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Higher-order exceptional points in the spectrum of non-Hermitian Hamiltonians describing open quantum
or wave systems have a variety of potential applications, in particular in optics and photonics. However, the
experimental realization is notoriously difficult. Recently, Zhong et al. [Q. Zhong, J. Kou, Ş. K. Özdemir, and R.
El-Ganainy, Phys. Rev. Lett. 125, 203602 (2020)] have introduced a robust construction where a unidirectional
coupling of two subsystems having exceptional points of the same order leads generically to a single exceptional
point of twice the order. Here, we investigate this scheme in a different manner by exploiting the nilpotency of
the traceless part of the involved Hamiltonians. We generalize the scheme and derive a simple formula for the
spectral response strength of the composite system hosting a higher-order exceptional point. Its relation to the
spectral response strengths of the subsystems is discussed. Moreover, we investigate nongeneric perturbations.
The results are illustrated with an example.
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I. INTRODUCTION

The recent years have witnessed an enormous progress in
the understanding and the experimental realization of open
quantum systems and open classical wave systems. This has
stimulated a paradigmatic shift in the idea that dissipation
should not always be considered as a bug but as a feature.
These potentially useful, physically interesting, and often
counterintuitive effects of dissipation are particularly promi-
nent near special degeneracies called “exceptional points”
(EPs) [1,2]. At an EP of order n (EPn) exactly n eigenvalues
and the corresponding eigenstates of the effective Hamiltonian
Ĥ coalesce [3–6]. This is in strong contrast to conventional
degeneracies, so-called diabolic points [7], where only the
eigenvalues coalesce. The existence of an EP requires Ĥ to
be non-normal, [Ĥ, Ĥ†] �= 0. This is a stronger condition than
non-Hermiticity, Ĥ �= Ĥ†. EPs are not just curious mathe-
matical objects; they have been realized experimentally, first
in microwave cavities [8,9], and later in optical microcavi-
ties [10–12], coupled atom-cavity composites [13], photonic
lattices [14], semiconductor exciton-polariton systems [15],
and ultrasonic cavities [16].

When a Hamiltonian Ĥ with an EPn is subjected to a small
perturbation of strength ε > 0,

Ĥ = Ĥ + εĤ1, (1)

then the resulting energy (or frequency) splittings are typi-
cally proportional to the nth root of ε [3]. For sufficiently
small perturbations this is larger than the linear scaling near
a diabolic point, which can be exploited for sensing applica-
tions [17–19]. A number of experiments have demonstrated
the feasibility of EP-based sensors [20–29]. The enhanced
response can be quantified with a single quantity, the spectral
response strength ξ [30,31].
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The high sensitivity of EPs has also a drawback: Fabrica-
tion requires a delicate fine tuning of experimental parameters,
in particular for higher-order EPs. One solution to this
problem is exceptional surfaces [32,33] embedded in a higher-
dimensional parameter space. Robust EP-based sensing can
be achieved if the system’s response is tailored such that a
large class of fabrication errors and experimental uncertain-
ties shift the operation point along the exceptional surface.
Perturbations that drive the parameters away from the surfaces
cause an EP-enhanced energy splitting. Exceptional surfaces
have been suggested for optical amplifiers [34], sensing [35],
control of spontaneous emission [36], and chiral perfect ab-
sorbers [37].

Another rather robust method to obtain higher-order EPs is
hierarchical construction [38]: two subsystems, each with an
EP of order n, are coupled in a unidirectional way resulting
in a composite system with an EP of order 2n. This method
provides a realistic route to higher-order EP-based devices.
The aim of this paper is to revisit the hierarchical construction
of higher-order EPs. Using a different mathematical approach
allows us to generalize the scheme, to determine the spectral
response strength, and to relate the latter to the response
strengths of the two subsystems.

The outline of the paper is as follows. In Sec. II the con-
cept of hierarchical construction of higher-order EPs is briefly
explained. Section III presents a different point of view and
an extension. In Sec. IV the relation to the spectral response
strength is discussed. Unidirectional-coupling preserving per-
turbations are investigated in Sec. V. An illustrative example
is considered in Sec. VI and a summary is given in Sec. VII.

II. HIERARCHICAL CONSTRUCTION

In this section we shortly review the hierarchical construc-
tion of higher-order EPs as developed in Ref. [38]. Starting
from two n × n Hamiltonians Ĥa and Ĥb each at an EP of order

2469-9926/2022/106(6)/063526(8) 063526-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2764-1660
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.063526&domain=pdf&date_stamp=2022-12-30
https://doi.org/10.1103/PhysRevLett.125.203602
https://doi.org/10.1103/PhysRevA.106.063526


JAN WIERSIG PHYSICAL REVIEW A 106, 063526 (2022)

n with the same eigenvalue EEP the 2n × 2n Hamiltonian

Ĥ =
(

Ĥa 0

K̂ Ĥb

)
(2)

is constructed. Assuming a generic choice of the n × n cou-
pling matrix K̂ the authors of Ref. [38] have shown by
carefully investigating the eigenvalue equation of Ĥ that it
has an EP of order 2n. The assumed generic choice of the
unidirectional coupling K̂ had been interpreted as a disorder-
immune behavior of the construction.

As a concrete experimental setup it was suggested to use
two evanescently coupled optical microrings each supporting
two modes, one traveling clockwise and one counterclock-
wise [38]. One of the microrings exhibits gain, and the other
one exhibits an equal amount of loss. The unidirectional cou-
pling can be achieved by evanescently coupling the lossy
microring to a semi-infinite waveguide with an end mirror. In
this way an EP4 is implemented in a robust manner.

Note that a unidirectional coupling in Eq. (2) does not
necessarily violate Lorentz reciprocity. It is true that for re-
ciprocal systems there is an orthonormal basis in which the
Hamiltonian Ĥ is represented by a complex-symmetric ma-
trix [39,40]. This basis consists of standing waves, which are
invariant under time reversal. In a different basis, however,
the same Hamiltonian Ĥ can be represented by an asymmetric
matrix. For instance, fully asymmetric backscattering of coun-
terpropagating waves in whispering-gallery cavities appears
in a traveling-wave basis as a unidirectional coupling, even
if the system is Lorentz reciprocal [12,41,42]. Other possibil-
ities to introduce a unidirectional coupling are via reservoir
engineering [43] and via space-time modulation [44]. If one
considers Liouvillian EPs [45,46] then a unidirectional cou-
pling in the matrix representation of the Liouville operator can
result from quantum jump terms in the master equation of the
open quantum system; see, e.g., the supplementary material
of Ref. [47].

III. EXPLOITING THE NILPOTENCY

An n × n Hamiltonian Ĥ at an EPn has an eigenvalue
EEP with algebraic multiplicity n but only one eigenvector
(the geometric multiplicity is 1). Hence, the trace of Ĥ is
TrĤ = nEEP. We introduce the traceless part of Ĥ ,

N̂ := Ĥ − EEP1, (3)

which exhibits the same properties as Ĥ except that all eigen-
values are shifted to zero. Here and henceforth 1 is the identity
with proper dimensions in the particular context. Although
not obvious here, it is known that N̂ is nilpotent of index n,
i.e., N̂n = 0 but N̂n−1 �= 0; see, e.g., Refs. [3,30,48,49]. The
property N̂n = 0 ensures that all eigenvalues of N̂ are zero and
N̂n−1 �= 0 ensures here that only one eigenvector of N̂ exists.
The above statement is also valid in the other direction: An
n × n Hamiltonian Ĥ = EEP1 + N̂ with N̂ being nilpotent of
index n has an EPn with eigenvalue EEP.

In the following we exploit the nilpotency to gain insight
into the hierarchical construction of higher-order EPs. For
didactic reasons we first restrict ourselves to the merging of
two EP2. For the traceless part of the Hamiltonians Ĥa and

Ĥb it then holds that N̂2
a = 0 and N̂2

b = 0. Plugging this into
Eq. (2) we get for the traceless part of Ĥ

N̂ =
(

N̂a 0
K̂ N̂b

)
, (4)

N̂2 =
(

0 0
K̂N̂a + N̂bK̂ 0

)
, (5)

N̂3 =
(

0 0
N̂bK̂N̂a 0

)
, (6)

and N̂4 = 0. Hence, Ĥ has an EP4 if and only if N̂bK̂N̂a �= 0.
In the special case N̂bK̂N̂a = 0, Ĥ has an EP3 if K̂N̂a + N̂bK̂ �=
0, otherwise it has an EP2.

This scheme can be easily extended not only to higher
order but also to merging EPs of different order, thereby going
beyond Ref. [38]. To do so, we consider here the general
situation where Ĥa has an EP of order na � 2 and Ĥb has
an EP of order nb � 2. The matrix dimensions are na × na

for Ĥa, nb × nb for Ĥb, nb × na for K̂ , and consequently
(na + nb) × (na + nb) for Ĥ . With N̂na

a = 0 and N̂nb
b = 0 it is

straightforward to show that

N̂na+nb−1 =
(

0 0
N̂nb−1

b K̂N̂na−1
a 0

)
(7)

and N̂na+nb = 0. Hence the Hamiltonian Ĥ has an EP of order
na + nb provided that

N̂nb−1
b K̂N̂na−1

a �= 0. (8)

Clearly, this condition is violated for special coupling ma-
trices, such as K̂ = N̂a or N̂b, but it holds for the generic
situation. However, what if K̂ is close to a nongeneric situ-
ation? This question was not addressed in Ref. [38]. We can
study it by using the concept of spectral response strength.

IV. SPECTRAL RESPONSE STRENGTH

We consider again a system described by an n × n Hamil-
tonian Ĥ hosting an EPn with eigenvalue EEP. In Ref. [30] it
has been shown that the system’s spectral response to pertur-
bations can be characterized by a single quantity, the spectral
response strength

ξ = ||N̂n−1||2 = ||N̂n−1||F, (9)

with the traceless part of the Hamiltonian N̂ in Eq. (3). Here
||·||2 is the spectral norm of a matrix Â (see, e.g., Ref. [49])

||Â||2 := max
||ψ ||2=1

||Âψ ||2, (10)

with the vector 2-norm ||ψ ||2 = √〈ψ |ψ〉 of a vector |ψ〉
based on the usual inner product in complex vector space.
|| · ||F is the Frobenius norm

||Â||F :=
√

Tr(Â†Â) =
√∑

i j

|Ai j |2 (11)

where Ai j are the matrix elements of Â in any orthonormal
basis. The following inequalities hold [50]:

||Â||2 � ||Â||F �
√

r||Â||2, (12)
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where r is the rank of Â. Hence, in the special case of a rank-1
matrix both matrix norms give the same result. This happens
in Eq. (9) where N̂n−1 has rank 1 as the matrix N̂ is nilpotent
of index n; see Ref. [30]. The spectral response strength ξ

[Eq. (9)] shows up as a factor in the bound of the change of
the eigenvalues Ej of the perturbed Hamiltonian in Eq. (1):

|Ej − EEP|n � ε||Ĥ1||2 ξ . (13)

Note that ||Ĥ1||2 and ||Ĥ1||F are in general not equal but
related by the inequalities (12). A large ξ indicates a strong
spectral response to generic perturbations in terms of large
energy splittings. It can therefore be used to distinguish the
spectral response of two EPs of the same order. Immediate
applications of this quantity are (i) assessing the suitability
of a design of an optical structure for EP-based applications
(calculating ξ in the discussed context is easy and can often
been done analytically even for higher-order EPs) and (ii)
finding strong-spectral-response regions within an exceptional
surface.

The spectral response strength of the hierarchically con-
structed Hamiltonian in Eq. (2) is according to Eq. (9) ξ =
||N̂na+nb−1||2. Note that because of the fact that N̂na+nb−1 has
rank 1 one can here use also the Frobenius norm to compute
ξ . With Eq. (7) one can easily derive the important result

ξ = ∣∣∣∣N̂nb−1
b K̂N̂na−1

a

∣∣∣∣
2 = ∣∣∣∣N̂nb−1

b K̂N̂na−1
a

∣∣∣∣
F. (14)

In the generic situation [see inequality (8)] this quantity is
nonzero, but it can be small close to a nongeneric situation.
In this sense Eq. (14) provides a straightforward way to reveal
the closeness to a nongeneric situation.

A. Upper bound

We can derive an upper bound for the response strength of
the composite system in Eq. (14) by using the submultiplica-
tivity of the spectral norm, i.e.,

||ÂB̂|| � ||Â|| ||B̂|| (15)

for all matrices Â and B̂; see, e.g., Ref. [49]. With the spectral
response strength

ξa = ∣∣∣∣N̂na−1
a

∣∣∣∣
2 (16)

associated with the Hamiltonian Ĥa and the spectral response
strength

ξb = ∣∣∣∣N̂nb−1
b

∣∣∣∣
2 (17)

associated with the Hamiltonian Ĥb it follows directly from
the submultiplicativity in inequality (15) that

ξ � ξaξb||K̂||2. (18)

Inequality (18) implies that a necessary condition for a strong
response strength of the hierarchically constructed higher-
order EP is that the upper bound ξaξb||K̂||2 is large. Hence, the
original lower-order EPs should each have a large response
strength and the coupling of the two EPs should be strong
enough in terms of ||K̂||2. Note that if the matrix K̂ contains
only one nonzero matrix element then this matrix is of rank 1.
For such matrices it follows again from the inequalities (12)
that ||K̂||2 = ||K̂||F. Hence, we can use here the Frobenius

norm which is easier to calculate. The individual response
strengths ξa and ξb can always be determined by using the
Frobenius norm.

B. Coupling amplitude

We consider the linearly independent Jordan vectors
| j1〉, . . . , | jn〉 of an EPn defined by the Jordan chain (see, e.g.,
Ref. [51])

N̂ | j1〉 = 0, (19)

N̂ | jl〉 = | jl−1〉 ; l = 2, . . . , n (20)

with the operator N̂ from Eq. (3). Only | j1〉 is an eigenstate
of the Hamiltonian, which is | j1〉 = |ψEP〉. The Jordan vectors
are not uniquely determined by Eqs. (19) and (20). This can
be fixed by the following conditions (see, e.g., Ref. [30]):

〈 j1| j1〉 = 1, (21)

〈 jn| jl〉 = 0 for l = 1, . . . , n − 1. (22)

With this normalization and orthogonalization it was shown in
Ref. [30] that the spectral response strength can be expressed
by the length of the “last Jordan vector”:

ξ = 1

|| jn||2 . (23)

For our two different EPs we introduce the normal-
ized EP eigenstates |ψEPa〉 and |ψEPb〉 and Jordan vectors
{| ja,1〉, . . . , | ja,na〉} and {| jb,1〉, . . . , | jb,nb〉} in the correspond-
ing subspaces. There we can write according to Eqs. (19)–(22)

N̂na−1
a = |ψEPa〉〈 ja,na |

|| ja,na ||22
(24)

and

N̂nb−1
b = |ψEPb〉〈 jb,nb |

|| jb,nb ||22
. (25)

This gives

N̂nb−1
b K̂N̂na−1

a = |ψEPb〉〈 jb,nb |K̂|ψEPa〉〈 ja,na |
|| jb,nb ||22|| ja,na ||22

. (26)

Using the Frobenius norm [Eq. (11)] in Eq. (14) we obtain

ξ =
√

Tr
(| ja,na〉|〈 jb,nb |K̂|ψEPa〉|2〈 ja,na |

)
|| jb,nb ||22|| ja,na ||22

. (27)

We define the two unit vectors

| j̃a,na〉 := | ja,na〉
|| ja,na ||2

, (28)

| j̃b,nb〉 := | jb,nb〉
|| jb,nb ||2

. (29)

Evaluating the trace in Eq. (27) in an orthonormal basis in the
subspace corresponding to the first EP (Ĥa) with one element
being the unit vector in Eq. (28) gives the result

ξ = ξaξb|〈 j̃b,nb |K̂|ψEPa〉|, (30)
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where we have also utilized Eqs. (16), (17), (23), and (29).
The more specific Eq. (30) is fully consistent with the inequal-
ity (18). It allows us to determine the response strength of the
resulting EP in terms of the response strengths of the individ-
ual EPs, ξa and ξb, and the coupling amplitude 〈 j̃b,nb |K̂|ψEPa〉.
Interestingly, the latter is not symmetric with respect to the
two subsystems a and b. This asymmetry originates from
the unidirectional coupling of the two subsystems. Another
benefit of Eq. (30) is that it provides a possibility to design the
unidirectional coupling in order to maximize the spectral re-
sponse at the resulting higher-order EP. For fixed properties of
the original lower-order EPs and fixed total coupling strength,
measured, e.g., by ||K̂||2, the coupling matrix K̂ can be chosen
such that |〈 j̃b,nb |K̂|ψEPa〉| is maximized.

V. UNIDIRECTIONAL-COUPLING PRESERVING
PERTURBATIONS

In this section we show that all unidirectional-coupling
preserving perturbations

Ĥ1 =
(

Ĥ1,a 0

K̂1 Ĥ1,b

)
(31)

are nongeneric in the sense that they do not lead to the naively
expected nth-root splitting of the eigenvalues of the Hamilto-
nian at an EPn with n = na + nb. The highest-order generic
contribution to the energy splitting is

(Ej − EEP)n = εTr(N̂n−1Ĥ1). (32)

This equation is proven in the Appendix.
From Eq. (7) with n = na + nb we can derive

N̂n−1Ĥ1 =
(

0 0
N̂nb−1

b K̂N̂na−1
a Ĥ1,a 0

)
. (33)

From the obvious fact Tr(N̂n−1Ĥ1) = 0 it follows that the
highest-order contribution of the energy splitting in Eq. (32)
is zero. Hence, the rather general looking perturbation in
Eq. (31), which perturbs the two subsystems and the uni-
directional coupling in the most general way, but preserves
the unidirectional-coupling structure, cannot take advantage
of the full sensitivity of the EPn.

Note the special case of Eq. (31) with Ĥ1,a = 0 = Ĥ1,b is a
perturbation that leaves the system on an EPn if inequality (8)
holds with K̂ → K̂ + K̂1. It is an example of an exceptional
surface.

VI. EXAMPLE

A. The system

As an example we consider the unidirectional coupling of a
parity-time (PT ) symmetric dimer to a PT -symmetric trimer.
The Hamiltonian of the dimer is

Ĥa =
(

ω0 + iαa ga

ga ω0 − iαa

)
. (34)

The real-valued quantity ω0 is the frequency, αa > 0 is the
gain or loss coefficient, and ga > 0 is the coupling strength.
Possible realizations of this system are composed of two cou-
pled waveguides [52] or resonators [21]. It is a PT -symmetric

FIG. 1. Sketch of the unidirectionally coupled PT -symmetric
dimer and trimer. Each disk represents a single-mode cavity. The
coupling strengths ga and gb couple the modes in a symmetric
manner. k is the strength of the unidirectional coupling of the gainy
resonator in the dimer to the gainy resonator in the trimer.

system as it is invariant under the combined action of par-
ity (exchange of waveguides or resonators) and time-reversal
(exchange of gain and loss) operations. If ga = αa the dimer
has an EP of order na = 2 with eigenvalue EEP = ω0. The
response strength according to Eqs. (3) and (9) has been
calculated in Ref. [30]:

ξa = 2ga. (35)

The Hamiltonian of the trimer is

Ĥb =
⎛⎝ω0 + iαb gb 0

gb ω0 gb

0 gb ω0 − iαb

⎞⎠. (36)

Again, ω0 is the real-valued frequency, αb > 0 is the gain or
loss coefficient, and gb > 0 is the coupling strength. If αb =√

2gb the trimer is at an EP of order nb = 3 with eigenvalue
EEP = ω0. The response strength is [30]

ξb = 4g2
b. (37)

Possible realizations in terms of coupled resonators and
waveguides are discussed in Refs. [21,53].

We couple the two subsystems with EPs of different order
by a unidirectional coupling from the gainy resonator of the
dimer to the gainy resonator of the trimer; see Fig. 1. The
coupling matrix is

K̂ =
⎛⎝k 0

0 0
0 0

⎞⎠. (38)

For illustration purposes, we have employed such a simple
coupling matrix. Note that the theory is not restricted to sparse
coupling matrices.

Using Ĥa, Ĥb, and K̂ in the full Hamiltonian in Eq. (2) and
the nilpotent matrix in Eq. (3) allows us to calculate Eq. (7)
with

N̂nb−1
b K̂N̂na−1

a = kgag2
b

⎛⎜⎝ −i −1

−√
2 i

√
2

i 1

⎞⎟⎠. (39)
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This matrix is nonzero for nonvanishing coupling strengths k,
ga, and gb. Hence, the full system of coupled dimer and trimer
has an EP of order n = na + nb = 5. Using Eqs. (14) and (39)
the response strength associated with this EP is

ξ =
√

8|k|gag2
b. (40)

The bound in the inequality (18) is fulfilled as one can see
by first calculating ||K̂||2, which can also be evaluated in
the Frobenius norm as K̂ here has rank 1. We immediately
get ||K̂||2 = |k|. With the individual response strengths in
Eqs. (35) and (37) we obtain ξ � 8|k|gag2

b which is fully
consistent with Eq. (40).

To check Eq. (30) we first determine the last Jordan vector
for the PT -symmetric trimer in the given basis

| jb,nb〉 = 1

4g2
b

⎛⎜⎝ 1/2

i/
√

2
−1/2

⎞⎟⎠ (41)

which has been chosen such that Eqs. (21) and (22) are ful-
filled. As a brief consistency check the reader may verify that
the Jordan vector in Eq. (41) is compatible with Eqs. (23)
and (37). Next, we determine the normalized eigenstate of the
PT -symmetric dimer:

|ψEPa〉 = 1√
2

(
1
−i

)
. (42)

With Eqs. (29) and (38) it follows that

〈 j̃b,nb |K̂|ψEPa〉 = k

2
√

2
. (43)

Using the individual response strengths in Eqs. (35) and (37)
we finally obtain from Eq. (30)

ξ =
√

8|k|gag2
b (44)

which is identical to Eq. (40).

B. Photonic implementation

Figure 2 illustrates a possible implementation of the sys-
tem in a realistic photonic setup. Each single-mode resonator
in Fig. 1 is replaced by a microring with the same gain or
loss coefficient. In the relevant frequency regime each indi-
vidual microring supports exactly two modes with frequency
ω0, one propagating clockwise (CW) and one propagating
counterclockwise (CCW). A CW propagating wave in a
given microring couples evanescently with the above coupling
strengths ga (top row) and gb (lower row) to a CCW propa-
gating wave in a neighboring microring and vice versa. Both
subsystems are coupled via a conventional optical waveg-
uide, which allows wave propagation along both directions.
In contrast to the situation in Ref. [38] the waveguide is
not terminated. Evanescent-coupling induced backscattering
inside the waveguide and the microrings is assumed to be
negligible.

The consequence is that this system exhibits two uncoupled
EP5s: one as in Fig. 1 with the arrow at the unidirectional

FIG. 2. Illustration of a photonic implementation of the unidirec-
tionally coupled PT -symmetric dimer and trimer; cf. Fig. 1. Each
individual optical microring supports a CW and a CCW propagating
mode. A unidirectional coupling of the modes indicated by arrows is
achieved by a conventional waveguide.

coupling as shown and one with the arrow reversed. The
former (latter) one can be selected by exciting the system
via the waveguide from above (below). It is to emphasized
that this system fulfills Lorentz reciprocity. The unidirectional
coupling is a result of the division of the Hilbert space into two
uncoupled subspaces.

There is another point of view on the proposed photonic
implementation in Fig. 2 for the special case of equal sub-
systems. For concreteness, assume that both subsystems are
identical PT -symmetric dimers. The full system possesses
a mirror-reflection symmetry and the optical modes can be
classified by the symmetry as even- and odd-parity modes.
The odd-parity modes also appear in a symmetry-reduced
version of the system with only one PT -symmetric dimer and
a semi-infinite waveguide with an end mirror. This is very sim-
ilar to the system studied in Ref. [38]. Our proposed photonic
implementation of the Hamiltonian in Eq. (2) is therefore a
generalization for nonidentical subsystems a and b.

For an alternative photonic implementation one could use
an imaginary gauge field realized by placing auxiliary rings
with gain and loss between adjacent microrings [54]. Here,
the waveguide would be substituted by a single auxiliary ring
placed between the two gainy microrings; see Fig. 2. This
scheme would also lead to a doubling of the dimension of the
Hilbert space and also would not require a breaking of Lorentz
reciprocity. However, the experimental realization is possibly
more challenging than for the one based on the conventional
waveguide.
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FIG. 3. Absolute value of the energy eigenvalue changes
[max j (|Ej − EEP|) in arbitrary units] vs perturbation strength ε

(dimensionless) for the PT -symmetric dimer coupled to the PT -
symmetric trimer. Note the double-logarithmic scale. The solid curve
shows the case of a random generic perturbation. The dashed curve
shows the case of a random unidirectional-coupling preserving per-
turbation. The dotted lines with slope 1/5 and slope 1/3 serve as a
guide to the eye. The parameters are in dimensionless units ga = 1.5,
gb = 1.3, and k = 1.

C. Random perturbations

Figure 3 shows numerical results using MATLAB for the
spectral response of the full Hamiltonian in Eq. (2) with
Eqs. (34), (36), and (38) to a random generic perturbation
and to a random unidirectional-coupling preserving pertur-
bation. In the former case the perturbation Ĥ1 [see Eq. (1)]
is chosen to be an n × n matrix consisting of complex ran-
dom numbers with real and imaginary parts being drawn
from a uniform distribution on [−1/2, 1/2]. In the latter
case the matrix elements which spoil the unidirectional cou-
pling are set to zero, i.e., (Ĥ1)i j = 0 if i > na and j � na.
In the generic case the splitting shows an ε1/5 scaling as
expected for an EP of order 5. In the nongeneric case, i.e.,
a unidirectional-coupling preserving perturbation, there is
an ε1/3 scaling corresponding to the EP3 of the subsystem
Hamiltonian Ĥb.

When going to very small perturbation strengths Fig. 3 re-
veals a saturation of the energy splitting around 10−3. Hence,
for zero perturbation the numerical representation of the phys-
ical system is not exactly at an EP because of rounding errors
due to the finite machine precision. This inaccuracy can be
quantified using the inequality (13) when the rounding errors
are modeled as a perturbation to the exact Hamiltonian Ĥ .
The interpretation of ε is then that of the machine precision
εMP, which for double-precision floating-point arithmetic is
about 2.22 × 10−16. In this spirit Ĥ1 is considered as a random
matrix where each matrix element has a zero mean and a unit
variance. It is known (see, e.g., Ref. [55]) that the spectral
norm of such an n × n matrix is asymptotically, i.e., for large
n, given by 2

√
n independent of the random distribution; for

a Gaussian distribution this result is even exact. From the
inequality (13) we then get the following estimate of the upper

bound of the initial splitting:

|Ej − EEP| � (2
√

nεMP ξ )1/n. (45)

With the parameters used in Fig. 3, the spectral response
strength in Eq. (40), and the machine precision εMP for double
precision, we get an upper bound of the splitting of about
1.5 × 10−3 which is consistent with the data in Fig. 3. The
observed large value of the initial splitting due to the finite
machine precision is a signature of the high sensitivity of the
fifth-order EP. Note that one can also use the inequality (45) to
estimate the spectral response strength by the saturated energy
splitting for zero perturbation.

VII. SUMMARY

The hierarchical construction of higher-order EPs intro-
duced in Ref. [38] has been reexamined. In this robust
construction scheme two EPs of the same order are merged
by a unidirectional coupling to give a single EP of twice the
order. Our complementary analysis exploits the nilpotency of
the traceless part of the involved Hamiltonians. It provides an
alternative view on the construction scheme and allows us to
generalize it to the merging of two EPs of different order (a
generalization to include more than two EPs is straightfor-
ward). A condition for generic coupling matrices has been
derived.

We have presented a simple formula for the spectral re-
sponse strength of the resulting higher-order EP and have
related it to the spectral response strengths of the original
lower-order EPs. The spectral response strength is an impor-
tant measure of the quality of the EP and is relevant for the
design of EP-based devices.

We have shown that unidirectional-coupling preserving
perturbations of the system with EPn are nongeneric in the
sense that they do not lead to an ε1/n scaling of the energy
splittings with the perturbation strength ε.

To illustrate our approach we have discussed the unidirec-
tional coupling of a PT -symmetric dimer to a PT -symmetric
trimer. For this example it has been demonstrated that the
spectral response strength offers a convenient tool to estimate
the rounding-error-induced energy splitting at an EP.

The results presented here are a first step towards a broader
theory of mode coupling with EPs. Here, two EPs of arbitrary
order are unidirectionally coupled leading to a higher-order
EP. It would be also interesting to couple two (or more) EPs
in a nonunidirectional manner. This does in general not lead
to an EP but it does lead to a bunch of modes with strong
nonorthogonality and high sensitivity to perturbations which
can be useful in particular for sensor applications.
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APPENDIX: GENERIC ENERGY SPLITTING AT AN EP

In this Appendix we prove Eq. (32). We consider the eigen-
value problem of the Hamiltonian in Eq. (1)

(Ĥ + εĤ1)|ψ j〉 = Ej |ψ j〉 (A1)
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with eigenvalues Ej and eigenstates |ψ j〉 normalized to unity,
i.e., ||ψ j ||2 = 1. Equation (A1) can be written as

|ψ j〉 = εĜ(Ej )Ĥ1|ψ j〉 (A2)

with the Green’s function of the unperturbed Hamiltonian:

Ĝ(E ) := (E1 − Ĥ )−1. (A3)

Taking the inner product on both sides of Eq. (A2) with the
eigenstate |ψ j〉 gives

1 = ε〈ψ j |Ĝ(Ej )Ĥ1|ψ j〉. (A4)

Up to first order in ε we can write

1 = ε〈ψEP|Ĝ(Ej )Ĥ1|ψEP〉, (A5)

with the EP eigenstate |ψEP〉. According to Refs. [3,30,56] the
Green’s function near an EPn with eigenvalue EEP is

Ĝ(E ) = 1

E − EEP
+ N̂

(E − EEP)2
+ . . . + N̂n−1

(E − EEP)n
,

(A6)
with the nilpotent matrix N̂ from Eq. (3). We plug the highest-
order contribution of the Green’s function into Eq. (A5),
yielding

(Ej − EEP)n = ε〈ψEP|N̂n−1Ĥ1|ψEP〉. (A7)

Now, we employ an orthonormal basis {|uj〉} with |u1〉 =
|ψEP〉. Since |ψEP〉 spans the image of N̂n−1 (see, e.g.,
Ref. [30]), we get 〈u j>1|N̂n−1 = 0. Hence,

Tr(N̂n−1Ĥ1) = 〈ψEP|N̂n−1Ĥ1|ψEP〉. (A8)

Using this in Eq. (A7) finally proves Eq. (32).
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[38] Q. Zhong, J. Kou, Ş. K. Özdemir, and R. El-Ganainy, Hierar-
chical Construction of Higher-Order Exceptional Points, Phys.
Rev. Lett. 125, 203602 (2020).

[39] G. Dillon and G. Passatore, The symmetry of the theoretical
optical potential and its connection with time reversal and reci-
procity, Nucl. Phys. A 114, 623 (1968).

[40] H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl,
and I. Rotter, Effective Hamiltonian for a microwave billiard
with attached waveguide, Phys. Rev. E 65, 066211 (2002).

[41] J. Wiersig, Structure of whispering-gallery modes in optical
microdisks perturbed by nanoparticles, Phys. Rev. A 84, 063828
(2011).

[42] J. Wiersig, Non-Hermitian effects due to asymmetric
backscattering of light in whispering-gallery microcavities,
in Parity-Time Symmetry and its Applications, edited by D.
Christodoulides and J. Yang (Springer, New York, 2018), pp.
155–184.

[43] A. Metelmann and A. A. Clerk, Nonreciprocal Photon Trans-
mission and Amplification via Reservoir Engineering, Phys.
Rev. X 5, 021025 (2015).

[44] J. Li, Y. Jing, and S. A. Cummer, Nonreciprocal coupling in
space-time modulated systems at exceptional points, Phys. Rev.
B 105, L100304 (2022).

[45] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians
and Liouvillians: The effects of quantum jumps, Phys. Rev. A
100, 062131 (2019).

[46] J. Wiersig, Robustness of exceptional-point-based sensors
against parametric noise: The role of Hamiltonian and Liouvil-
lian degeneracies, Phys. Rev. A 101, 053846 (2020).

[47] W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch,
Quantum Jumps in the Non-Hermitian Dynamics of a Super-
conducting Qubit, Phys. Rev. Lett. 127, 140504 (2021).

[48] L. N. Trefethen and M. Embree, Spectra and Pseudospectra
(Princeton University, Princeton, NJ, 2005).

[49] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University, Cambridge, England, 2013).

[50] N. Johnston, Advanced Linear and Matrix Algebra (Springer,
New York, 2021).

[51] A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability
Theory with Mechanical Applications (World Scientific, Singa-
pore, 2003).

[52] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation of
parity-time symmetry in optics, Nat. Phys. 6, 192 (2010).

[53] G. Demange and E.-M. Graefe, Signatures of three coalescing
eigenfunctions, J. Phys. A: Math. Theor. 45, 025303 (2012).

[54] S. Longhi, D. Gatti, and G. Della Valle, Non-Hermitian trans-
parency and one-way transport in low-dimensional lattices by
an imaginary gauge field, Phys. Rev. B 92, 094204 (2015).

[55] M. Rudelson and R. Vershynin, Non-asymptotic theory of ran-
dom matrices: Extreme singular values, in Proceedings of the
International Congress of Mathematicians (World Scientific
Publishing Co Pte Ltd, Singapore, 2010), pp. 1576–1602.

[56] W. D. Heiss, Green’s functions at exceptional points, Int. J.
Theor. Phys. 54, 3954 (2015).

063526-8

https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/s41586-019-1780-4
https://doi.org/10.1038/s41567-020-0796-x
https://doi.org/10.1038/s41586-022-04904-w
https://doi.org/10.1103/PhysRevResearch.4.023121
https://doi.org/10.1103/PhysRevResearch.4.033179
https://doi.org/10.1103/PhysRevLett.122.153902
https://doi.org/10.1364/OL.44.005242
https://doi.org/10.1103/PhysRevApplied.13.014070
https://doi.org/10.1002/lpor.202000569
https://doi.org/10.1103/PhysRevResearch.3.013220
https://doi.org/10.1038/s41467-022-27990-w
https://doi.org/10.1103/PhysRevLett.125.203602
https://doi.org/10.1016/0375-9474(68)90290-X
https://doi.org/10.1103/PhysRevE.65.066211
https://doi.org/10.1103/PhysRevA.84.063828
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1103/PhysRevB.105.L100304
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.101.053846
https://doi.org/10.1103/PhysRevLett.127.140504
https://doi.org/10.1038/nphys1515
https://doi.org/10.1088/1751-8113/45/2/025303
https://doi.org/10.1103/PhysRevB.92.094204
https://doi.org/10.1007/s10773-014-2428-7

