condition of broad
filtering bandwidth, we solved analytically the intensity-
intensity two-time correlations of the filtered Mollow photons
in terms of the sensor modes for different Mollow spectral
combinations. The obtained analytic formalism enables us to
analyze the directional properties of time orderings, which
is the core concept that closely connects time and space.
For the Mollow spectral combination between one of the
Rabi sidebands and the central band, a pair of two-photon
cascaded emission channels triggered by different dressed
states with positive time ordering and reverse time ordering
respectively can be identified in some specific two-point di-
rection combinations in the form of incoherent superposition.
Under detuned driving, the dressed two-atom system is en-
forced to emit only through the single two-photon cascaded
emission channel of positive time ordering. As a conse-
quence, strongly bunched two-color Mollow photon pairs
can be detected in some specific two-point direction com-
binations only for a specific two-photon detection order. As
for the Mollow spectral combination between the opposite
Rabi sidebands, a pair of two-photon cascaded emission
channels both with positive time orderings can be triggered
by the dressed state in which the dressed two-atom sys-
tem is predominantly trapped by detuned driving. Thus,
the constructive quantum interference between positive time
orderings can be witnessed. We elucidated the geometric con-
ditions under which the strongly bunched two-color Mollow
photon pairs of this spectral combination also can be detected
only for a specific two-photon detection order. By examin-
ing the space-time-dependent Cauchy-Schwarz inequalities
of the frequency-resolved version, we further verified that
both the temporal bunching effects of these two Mollow
spectral combinations generated by the proposed geomet-
ric schemes are nonclassical. In addition, we presented a
brief comparison of the photon statistical properties and
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directionality generated by the subwavelength laser-dressed
two-atom system and the Dicke model and the laser-dressed
atomic ensemble.

Further ideas of this work can be considered from the
following aspects: One is that the laser-dressed two-atom
system can be placed in the quantum optical platforms with
modified electromagnetic reservoir. This may be conducive to
further improve the degrees of superbunching and directional
focusing by the Purcell effect. The second is that the dressed
two-atom system in free space can be generalized to the mul-
tiatom systems with more complex geometric configurations,
in which all the atoms can be driven by a strong laser field,
or only atoms at specific positions can be selectively driven.
This conception caters to the current hot research frontier of
multiatom array-type antennas with subwavelength spacing.
In addition, the multipoint space-time quantum characteristics
can be considered, which may open a full landscape of the

space-time quantum characteristics of Mollow multiphoton
physics. This work has set a theoretical groundwork for this
problem. We hope that this work could enable the laser-
dressed two-atom antenna to be harnessed in the designs of
nonclassical light sources and quantum radars, and in the
research fields of atom-photon-based quantum precision mea-
surement physics and Mollow spectroscopy.
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