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Optical isolators based on nonreciprocal four-wave mixing
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In this work we propose and theoretically characterize optical isolators consisting of an all-dielectric and
nonmagnetic resonator featuring an intensity-dependent refractive index and a strong coherent field propagating
in a single direction. Such devices can be straightforwardly realized in state-of-the-art integrated photonics plat-
forms. The mechanism underlying optical isolation is based on the breaking of optical reciprocity induced by the
asymmetric action of four-wave mixing processes coupling a strong propagating pump field with copropagating
signal and idler modes but not with reverse-propagating ones. Taking advantage of a close analogy with fluids
of light, our proposed isolation mechanism is physically understood in terms of the Bogoliubov dispersion of
collective excitations on top of the strong pump beam. A few most relevant setups realizing our proposal are
specifically investigated, such as a coherently illuminated passive ring resonator and unidirectionally lasing ring
or Taiji resonators.
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I. INTRODUCTION

Optical isolators [1] are devices that allow the transmis-
sion of light in a certain direction (known as forward) while
simultaneously preventing light propagation in the opposite
direction (labeled reverse). Optical isolation requires breaking
Lorentz reciprocity [2]. For this purpose many strategies have
been proposed: Some authors employ magneto-optic materi-
als that explicitly break time-reversal symmetry under a strong
external magnetic field [3–6]. Others relied on the application
of some external drive to produce a time-dependent modula-
tion of the material’s refractive index [7–11]. An even more
promising strategy to break reciprocity consists of exploiting
the optical nonlinearity of the dielectric material and inducing
nonlinear optical processes via a strong external beam. Such
all-optical isolators have the important advantage of a straight-
forward integration in state-of-the-art silicon-based photonic
networks with a small on-chip footprint.

As a first step along this line, several authors have
demonstrated nonreciprocal transmission by comparing the
transmitted intensity for a strong light beam injected first in
the forward and then in the reverse direction [12–16]. In spite
of the different transmission observed in the two directions, it
was pointed out in Ref. [17] that such a process cannot be con-
sidered as true optical isolation: it is in fact not generally true
that the device is able to block arbitrary backward-propagating
noise when a strong signal is being transmitted in the forward
direction. Such an effective blocking was highlighted only in
specific cases, for instance, when the frequency spectrum of
the noise overlaps with that of the forward signal [17] or when
both the pump and the noise are monochromatic waves at the
same frequency [18].
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In this paper we theoretically demonstrate that all-
dielectric nonlinear ring resonators featuring a strong coherent
field propagating in a single direction can behave as efficient
optical isolators because they display a different transmittance
for weak signals in the two directions: for instance, they
permit an efficient transmission in the forward direction while
they block transmission in the reverse one.

This nonreciprocal behavior stems from the fact that four-
wave-mixing (FWM)-induced coupling between pump and
signal and idler modes is only possible when all fields
propagate in the same direction and is instead strongly
non-phase-matched in the reverse direction. As a result, a
forward-propagating incident weak signal field automatically
gives rise to a corresponding idler field at a symmetrically
located frequency with respect to the pump, which allows us
to circumvent the restrictions imposed by dynamic reciprocity
highlighted in Ref. [17].

To make our proposal concrete and of direct use in view of
experiments, we focus our attention on three specific setups
where our concept can be realized in an integrated photonics
framework with state-of-the-art technology. While the three
setups are based on the same microscopic mechanism, they
display minor operation differences that are potentially useful
for specific applications.

The first proposed setup consists of a passive ring resonator
coupled to a pair of bus waveguides in add-drop configuration.
The system is illuminated through one of the bus waveguides
by a strong and coherent pump beam, close to resonance with
a cavity mode. Generalizing the results of Ref. [18], efficient
isolation is demonstrated for a weak signal whose frequency
spectrum is either in the vicinity of the strong pump or next to
some neighboring cavity mode. In the former configuration,
the coherent pump could be the output of some laser source to
be injected in a photonic network, so back-propagating noise
in the vicinity of the laser frequency is efficiently blocked.
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The second proposed setup consists again of a ring res-
onator but, instead of being illuminated by an external
coherent light beam, the resonator is itself endowed of optical
gain and displays a single-mode laser oscillation behavior.
The coherent laser field then plays the role of the strong pump
field breaking optical reciprocity and ensuring the optical iso-
lation behavior. Since laser operation in a ring resonator would
naturally occur in a randomly chosen direction [19], a weak,
externally injected drive through one of the bus waveguides
may be needed to deterministically trigger the chirality of
laser operation.

The need for this trigger beam is removed in the third
proposed setup based on a Taiji resonator (TJR) laser. In
such devices, the presence of an additional S-shaped element
deterministically stabilizes unidirectional laser operation via
an effective nonlinear dynamical breaking of time-reversal
symmetry [19–21] and provides a stand-alone configuration
for efficient optical isolation. To prevent the signal beam from
triggering undesired instabilities in the lasing resonator and
to permit an efficient spectral rejection of the laser light from
the optical network downstream, it is beneficial in this case to
operate optical isolation on some neighboring Taiji resonator
modes.

Our theoretical approach is based on a time-dependent
coupled-mode theory. We consider the signal and idler fields
as small perturbations to the strong monochromatic field in
the pump mode, whose intensity is assumed to be much larger
than that of any other field inside the resonator, and we lin-
earize the motion equations with respect to signal and idler.
For each configuration, we then look for the steady state of
the coupled-mode equations either under the incident coherent
light or in the presence of gain, and we evaluate the frequency-
dependent transmittance of a weak additional beam across the
device in the two directions. To better understand the role of
the asymmetry of the FWM process in the dynamics, we set up
the 4 × 4 Bogoliubov matrix connecting the signal and idler
fields in the two directions, whose eigenmodes provide direct
information on the position of the transmittance peaks and on
the dynamical stability of the system. This Bogoliubov picture
reveals a direct connection between our optical isolator device
and the collective dynamics of flowing polariton condensates
under either a coherent or an incoherent pumping [22].

The article is organized as follows: Sec. II introduces the
coupled-mode theory and the linearized approximation em-
ployed in our calculation. Our results for the case of a passive
nonlinear ring resonator coherently pumped from one side are
shown in Sec. III. Section IV is then devoted to the case of
active ring resonators in a lasing regime. Our results for the
TJR laser isolator are reported in Sec. V. Conclusions are
finally drawn in Sec. VI.

II. THE PHYSICAL SYSTEM
AND THE THEORETICAL MODEL

In this first section we introduce the device and the op-
tical configuration under investigation and we present the
theoretical framework based on temporal coupled-mode equa-
tions that we are going to use in the following sections to
describe its optical response in the different cases.

A. The physical system

The specific setup we are going to consider in this work
consists of a standard ring resonator or a Taiji resonator [TJR,
see Figs. 1(b) and 1(c)] coupled to a pair of bus waveguides
located at opposite sides in the so-called add-drop configura-
tion. Light is injected (in) into the resonator through one of
the bus waveguides and transmittance (out) is then measured
at the output of the other bus waveguide.

Light propagating inside a ring resonator of radius R and
linear refractive index nL is characterized by a series of dis-
crete modes labeled by an integer number � that determines
the angular momentum of the mode. The sign of � describes
its propagation direction: � > 0 indicates a counterclock-
wise (CCW)-propagating mode, while � < 0 corresponds to a
clockwise (CW)-propagating one. In the linear optical regime,
the resonance frequencies are given by

ω
(0)
� = c

nL(�)

|�|
R

, (1)

where c is the vacuum speed of light. Since resonators are
typically built of a dispersive dielectric medium, the linear
refractive index nL depends on the angular momentum � of
the mode via the mode frequency. We can consider the Taylor
expansion of nL(�) around a certain angular momentum mode,
which we label �P:

nL(�) = nL(|�P|) − 2πRnL(|�P|)
|�P|2

(
dnL

dλ

)
λ

(0)
P

(|�| − |�P|)

+ O(�2), (2)

where the derivatives are calculated with respect to the vac-
uum wavelength λ and evaluated at λ

(0)
P = 2πRnL(|�P|)/|�P|.

By combining Eqs. (1) and (2), we arrive at the expression

ω
(0)
� = ω

(0)
P + v(|�| − |�P|) + α

2
(|�| − |�P|)2, (3)

for the �-dependent dispersion relation of light in the ring
resonator, where we have defined

ω
(0)
P ≡ ω

(0)
�P

= c|�P|
nL(|�P|)R , (4)

v = c

nL(|�P|)R
[

1 + 2πR

|�P|
(

dnL

dλ

)
λ

(0)
P

]
, (5)

α = 2
c

nL(|�P)|
2π

�2
P

(
dnL

dλ

)
λ

(0)
P

. (6)

For the values of angular momentum |� − �P| � 3 considered
in what follows, the second-order expansion in Eq. (3) with
the coefficients in Eqs. (4)–(6) is valid under the quite weak
condition (

dnL

dλ

)
λ

(0)
P

�
(

d2nL

dλ2

)
λ

(0)
P

λ
(0)
P , (7)

which is well satisfied by typical integrated photonics de-
vices. For instance, SiON waveguides of typical transverse
area 1200 nm × 570 nm operating around λ

(0)
P = 1500 nm

display an effective linear refractive index (including the ef-
fect of confinement) nL � 1.59, while the first derivative is
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FIG. 1. (a) Dispersion relation of the resonant frequencies ω
(0)
� of a ring or Taiji (TJR) resonator as a function of the angular momentum

� of the mode. The green dashed lines are the dispersion relations for CCW (� > 0) and CW (� < 0) modes including the curvature given by
Eq. (3). While FWM (symbolized by the gray arrows) can effectively couple CCW-propagating pump, signal, and idler modes, it cannot couple
the pump P+ with the signal S− because the resulting idler would completely fall out of resonance. This allows us to set the CCW (CW) modes
as the forward (reverse) operation direction of our optical isolator. General scheme of a ring or TJR operated in (b) forward and (c) reverse
directions. The dashed green (orange) rectangles indicate directional couplers coupling the ring resonator to the bus waveguides (S-shaped
element), with transmission and coupling amplitudes tw (tS) and ikw (ikS), respectively. The ring resonator case is recovered by setting tS = 1
and kS = 0. In both forward and reverse configurations, the resonator can be pumped in the CCW direction by an external field a(in)

P+ (thick
red arrow). The field amplitude aP+ corresponds to the large intensity pump mode inside the resonator. In the forward and reverse operation
direction shown in panels (b) and (c), the system is probed by the external fields a(in)

S± (solid blue and cyan arrows). The field amplitudes of
these modes inside the resonator are given by aS±. The absence of FWM coupling pump and signal in reverse operation produces a different
phase shift with respect to the forward case, where FWM is possible and an idler field aI+ (dashed blue arrow) is generated. This can lead to a
zero transmitted field a(out)

S− = 0 while a(out)
S+ �= 0 at the same frequency. In the forward case, the different frequencies of pump, idler, and signal

allow us to employ a band-pass filter to isolate the transmitted signal beam at the system’s output.

(dnL/dλ)
λ

(0)
P

= −1.42 × 10−4 nm−1 and the second deriva-
tive is zero with a large precision [16]. A sketch of the
dispersion relation given by Eq. (3) can be found in Fig. 1(a).

The key idea behind our proposal for optical isolators is to
have the resonator filled with a strong intensity, propagating
field at a frequency ωP in the vicinity of the linear resonance
frequency ω

(0)
P of a mode of angular momentum �P, indicated

in the following as the P+ mode. Without loss of generality
we take the propagation to be in the CCW direction with a
positive angular momentum �P > 0. Thanks to the intrinsic
optical nonlinearity of the material, a pair of photons from
the P+ mode can scatter into the S+ (signal) and I+ (idler)
modes of angular momenta �S and �I = 2�P − �S and reso-
nance frequencies ω

(0)
S,I ≡ ω

(0)
�S,I

. Such a process is known as
four-wave mixing (FWM). The nonreciprocal behavior is then
probed by comparing the transmittance of weak signal beams
incident from opposite directions on the resonator around the
ω

(0)
S resonance, as indicated by the blue and cyan arrows in

Figs. 1(b) and 1(c). When the signal is coupled into the S+
mode copropagating with the pump in the CCW direction
[as shown in Fig. 1(b)], FWM processes are able to signif-
icantly alter its transmittance spectrum. On the other hand,
a signal propagating in the CW direction in the S− mode
[see Fig. 1(c)] is not coupled to the pump P+ through FWM
processes since no available resonance exists in the vicinity of
the resulting I− mode determined by conservation of energy
and angular momentum [see the sketch in Fig. 1(a)]. Such
an asymmetrical behavior of the FWM processes for signal
beams propagating in opposite directions is responsible for the
breaking of reciprocity and leads to optical isolation: in what
follows, we set the pump direction as the forward operation

direction (in our case we chose the CCW) for the optical
isolator, and its opposite direction as the reverse one (in our
case the CW).

B. The theoretical model

Within a standard coupled-mode theory approach [23], the
partial differential equation describing the temporal evolution
of the complete field amplitude a(ϕ, t ) at the angular position
ϕ along the ring (see the Appendix) can be projected into a
set of ordinary differential equations for the different modes.
These constitute the central tool in our theoretical description.

In the simplest pump-only configuration a(ϕ, t ) =
ãP+(t ) ei�Pϕ e−iωPt and the evolution equation for the amplitude
in the P+ mode, seen from the rotating frame at ωP, has the
form [24]

i
∂ ãP+
∂t

= (
ω

(0)
P − ωP

)
ãP+ − gNL|ãP+|2ãP+

+ i
P0

1 + 1
nS

|ãP+|2 ãP+ − iγTãP+ − c

LnL
kwã(in)

P+ , (8)

for both passive and active ring resonators and TJRs. Here,
gNL � nNLω

(0)
P /nL is the effective nonlinear coefficient and

|aP+|2 quantifies the light intensity in the P+ mode. For
simplicity, we have assumed a local and instantaneous Kerr
nonlinearity corresponding to a nonlinear refractive index
nNL, which is an experimentally accessible quantity with units
of inverse intensity [25]. Gain is modeled as a local and
temporally instantaneous saturable gain term [26] of bare rate
P0 and saturation coefficient nS, which physically corresponds
a class-A laser medium whose dynamics is fast enough to
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be integrated out. The total loss rate γT = γA + γw + γS in-
cludes radiative decay into the bus waveguides γw and into
the directional S-shaped coupler γS in the TJR case, as well
as absorption losses γA. As usual, the radiative decay rates
can be related to the corresponding coupling amplitudes at
the directional coupler elements by γw,S = ck2

w,S/(LnL). For
convenience, an analogous amplitude kA is introduced for the
nonradiative decay γA. The last term of Eq. (8) represents
driving of the resonator via an external driving field a(in)

P+ (t ) =
ã(in)

P± e−iωPt at a frequency ωP.
The steady-state of Eq. (8) will determine the amplitude of

the continuous-wave, strong field in the pump mode: under a
coherent pump, this will be set by the interplay of coherent
drive, nonlinearity, and losses and will display various optical
bistability and limiting behavior depending on the detuning
of the pump frequency ωP from the resonant mode frequency
ω

(0)
P . In the case of lasing under an incoherent pump, the

frequency ωP will be instead determined by the nonlinear

frequency shift of the pump mode. These different cases will
be the subject of the next sections.

Under the assumption of a weak incident signal beam, the
signal and idler fields can be introduced as small perturbations
on top of the pump-only field in the ansatz

a(ϕ, t ) = ãP+ ei(�Pϕ−iωPt ) + ãS+(t ) ei(�Sϕ−ωSt ) + ãI+ ei(�Iϕ−ωIt )

+ ãS− e−i(�Sϕ+ωSt ) + ãI−(t ) e−i(�Iϕ+ωIt ), (9)

where ãS± and ãI± are the signal and idler fields in the CCW
and CW directions, as seen from the rotating frame at ωS,I, and
their dynamics can be described within a linearized theory.
Assuming from the outset that no pump is present in the
counterpropagating P− mode (i.e., ãP− = 0) and neglecting
terms representing nonlinear processes that do not conserve
energy or angular momentum, the temporal coupled-mode
equations for the amplitudes of pump, signal, and idler inside
the resonator have the form

i ˙̃aP+ = (
ω

(0)
P − ωP

)
ãP+ − iγTãP+ − c

LnL
κwã(in)

P+ − gNL|ãP+|2ãP+ + i
P0

1 + 1
nS

|ãP+|2 ãP+, (10)

i ˙̃aS± = (
ω

(0)
S − ωS

)
ãS± − iγTãS± + β

(S)
±,∓ãS∓ − c

LnL
κwã(in)

S± − 2gNL|ãP+|2ãS± − gNLδ±,+ ã2
P+ã∗

I±

+ i
P0

1 + 1
nS

|ãP+|2 ãS± − i
P0/nS[

1 + 1
nS

|ãP+|2]2 (|ãP+|2ãS± + δ±,+ ã2
P+ã∗

I±), (11)

i ˙̃aI± = (
ω

(0)
I − ωI

)
ãI± − iγTãI± + β

(I)
±,∓ãI∓ − 2gNL|ãP+|2ãI± − gNLδ±,+ã2

P+ã∗
S±

+ i
P0

1 + 1
nS

|ãP+|2 ãI± − i
P0/nS[

1 + 1
nS

|ãP+|2]2 (|ãP+|2ãI± + δ±,+ã2
P+ã∗

S±), (12)

where we have defined δ±,+ as a shorthand giving 1 on the
+ mode and 0 on the − one. As mentioned above, the fre-
quency ωP of the pump field is set here either by the coherent
pump field or by the lasing frequency. On the other hand, the
frequencies of the signal and idler fields are directly set by
the coherent field of amplitude ã(in)

S± driving the signal mode
at frequency ωS and by the frequency ωI = 2ωP − ωS of the
idler beam generated by FWM processes.

Two main effects of the Kerr nonlinearity proportional to
gNL can be recognized in these equations of motion1. The first
nonlinear term is the usual frequency shift of the signal and
idler mode frequencies under the effect of the Kerr optical
nonlinearity, proportional to the light intensity in the strong-
pump mode. Compared with the analogous term in Eq. (10),
the factor of two appearing in Eqs. (11) and (12) accounts for
the bosonic exchange factor in the interaction between differ-
ent modes.2 This nonlinear frequency shift occurs identically
for both CCW and CW signal and idler modes. The following

1In these equations, we have neglected for simplicity the (typically
small) frequency dependence of the nonlinearity and of the radiative
couplings. Under this approximation, we have taken constant values
for gNL = nNLω

(0)
P /nL and for all γ regardless of the considered mode

2Such an effect has been extensively studied in the literature on
quantum Bose gases [27]. In optics, it can be interpreted as light

nonlinear terms in Eqs. (11) and (12) describe instead the
FWM processes induced by parametric scattering processes
mediated by the Kerr nonlinearity, with a strength propor-
tional to the squared pump amplitude. Because of the angular
momentum and energy conservation arguments mentioned
above and sketched in Fig. 1(a), these FWM process are only
active in the CCW signal and idler modes copropagating with
the pump field: as already mentioned, this is the key feature
underlying the nonlinear breaking of reciprocity and, then,
the optical isolation behavior. Quite interestingly, Eqs. (11)
and (12) also display FWM processes induced by the intrinsic
nonlinearity of the saturable gain. Their magnitude, as we see
in what follows, is typically much smaller than the one of the
FWM processes induced by the Kerr nonlinearity and they
give a negligible contribution to the nonreciprocity.

Finally, the terms proportional to β
(S,I)
±,∓ describe the cou-

pling between counterpropagating modes. In the case of a
simple ring resonator of Fig. 1(b), these terms obviously van-
ish identically, β

(S,I)
±,∓ = 0. On the other hand, significant such

couplings are induced by the S-shaped element of the TJR res-
onator sketched in Fig. 1(c): for the chosen spatial orientation

belonging to different modes producing a twice larger change in
refractive index compared with self-phase modulation [28].
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of the S-shaped element, the coupling occurs unidirectionally
from the CW into the CCW direction and can be described
by β

(S,I)
∓ = 0 and β

(S,I)
± = −i2γSeiωS,InLLS/c [19]. The fact that

no such term appears in the equation of motion for ãP+ stems
from the fact that lasing in a TJR always occurs in the CCW
pump mode P+ which is immune to the coupling induced by
the S-shaped element [19]. The situation would be of course
different in the case of a coherently pumped TJR considered
in Ref. [29], but we are not considering this case in this work.

In the following sections we solve Eqs. (10)–(12) for the
steady state of the field amplitude ã(0)

P,S,I± = ãP,S,I±(t → ∞)
in the pump, signal, and idler modes using a fourth order
Runge-Kutta algorithm. As typical parameters for a realis-
tic silicon photonics implementation we choose R = 20 μm,
nL = 1.59, γAnL/c = 8 × 10−6 μm−1 (which corresponds to
γA = 1.5 GHz), and ω

(0)
P = 2π × 200 THz, corresponding to

the mode �P = 133, for which we can employ the value of
the derivative (dnL/dλ)λP = −1.42 × 10−4 nm−1 presented
at the beginning of this section. These values yield v = 8.20
THz and α = −18.8 GHz for the dispersion relation (3).

Our main observable quantities will consist of the forward
and reverse normalized transmittances Tfor and Trev for the
signal exiting the system from the bus-waveguide opposite to
that in which light is injected. In a concrete experiment, the
fact that pump, signal, and idler feature different frequencies
is of crucial importance because it allows us to use a frequency
filter at the output of the bus waveguide to isolate the signal
transmittance of interest for optical isolation [see Fig. 1(b)].
In particular, even though the idler field is a crucial element
in the in-cavity dynamics, the outgoing idler beam is of no
interest for the optical isolation behavior and has to be filtered
out past the cavity.

Within the coupled-mode theory, the transmittances are
defined as usual as

Tfor =
∣∣ã(out)

S+
∣∣2

∣∣ã(in)
S+

∣∣2 =
∣∣ikwã(0)

+
∣∣2

∣∣ã(in)
S+

∣∣2 , (13)

Trev =
∣∣ã(out)

S−
∣∣2

∣∣ã(in)
S−

∣∣2 =
∣∣ikwã(0)

−
∣∣2

∣∣ã(in)
S−

∣∣2 : (14)

at the level of our linearized theory, these quantities are in-
dependent of the input signal intensity. Of course, this result
only holds for sufficiently weak signal intensities, which is a
key assumption underlying our proposal.

In the remainder of this work, we present our results for the
transmittance spectrum of forward and reverse-propagating
signals as a function of the signal frequency ωS. The different
sections will be devoted to the different cases of coherent vs
incoherent pump and of ring vs TJR geometries: for each of
them, the advantages and disadvantages in view of optical
isolation will be highlighted.

III. PASSIVE RING RESONATOR

As a first example, in this section we theoretically demon-
strate nonreciprocal behavior for signal light in a coherently
pumped passive ring resonator. No saturable gain is present,
but the resonator is endowed of a sizable Kerr nonlinearity

FIG. 2. Optical bistability in the coherently illuminated passive
ring resonator considered in Sec. III. The figure shows the pump
intensity |ã(0)

P+|2 circulating in the �P = 133 mode of the resonator
in units of the incident pump intensity |ã(in)

P+ |2, as a function of the
incident frequency ωP. When ωP is scanned upwards, the intensity
follows the thick green curve (lower branch). In a downwards fre-
quency ramp, the intensity follows instead the thin black line (upper
branch). The vertical dashed and dash-dotted linen indicate the fre-
quencies ωP − ω

(0)
P � −63γT and ωP − ω

(0)
P � −8.7γT used for the

upper and lower branch configurations in the following figures.

leading to an intensity-dependent refractive index as well as
direction-dependent FWM processes.

The coherent pump of frequency ωP and incident intensity
|ã(in)

P+ |2 is injected through the left-hand waveguide and sets
the CCW mode as the forward operation direction. Due to
the optical nonlinearity, the effective resonance frequency of
the mode [given in the linear regime by Eq. (3)] gets shifted.
For the chosen value gNL > 0, this shift is in the red-wards
direction. As it is shown in Fig. 2, the pump intensity inside
the resonator |ã(0)

P+|2 describes a hysteresis cycle as a function
of ωP known as optical bistability [30], displaying the two
intensity branches: for a given incident intensity |ã(in)

P+ |2, the
internal intensity |ã(0)

P+|2 depends on whether we are sitting
on the upper or lower branch of this hysteresis cycle. An
appropriate choice of initial conditions allows us to pump
in the branch of interest: Sec. III A explores the situation in
which the pump is located in the upper bistability branch,
while Sec. III B is devoted to the study of the physics in the
lower bistability branch.

Even though our predictions are fully general, in the
following we focus on parameters inspired from specific in-
tegrated photonics devices. In detail, we consider that the
coherent pump drives the �P = 133 mode. We set the value
of the radiative losses due to the bus waveguides equal to the
nonradiative ones, giving a quality factor of Q � 4.2 × 105

(corresponding to kw = kA = 0.032). As we are considering
a ring resonator, no S waveguide is present and therefore
γS = 0. We take an incident pump intensity |ã(in)

P+ |2 = 1 W,
a nonlinear refractive index nNL = 10−14 cm2/W, and we
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FIG. 3. (a), (d) Transmittance T of a weak signal beam in the forward (dark blue) and reverse (cyan) directions across a coherently
illuminated passive ring resonator in add-drop configuration as a function of the signal frequency ωS in the vicinity of the resonator modes
with absolute angular momenta |�S| = 131. The pump is close to resonance with the mode of angular momentum �P = 133. Panels (a) and
(d) display the results when we pump in the upper and lower bistability branches, respectively. The different role of FWM for signals
propagating in opposite directions leads to different transmittance spectra in the upper bistability branch. As explained in Sec. III A 1, this
allows us to harness the device as an optical isolator. The vertical dashed-dotted and dashed lines signal respectively the real parts of the
Bogoliubov eigenvalues corresponding to the reverse- and forward-propagating signals. A sketch of the device is found in the upper-right
part of panel (a). The big, red arrow represents the incident pump, while the small arrows describe the probing with the signal in the forward
(dark blue) and in the reverse (cyan) directions. (b), (c) Real and imaginary parts of the Bogoliubov eigenvalues ωS for a pump in the upper
bistability branch as a function of the signal angular momenta ±|�S|. The eigenvalues are labeled according to the Bogoliubov norm ‖vS,I±‖ of
the associated eigenvectors. Squares and circles are the values corresponding to the modes of integer angular momenta |�S|. The dashed lines
are calculated for noninteger values of |�S|. Panels (e) and (f) show analogous plots when the pump is on the lower bistability branch. The
horizontal dashed pink line in panel (f) indicates the position of zero.

consider a device featuring waveguides of transverse area
A � 0.70 μm2.

A. Upper bistability branch

Let us first assume that the system is prepared on the upper
branch of the bistability loop shown in Fig. 2. Such a state can
be prepared, e.g., by means of a downwards ramp of the pump
frequency [29]. In this regime, the large intensity in the pump
mode enhances the effect of FWM. To maximize this effect,
we place the pump at a frequency ωP − ω

(0)
P � −63γT, close

to the downwards intensity jump of the upper branch, which
yields a resonant enhancement of the pump intensity inside
the resonator |ã(0)

P+|2 � 240|ã(in)
P+ |2.

1. Transmission spectra

We start by probing the device in the forward direction by
sending a signal of (weak) incident intensity |ã(in)

S+ |2 through
the left-hand bus waveguide. The forward transmittance Tfor

is plotted in Fig. 3(a) as a function of the signal frequency ωS.
Even though we are exploring the neighborhood of a single

�S = 131 mode, the spectrum is characterized by a doublet of
peaks: The left-hand peak is in the rough vicinity of the signal
mode shifted by the Kerr nonlinear terms in Eq. (11). The
right-hand peak, on the other hand, appears as a consequence
of FWM processes and its position is fixed by the conservation
of energy and momentum in the pump-mediated coupling
with the idler.

We now send a reverse-propagating signal of identical in-
cident intensity |ã(in)

S− |2 = |ã(in)
S+ |2 through the right-hand bus

waveguide and we look at the transmittance Trev as its fre-
quency ωS is varied in the same spectral region around the
�S = −131 mode (of course resonant with the �S = 131 one
at linear regime, since we are considering a nonmagnetic de-
vice), plotted as a cyan line in Fig. 3(a). Since FWM is absent
in this case, no photons from the pump are scattered into the
idler resonance, and, therefore, Trev displays a single peak. For
the same reason, the spectral position of this peak is located at
a slightly different frequency from that of the left-hand peak of
the Tfor doublet and is completely determined by the resonance
shift given by the Kerr nonlinearity. In particular, at the fre-
quency [ωS − ω

(0)
P − v(|�S| − |�P|)] = −103.47γT in which
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the forward-propagating signal achieves its maximum trans-
mittance, the ratio between the two transmittances reaches
33 dB, thus suggesting a promising optical isolation behavior.

To summarize, our calculations anticipate that a nonlinear
ring resonator can be made nonreciprocal by illuminating it
with a strong pump beam. Nonreciprocity then leads to an
efficient optical isolation for weak signal beams tuned close
to resonance with neighboring modes of the resonator. While
the limited bandwidth of the optical isolator operation may be
a hindrance for some applications, it is important to note that a
useful fine-tuning of the operation frequency is offered by the
substantial frequency shift of the resonances induced by the
strong pump beam that is visible, e.g., in Fig. 3(a), and that
will be evident from the theoretical analysis of Sec. III A 2.
On the other hand, since the underlying equations are linear
in the forward and reverse signal amplitudes ãS± and ãI±, the
signals propagating in opposite directions do not interact with

each other and therefore the transmittance spectra in the two
directions are unaltered even when the two signals are simulta-
neously propagating though the device. As a consequence the
resonator is not subjected to the dynamic reciprocity restric-
tions and hence it can work as an effective optical isolator.

2. Bogoliubov analysis

The nonreciprocal effect of FWM for counterpropagating
signals can be further investigated by means of a linearized
analysis of the dynamics of signal and idler fields in the
forward and reverse directions. Here, the fields are treated
within linear-response theory as weak perturbations on top of
the large intensity pump field that is present in the forward
direction only. From Eqs. (11) and (12) it is straightforward to
set up the Bogoliubov system of equations:

i
d

dt
[ãS+ ã∗

I+ ãS− ã∗
I−]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(0)
S − ωS − iγT

−2gNL

∣∣ã(0)
P+

∣∣2 −gNLã(0)2

P+ 0 0

+gNLã(0)∗2

P+
−ω

(0)
I + 2ωP − ωS − iγT

+2gNL

∣∣ã(0)
P+

∣∣2 0 0

0 0
ω

(0)
S − ωS − iγT

−2gNL

∣∣ã(0)
P+

∣∣2 0

0 0 0
−ω

(0)
I + 2ωP − ωS − iγT

+2gNL

∣∣ã(0)
P+

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× [ãS+ ã∗
I+ ãS− ã∗

I−]T . (15)

The next step is to diagonalize the 4 × 4 matrix above in order
to find the eigenvalues ωS and their corresponding eigenvec-
tors v for several pairs of counterpropagating signal modes of
opposite angular momentum ±|�S| in a range of |�S| centered
around �P. As usual, the real part of the eigenvalues Re{ωS}
will tell us the position of the transmittance peaks for each pair
of signals. The imaginary part, instead, gives information on
the linewidth and the dynamical stability or instability of the
configuration: a positive imaginary part Im{ωS} > 0 for some
�S implies that the system is dynamically unstable around that
mode.

The four eigenvectors v = [v1, v2, v3, v4]T can be classi-
fied according to their Bogoliubov norm,

‖v‖2 = |v1|2 − |v2|2 + |v3|2 − |v4|2, (16)

which quantifies the coupling between signal and idler.
Choosing for each eigenvector the normalization

v2
1 + v2

2 + v2
3 + v2

4 = 1, (17)

it follows from Eq. (17) that the Bogoliubov norm is restricted
to values in the range

−1 � ‖v‖ � 1: (18)

a negative norm implies an idler-dominated response, while
a positive norm corresponds to a signal-dominated response.
Diagonalization of the matrix in Eq. (15) for the specific set
of parameters considered in Fig. 3(a) gives four eigenvectors
that can be labeled as vI+, vS+, vI−, and vS− according to their
respective signa or idler content,

‖vI+‖ = −0.724, ‖vS+‖ = 0.724,

‖vI−‖ = −1, ‖vS−‖ = 1. (19)

As expected, the norms of the eigenvectors belonging to the
reverse-propagating idler vI− and signal vS− take the extreme
values ‖vI−‖ = −1 and ‖vS−‖ = 1, signaling that there is no
coupling between them and each has a purely idler or signal
nature. On the other hand, the norms of the eigenvectors
belonging to the forward-propagating idler vI+ and signal vS+
are pushed closer to zero by the FWM terms that mix the
signal and idler characters.
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Figures 3(b) and 3(c) display the real and imaginary parts
of the four eigenvalues as a function of the absolute value of
the angular momentum |�S| of the pair of counterpropagating
signals. To facilitate reading, in these panels we have added
the results for noninteger values of |�S|. Although they are
not relevant to study the transmittance across our resonator,
since only integer values of |�S| are physically meaningful and
accessible, such intermediate regions allow us to understand
the physics with more clarity.

For the reverse-propagating signal, it is evident from the
form of the Bogoliubov matrix in Eq. (15) that the real part
of the eigenvalue ωS(vS−) is solely determined by the Kerr
nonlinearity shift of the resonance frequency of the signal
mode with angular momentum −�S,

Re{ωS(vS−)} = ω
(0)
S − 2gNL

∣∣ã(0)
P+

∣∣2
. (20)

On the other hand, the real part of the eigenvalue ωS(vI−)
is given by the frequency at which FWM would couple the
pump light into the signal mode if the FWM processes into
the idler were active. Also this resonance is shifted by the Kerr
nonlinearity, yet in the opposite direction,

Re{ωS(vI−)} = 2ωP − ω
(0)
I + 2gNL

∣∣ã(0)
P+

∣∣2
. (21)

As shown in Fig. 3(b) the real parts of these eigenval-
ues form two branches separated by a gap whose frequency
width is minimum at the angular momentum of the pump
�P. To highlight that these frequencies indeed correspond to
the maxima of the reverse transmittance Trev, we plotted in
Fig. 3(a) a dashed-dotted line at the frequency Re{ωS(vS−)}
corresponding to the mode with angular momentum �S =
−131. We also plotted a second dashed-dotted line at the
frequency Re{ωS(vI−)} belonging to the mode �S = −131.
The fact that no peak is displayed by Trev at this position can
be readily explained by the Bogoliubov norm of its associated
eigenvector ‖vI−‖ = −1: since this eigenvalue only features
a contribution from the idler and FWM is not present for
the reverse signal, the corresponding peak has a vanishing
weight in the signal transmittance. Regarding the imaginary
parts, both of them are given by the total loss rate of the
resonator, i.e., Im{ωS(vS,I−)} = −γT for all values of angular
momentum |�S| [Fig. 3(c)], which implies dynamical stability
of our configuration against reverse-propagating perturbations
for all values of �S.

On the other hand, the eigenvalues ωS(vS,I+) associated
with forward-propagating signals are given by the diagonal-
ization of the top-left 2 × 2 block of the Bogoliubov matrix.
Again, their real parts give rise to a couple of branches sepa-
rated by a gap, as shown in Fig. 3(b). However, in this case, the
presence of FWM results in an effective attraction between the
two branches. The frequency gap between them is therefore
reduced but remains nevertheless open, with a minimum fre-
quency width at the pump angular momentum �P. To highlight
that Re{ωS(vS,I+)} indeed corresponds to the peaks in Tfor,
their values at an angular momentum �S = 131 are plotted as
dashed vertical lines in Fig. 3(a): here, both real parts agree
perfectly with the transmittance maxima. The imaginary parts,
plotted in Fig. 3(c), form a flat band at a negative value given
by the total loss rate Im{ωS(vS,I+)} = −γT independently of
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FIG. 4. Transmittance T in forward (dark blue) and reverse
(cyan) directions through an optically pumped passive ring resonator
in add-drop configuration as a function of the signal frequency ωS for
forward- or reverse-propagating signal modes with absolute angular
momenta equal to the pump one, |�S| = �P = 133. The different role
of FWM for signals propagating in opposite directions leads to differ-
ent transmittance spectra. As explained in Sec. III A 3, this allows us
to harness the device as an optical isolator. The vertical dashed-dotted
and dashed lines signal respectively the real parts of the Bogoliubov
eigenvalues corresponding to the reverse and forward-propagating
signals. The vertical solid line indicates the pump frequency ωP.
Same pump parameters as in Figs. 3(a)–3(c).

|�S|, which implies that the pump is dynamically stable also
against forward-propagating perturbations.

3. Optical isolation on the pump mode

As a last point, we look in closer detail at the transmittance
of small-amplitude signals whose frequency is varied around
the resonance of the pump mode, i.e., signals featuring angular
momenta |�S| = �P = 133. This case is of special interest as
it allows a direct comparison with the reasoning of Ref. [17].

Figure 4 shows our results for the transmittance of for-
ward and reverse-propagating signals for a pump on the upper
bistability branch. As in the previous case, transmittance is
remarkably different in the two directions: in the forward
one (dark blue line) the usual doublet is visible around the
red-detuned pump frequency ωP (indicated by the vertical
solid line). On the other hand, the transmittance in the re-
verse direction (cyan line) displays a single peak given by
the Kerr nonlinearity shift, as accounted by Eq. (20). The
nonreciprocal behavior is further enhanced in the vicinity of
the pump frequency by FWM-induced amplification of the
forward transmitted signal at a frequency position where the
reverse transmittance is instead very small. For the param-
eters in the figure, the transmittance difference in the two
directions reaches a value of up to 52 dB at the frequency
[ωS − ω

(0)
P − v(|�S| − |�P|)] = −67.98γT of the left compo-

nent of the doublet.
This observation generalizes the result of Ref. [18] for

monochromatic light to a finite range of frequencies surround-
ing the pump frequency: interestingly, even though we are
considering pump and signal as monochromatic waves whose
frequency spectra do not overlap, the asymmetry in the FWM
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coupling leads to a sizable nonreciprocal transmittance. Our
results therefore expand the range of situations in which the
dynamic reciprocity introduced in Ref. [17] does not apply.

B. Lower bistability branch

While the upper bistability branch considered before is
the most promising choice for optical isolation as it provides
a larger pump intensity that enhances FWM, for the sake
of completeness it is interesting to have a look also at the
behavior on the lower bistability branch. To this purpose,
we set the pump frequency to ωP − ω

(0)
P � −8.7γT close to

the upwards intensity jump shown in Fig. 2 and we assume
an appropriate upwards frequency ramp to obtain a pump
intensity |ã(0)

P+|2 � 4.3|ã(in)
P |2 on the lower branch.

As it is shown in Fig. 3(d), in this case the pump intensity
is not sufficiently large to give rise to an appreciable FWM.
As a consequence, the transmittance spectrum Tfor,rev(ωS) for
the pair of counterpropagating modes with absolute angu-
lar momenta |�S| = 131 is practically identical in the two
directions and features a single peak at a frequency ωS =
ω

(0)
S − 2gNL|ã(0)

P+|2 determined by the Kerr nonlinearity shift
of the resonance frequency.

Similarly to what we did for the upper bistability branch,
we diagonalize the Bogoliubov matrix in Eq. (15) and obtain
the eigenvalues and eigenvectors. In this case the Bogoliubov
norms of the four eigenvectors are

‖vI+‖ = −0.999, ‖vS+‖ = 0.999,

‖vI−‖ = −1, ‖vS−‖ = 1, (22)

signaling a finite but practically negligible coupling between
signal and idler in the forward case. So similar values of the
norms in the forward and reverse signals explain the almost
identical transmittance in the two directions.

The real and imaginary parts of the Bogoliubov eigenval-
ues ωS(vS,I±) are shown in Figs. 3(e) and 3(f), respectively.
The two real parts Re{ωS(vS,I−)} belonging to the reverse-
propagating signal intersect at two noninteger values of
angular momentum. However, given the absence of FWM
processes, their imaginary parts are still given by the total loss
rate Im{ωS(vS,I−)} = −γT as in the upper bistability branch.
The situation is more interesting in the case of the forward-
propagating signal: for noninteger angular momenta around
the two intersection points of Re{ωS(vS,I−)} the two real parts
Re{ωS(vS,I+)} coalesce and the corresponding imaginary parts
Im{ωS(vS,I+)} are split. When the pump frequency ωP ap-
proaches the upwards intensity jump of the bistability loop,
the imaginary part of ωS(vS+) turns positive in the aforemen-
tioned regions of �S. However, since this occurs at unphysical
noninteger values of angular momentum, the anticipated in-
stability is immaterial and has no practical consequence for
the chosen parameters.

A physical instability could nevertheless appear if the
pump parameters were slightly modified so to shift the in-
stability to integer values of angular momentum and/or by
extending the width of the instability region in a device with
a smaller (negative) curvature α of the dispersion relation. If
some integer values of �S fall within the instability region, the
system turns dynamically unstable towards optical parametric

oscillation into the forward-propagating signal and idler
modes.

C. Connection with quantum fluids of light

As a final remark, it is interesting to note how the physics
presented in this section for strongly pumped nonlinear ring
resonators in integrated photonics can be connected to the
behavior of quantum fluids of light in planar microcavities
under the so-called coherent pumping [22]. In particular, very
similar transmission spectra arise when one studies the ele-
mentary excitations around the steady state. Also in planar
cavity devices, the photon density features a bistable behavior,
the collective excitations arise from FWM processes between
the different bands and can be probed by weak additional
signal beams, as experimentally demonstrated in Ref. [31]. In
fluids of light, a nonreciprocal transmission of a weak signal
beam naturally appears as soon as the coherently pumped fluid
of light is moving at a constant velocity v, e.g., when it is
generated by a finite-k coherent pump.

In more formal terms, it is instructive to compare Eq. (3),
which accounts for the dispersion of photon modes in our
ring resonator, with the dispersion of photons along the planar
microcavity. As it is spelled out in detail in the Appendix, the
bare resonance frequency ω

(0)
P of the �P mode is analogous to

the bare frequency of the pumped mode, the linear slope of the
dispersion v(|�| − |�P|) plays the role of the group velocity
of the mode, the curvature α(|�| − |�P|)2/2 is related to the
inverse photon mass, and the Kerr nonlinearity plays the role
of the photon-photon interactions.

All together, one can then think of the optical field in the
ring resonator as a fluid of light that circulates around the
resonator at angular speed v: the marked attraction between
the S+ and the I+ bands visible in Fig. 3(b) is a precursor of
a sonic dispersion, the appearance of the I+ peak in Fig. 3(a)
corresponds to the ghost branch observed in Ref. [31], and
the optical isolation behavior induced by the FWM can be
interpreted as stemming from the dragging of collective ex-
citations by the moving fluid. As we are going to see in the
next sections, this deep analogy provides a useful guidance
also in the case of incoherently pumped lasing resonators.

IV. ACTIVE RING RESONATOR

While the coherent pump configuration investigated in the
previous section provides an efficient and controllable way to
break reciprocity and induce an optical isolation behavior, it
has the crucial disadvantage of requiring an external coherent
laser to pump the resonator. In this section, we investigate
a different configuration that alleviates this requirement and
may provide a stand-alone isolating device.

Specifically, we investigate an active analog of the passive
nonlinear ring resonator studied in the previous section. By
incoherently pumping the resonator above the lasing threshold
P0 > γT we can induce lasing in one of the ±�P counterprop-
agating modes in which we assume gain to be the strongest. If
backscattering is negligible, a local saturable gain will grant
unidirectional lasing with a well-defined chirality in one of
these two modes, as shown in Ref. [19]. However, for the
system to work as an isolator, we need to deterministically
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FIG. 5. (a), (d) Transmittance T in forward (dark blue) and reverse (cyan) directions across an incoherently pumped active ring resonator
in add-drop configuration lasing in the �P = 133 mode, as a function of the signal frequency ωS for a pair of counterpropagating modes with
angular momenta |�S| = 131. The pump rate is fixed at P0 = 2γT. The different role of FWM for signals propagating in opposite directions
leads to different transmittance spectra. As explained in Sec. IV A 1, this allows us to harness the device as an optical isolator. The vertical
dashed-dotted and dashed lines indicate the reals part of the Bogoliubov eigenvalues corresponding to the reverse and forward-propagating
signals. (b), (c); (e), (f) Real and imaginary parts of the Bogoliubov eigenvalues ωS as the angular momenta ±|�S| of two signals propagating
in the forward and reverse directions are varied around ±�P = ±133. The eigenvalues are labeled according to the Bogoliubov norm ‖vS,I±‖
of the corresponding eigenvectors. Squares and circles indicate the modes of integer angular momenta |�S|, while the dashed lines are
calculated for noninteger values of |�S|. Panels (a)–(c) and (d)–(f) display the results in the presence and absence, respectively, of a weak
seed deterministically triggering lasing in the CCW direction. Sketches of the corresponding configurations are found in the upper-right part
of panels (a) and (d). The red, dashed arrow represents the weak incident seed, while the solid arrows describe the signals probing the device.

choose one of the operation directions as the forward one,
otherwise the lasing chirality and thus the forward and reverse
directions would be selected in a random way each time the
laser operation is switched on. Without loss of generality, we
assume that the CCW direction is imposed as the forward
one by means of some weak seed beam ã(in)

P+ coupling into
the �P > 0 mode and triggering laser operation in the CCW-
propagating �P mode. Once lasing in the desired direction is
triggered, the seed can be of course switched off. In what
follows, we first analyze in Sec. IV A the case where isolation
is probed while the seed is still on, then in Sec. IV B we will
consider the case where the seed is turned off prior to probing
optical isolation.

While our conclusions are fully general, for illustrative
purposes we show simulations with reasonable parameters for
integrated photonics devices, namely a ring-bus waveguide
coupling kw = 0.04, absorption losses kA = 0.032 (yielding
a quality factor Q � 7.6 × 104 for the unloaded cavity), and
an effective nonlinear coefficient gNLnS/γT � 9.6. As done
for the passive ring resonator, we choose a pump mode of
angular momentum �P = 133. We set a pump rate P0 = 2γT,
which gives a pump intensity inside the resonator |ã(0)

P |2/nS =
P0/γT − 1 = 1. The lasing frequency is determined by the

Kerr nonlinear shift of the pump resonance frequency, i.e.,
ωP = ω

(0)
P − gNLnS.

A. Optical isolation in the presence of a weak seed

In this section we consider that a weak seed beam of
amplitude ã(in)

P+ is driving the pump mode to deterministically
enforce lasing into the CCW �P = 133 mode. Specifically, we
consider a seed beam with a weak incident intensity |ã(in)

P+ |2 =
10−2nS at a frequency ωP perfectly matched with the natural
laser oscillation at ω

(0)
P − gNLnS. Similar behavior would be

found for slightly different seed frequencies, provided they
remain in the vicinity of the natural lasing frequency.

1. Transmission spectra

We probe optical isolation by comparing the transmittance
of signal probes of weak amplitude ã(0)

S± propagating in ei-
ther the forward or reverse directions, tuned in the vicinity
of the resonance frequency ω

(0)
S of the modes with angu-

lar momentum |�S| = 131. The transmittance in the forward
direction Tfor is shown as a dark blue line in Fig. 5(a): as
expected, the spectrum displays the characteristic doublet re-
sulting from FWM. The transmittance in the reverse direction
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Trev is displayed as a cyan line in the same panel: due to the
absence of FWM, the spectrum features a single maximum
at a frequency given by the Kerr nonlinearity shift of ω

(0)
S

and different from those of the FWM-induced doublet in Tfor.
In particular, at the frequency [ωS − ω

(0)
P − v(|�S| − |�P|)] =

−16.52γT where Tfor achieves its maximum value, the ratio
between transmittance in the two directions reaches 23 dB. As
in the previous cases, the linearity of Eqs. (11) and (12) with
respect to the signal and idler fields makes the transmittance
spectra Tfor,rev to be unaffected by the presence of each other,
therefore granting that our device can work as an efficient
optical isolator.

Looking at the analytical form of the motion equations (11)
and (12), it is interesting to notice that FWM processes can
also be induced by the saturable gain terms. This results in a
finite FWM coupling between signal and idler even in active
devices featuring negligible Kerr nonlinearities. However, the
typical intensity of gain-induced FWM is always of the order
of the saturable gain magnitude, and therefore of the loss rate
γT. On the other hand, the FWM stemming from the Kerr non-

linearity can be made arbitrarily larger with a suitable choice
of the nonlinear material and increases with the pump rate.
In particular, for the parameters employed in this section we
checked that at the optimal frequency mentioned above, the
Kerr-originated FWM is about 20 times larger than the gain-
induced FWM. As a consequence, when the Kerr nonlinearity
is removed by setting gNL = 0, the transmittance spectrum
displays an almost identical shape for signals propagating in
the two directions with no isolation behavior.

2. Bogoliubov analysis

Like in the previous section, the nonreciprocity underlying
the different transmittance of the forward- and reverse-
propagating signals can be physically understood in terms of
the linearized equations of motion for the signal and idler
fields in the two directions by diagonalizing the Bogoliubov
matrix in a range of angular momenta ±|�S| around ±�P. In
the case of an active ring resonator the system of differential
equations reads

i
d

dt
[ãS+ ã∗

I+ ãS− ã∗
I−]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(0)
S − ωS − iγT

−2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

−gNLã(0)2

P+

−i P0/nS[
1+ 1

nS

∣∣ãP+
∣∣2]2 ã(0)2

P+
0 0

+gNLã(0)∗2

P+

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2 ã(0)∗2

P+

−ω
(0)
I + 2ωP − ωS − iγT

+2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

0 0

0 0

ω
(0)
S − ωS − iγT

−2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

0

0 0 0

−ω
(0)
I + 2ωP − ωS − iγT

+2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× [ãS+ ã∗
I+ ãS− ã∗

I−]T . (23)
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By diagonalizing the 4 × 4 matrix above we get the
four eigenvectors vS,I± and their corresponding eigenvalues
ωS(vS,I±), whose Bogoliubov norms

‖vI+‖ = −0.759, ‖vS+‖ = 0.759,

‖vI−‖ = −1, ‖vS−‖ = 1, (24)

show a finite coupling between signal and idler only for the
forward direction. The real and imaginary parts of the eigen-
values are displayed in Figs. 5(b) and 5(c) as a function of
the chosen mode. As usual, deeper insight about the under-
lying physics is obtained by plotting the whole spectrum of
eigenvalues also for noninteger values of �S. Similarly to the
passive ring resonator pumped in the upper branch of the
bistability loop, the real parts are arranged in four branches
separated by a gap that takes its minimum width at |�S| = �P.

For the reverse-propagating signal, FWM is not present
and the Re{ωS(vS,I−)} branches are completely determined
by the Kerr nonlinear shift of the signal and idler modes, as
determined by Eqs. (20) and (21). The values of the two fre-
quencies Re{ωS(vS,I−)} for �S = −131 are plotted as vertical
dashed-dotted lines in Fig. 5(a): while Re{ωS(vS−)} can be
associated with the maximum of Trev, no peak is found in
Trev at Re{ωS(vI−)}: since FWM is not present for the reverse
signal, no light from the pump can in fact be coupled at this
frequency while simultaneously satisfying conservation of en-
ergy and angular momentum. The corresponding imaginary
parts Im{ωS(vS,I−)} take the value

Im{ωS(vS,I−)} = −P0 − γT

P0/γT
(25)

independently of �S. In our specific P0 = 2γT case, we get
Im{ωS(vS,I−)} = −γT/2 which confirms that the system is
dynamically stable against perturbations propagating in the
reverse direction.

As it is demonstrated by the Bogoliubov norms (24), the
situation is somehow different for the forward case. Here,
FWM couples the pump with the resonance frequencies of
signal and idler. The doublet of peaks in Tfor corresponds to
the two frequencies Re{ωS(vS,I+)} indicated as vertical dashed
lines in Fig. 5(a): in agreement with the �S-dependent disper-
sion shown in Fig. 5(b), FWM results in an effective attraction
between transmittance peaks and brings the two eigenvalues
branches closer together narrowing the gap. Also in this case,
the imaginary parts Im{ωS(vS,I+)} = −γT/2 form a flat band
at the value in Eq. (25). This confirms the dynamical stability
of the configuration also against perturbations propagating in
the forward direction.

B. Optical isolation in the absence of the seed

While the presence of a seed beam is useful to determin-
istically trigger lasing in the desired CCW direction in an
otherwise symmetric ring resonator, there is no need to keep
the seed on while probing the optical isolation behavior. In this
section, we show that the system performance remains indeed
unchanged in the absence of the seed beam provided lasing is
taking place in the desired CCW direction.

As before, we start by evaluating the transmittance in the
two directions for a weak signal beam around the resonance

frequency ω
(0)
S of the modes with |�S| = 131. We use the same

procedure that we followed in the presence of the seed: the
results for Tfor,rev shown in Fig. 5(d) are practically identical
to those obtained when the seed was switched on and shown in
Fig. 5(b): This is not a surprise as the seed intensity is so small
that it does not have any appreciable effect on the nonlinear
shift and the FWM coupling.

We then diagonalize the 4 × 4 Bogoliubov matrix in
Eq. (23) to obtain the eigenvalues and eigenvectors. As
expected, the values of the eigenvectors are only slightly mod-
ified by the absence of the seed,

‖vI+‖ = −0.758, ‖vS+‖ = 0.758,

‖vI−‖ = −1, ‖vS−‖ = 1. (26)

The real parts of the eigenvalues Re{ωS(vS,I±)} are indicated
as vertical lines in Fig. 5(d): once again, and exception made
of course for Re{ωS(vI−)}, the eigenvalues well match the
position of the respective transmittance peaks.

The real and imaginary parts of the dispersion of ωS(vS,I±)
are displayed in Figs. 5(e) and 5(f) as a function of the
angular momenta |�S| in a neighborhood of �P. In the case
of the reverse-propagating signal, very similar values of
ωS(vS,I−) are found in the presence and absence of the seed,
respectively. On the other hand, the eigenvalues ωS(vS,I+)
corresponding to the forward case are significantly mod-
ified in a region of noninteger angular momenta around
the pump angular momentum �P: their real parts coalesce
at Re{ωS(vS,I+)} = ω

(0)
P − gNL|ã(0)

P+|2 (i.e., the frequency of
the Kerr-shifted resonance at �P = 133), while simultane-
ously their imaginary parts split and take the different values
Im{ωS(vS+)} = 0 and Im{ωS(vI+)} = −γT at �S = �P. These
correspond to the characteristic Goldstone and amplitude
modes of a spontaneous U(1)-symmetry-breaking system
[32]: here, the spontaneously broken symmetry corresponds
to the phase of the pump-laser field amplitude ã(0)

P+. In the
presence of the seed, this symmetry was explicitly broken by
the seed of amplitude ã(in)

P+ , whose phase fixes the phase of the
laser emission and makes a gap appear in the real part of the
collective-mode dispersion.

For the chosen parameters, the diffusive region where the
imaginary parts Im{ωS(vS,I+)} split does not extend to the
next mode, so the Goldstone physics can only be detected on
the pump mode. A wider diffusive region could be obtained
in devices displaying a weaker (in absolute value) curvature
α, so to access the Goldstone and amplitude modes also on
the neighboring modes: as usual, the key signature of this
phenomenon would be the narrowing (broadening) of the
resonance peak corresponding to the Goldstone (amplitude)
mode.

C. Connection with polariton condensates

While the coherently pumped ring resonator shared close
analogies with a coherently pumped fluid of light, it is in-
teresting to conclude this section by highlighting the analogy
with a nonequilibrium condensate or, if one prefers, a spatially
extended laser device [22,33]. In this case, the Bogoliubov
modes probed by the signal correspond to the collective
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FIG. 6. (a) Transmittance T in forward (dark blue) and reverse (cyan) directions across an incoherently pumped active TJR in add-drop
configuration lasing in the �P = 133 mode, as a function of the signal frequency ωS for a pair of counterpropagating modes with angular
momenta |�S| = 131. The pump rate is fixed at P0 = 2γT. A sketch of the device is found in the upper-right part of the panel. The arrows
describe the probing with the signal. The different role of FWM for signals propagating in opposite directions leads to different transmittance
spectra. As explained in Sec. V A, this allows us to harness the device as an optical isolator. The vertical dashed-dotted and dashed lines
signal respectively the values of the real part of the Bogoliubov eigenvalues corresponding to the reverse and forward-propagating signals. (b),
(c) Real and imaginary parts of the Bogoliubov eigenvalues ωS as the angular momenta ±|�S| of the modes in which the counterpropagating
signals are coupled is varied around ±�P = ±133. Squares and circles are the values corresponding to the modes of integer angular momenta
|�S|. The dashed lines are calculated for noninteger values of |�S|.

modes of the condensate which, in particular, feature a diffu-
sive Goldstone branch at small wave vector and a gap opening
in the presence of a coherent seed explicitly breaking the
symmetry [32]. As condensation occurs in a mode with a well-
defined chirality, the nonreciprocal optical isolator behavior
can be again understood in terms of the dragging of collective
excitations by the underlying moving fluid.

V. ACTIVE TAIJI RESONATOR

As an ultimate configuration, in this last section we demon-
strate how our scheme for nonreciprocity and optical isolation
directly extends to the case of a TJR laser, with major practical
advantages: as discussed in Ref. [19], active TJRs determin-
istically impose a well-defined chirality to the laser emission
without the need for any external seed. Through the intrinsic
nonlinearity of saturable gain, the explicit breaking of spatial
parity by the S-shaped element dynamically translates into
an effective breaking of time-reversal symmetry in the lasing
state which can only be stable in one direction and is then only
weakly affected by all those backscattering processes induced
by fabrication imperfections.

Without loss of generality, we consider a TJR featuring
an S waveguide that couples the CW into the CCW modes
as sketched in the inset of Fig. 6(a). This results in stable
lasing in the CCW direction, while lasing in the CW di-
rection is destabilized [19]. As before, we set a pump rate
P0 = 2γT which gives an intensity |ã(0)

P+|2 = nS circulating in
the �P = 133 mode only. We employ the usual absorption
losses kA = 0.032, the coupling parameters kw = 0.04 and
kS = 0.04 (yielding a quality factor Q � 4 × 104), and an ef-
fective nonlinear coefficient gNLnS/γT � 5. As in the previous
section, we start by analyzing the transmittance spectrum of
small amplitude signals propagating in opposite directions
through the TJR laser device and then we make use of a
Bogoliubov analysis to shine physical light into the resulting
nonreciprocity and optical isolation behavior.

A. Transmission spectra

We first probe the system in the forward direction using
a weak signal beam whose frequency ωS is varied around
the resonance frequency ω

(0)
S corresponding to the �S = 131

mode. As in the previous section, the forward transmission
spectrum Tfor displayed as a dark blue line in Fig. 6(a) features
the characteristic doublet structure originating from FWM.
Due to the absence of FWM, the analogous spectrum for the
reverse direction shown as a cyan line features a single peak
at a frequency given by the Kerr nonlinearity shift of the sig-
nal mode resonance, different from those of the Tfor doublet.
In particular, at the frequency [ωS − ω

(0)
P − v(|�S| − |�P|)] =

−8.51γT where we find the maximum Tfor we get a 17 dB
suppression of the Trev signal. Comparing this value with that
obtained in Sec. IV, we see that the TJR laser performance is
slightly worse than the one of a ring resonator laser featuring
the same values of kA and kw. This stems from the fact that the
TJR features a higher value of γT due to the additional losses
γS coming from the finite coupling to the S-shaped element. A
higher suppression of the reverse signal in the TJR laser could
be obtained by reducing γT; however, a finite contribution
from kS is necessary to trigger lasing in the forward direction.

As in all previous cases, the linearity of the coupled-mode
equations (11) and (12) ensures that forward- and reverse-
propagating incident beams do not interact with each other,
so the TJR laser can function as an effective optical isolator
device. As already mentioned, the crucial advantage of the
TJR configuration is that a given chirality for lasing is de-
terministically imposed by the laser operation with no need
for seeding it. As a result, the active TJR can be considered
as a stand-alone optical isolator device. A minor difference
with respect to the previous cases, is that the S-shaped element
introduces some finite reflection into the incident bus waveg-
uide for light propagating in the reverse direction. While this
feature does not appear to spoil the isolation behavior, it might
need to be taken into account in the design of the optical
network that follows the optical isolator.
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B. Bogoliubov analysis

In the TJR case the system of linearized differential equations features additional terms in the 4 × 4 Bogoliubov matrix, which
account for the coupling of the CW modes into the CCW ones enabled by the S waveguide of the TJR,

i
d

dt
[ãS+ ã∗

I+ ãS− ã∗
I−]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(0)
S − ωS − iγT

−2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

−gNLã(0)2

P+

−i P0/nS[
1+ 1

nS

∣∣ãP+
∣∣2]2 ã(0)2

P+
β

(S)
± 0

+gNLã(0)∗2

P+

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2 ã(0)∗2

P+

−ω
(0)
I + 2ωP − ωS − iγT

+2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

0 −β
(I)∗
±

0 0

ω
(0)
S − ωS − iγT

−2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+2 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

0

0 0 0

−ω
(0)
I + ωP − ωS − iγT

+2gNL

∣∣ã(0)
P+

∣∣2

+i P0

1+ 1
nS

∣∣ã(0)
P+

∣∣2

−i P0/nS[
1+ 1

nS

∣∣ã(0)
P+

∣∣2]2

∣∣ã(0)
P+

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× [ãS+ ã∗
I+ ãS− ã∗

I−]T . (27)

In spite of these additional terms, it follows from the theory
of block matrices that the eigenvalues are not modified by the
intermode β

(S,I)
± couplings and perfectly coincide with those

of the active ring resonator in the absence of the external
seed discussed around Eq. (23). As expected, the position of
the transmission peaks perfectly match the real parts of these
eigenvalues, indicated as vertical lines in Fig. 6(a).

In contrast, the eigenvectors vS,I± are significantly modi-
fied by the intermode couplings. In particular, the unidirec-
tional coupling between the CW and CCW modes makes the
Bogoliubov norms to be all different from ±1,

‖vI+‖ = −0.756, ‖vS+‖ = 0.756,

‖vI−‖ = −0.948, ‖vS−‖ = 0.948. (28)

In spite of this, we still have no peak at Re{ωS(vI−)} in the
reverse transmission due to the absence of FWM in the reverse
direction.

The real and imaginary parts of the corresponding eigen-
values ωS(vS,I±) are shown in Figs. 6(b) and 6(c) as a

function of �S: the real parts Re{ωS(vS,I−)} corresponding
to the reverse signal are distributed in two bands separated
by a gap which achieves its minimum frequency width at
|�S| = �P = 133. Re{ωS(vS−)} determines the frequency at
which the reverse transmittance Trev takes its maximum value,
which is again given by the resonance frequency of the
−�S mode shifted by the Kerr nonlinearity [see Eq. (20)].
The corresponding imaginary parts take the same and neg-
ative value Im{ωS(vS,I−)} = −γT/2, confirming dynamical
stability.

In the case of the forward-propagating signal, the two
bands Re{ωS(vS,I+)} give again the frequencies of the trans-
mittance doublet for each value of �S. As compared with the
reverse signal case, the two bands are now closer between
each other, implying that FWM produces an effective attrac-
tion between transmittance peaks. Furthermore, the real parts
of ωS(vS,I+) coalesce in a noninteger neighborhood of �P =
133, taking the value Re{ωS(vS,I+)} = ω

(0)
P − gNL|ã(0)

P+|2 of the
Kerr-shifted resonance at �P = 133, and therefore closing the
gap. In the same region, their corresponding imaginary parts
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Im{ωS(vS,I+)} depart from the value −γT/2 and display the
same Goldstone and amplitude modes discussed in detail in
Sec. IV.

VI. CONCLUSIONS

In this work, we have proposed and theoretically charac-
terized a promising route to obtain efficient optical isolation
in small-footprint integrated photonics devices. Our proposal
takes inspiration from the dragging of the collective excitation
modes in moving fluids of light [22]: in particular, it does not
require any explicit time-reversal-symmetry-breaking compo-
nent such as magneto-optical elements but instead exploits
standard nonlinear optical processes occurring in generic di-
electric materials in the presence of a strong unidirectional
pump beam.

The proposed setup is based on a ring or Taiji resonator
supporting a strong and coherent single-mode propagating
field, which produces four-wave mixing processes in the for-
ward direction only, and thus allows us to overcome dynamic
reciprocity restrictions [17]. In this way, additional weak sig-
nals display a strongly nonreciprocal transmittance, such as
a high transmission in the forward direction and a suppressed
transmission in the reverse one (or viceversa). Since it is based
on resonant phenomena, our proposal for optical isolation is of
course restricted to narrow frequency bands resonant with the
collective modes. However, the precise operation frequency
can be selected with a suitable engineering of the structure as
well as fine-tuned via the optical nonlinearity by modifying
the intensity of the strong pump beam. In combination with
the efficient unidirectional lasing of Taiji resonators [19], our
proposal then provides a complete platform for an efficient
optical isolation component to be included in integrated pho-
tonic networks.

In addition to the experimental implementation of the pro-
posed device, a direct theoretical follow-up of the present
work will be to characterize the degeneracies of the collective-
mode dispersion and their structure in the complex plane in
relation with exceptional points appearing in PT-symmetric
Hamiltonians [34]. On the longer run, further theoretical re-
search will address the interplay between our optical isolation
mechanism and the nontrivial band topologies and topological
edge states that can be engineered in arrays of ring and Taiji
resonators and will explore its application to a new generation
of spin Hall topological laser devices [35–38].
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APPENDIX A: PARTIAL DIFFERENTIAL EQUATION
FOR THE FIELD AMPLITUDE

For the sake of completeness, it is useful to explicitly
present the full partial differential equation for the field am-
plitude a(ϕ, t ), where ϕ is the angular coordinate along the
ring. Looking at this expression facilitates understanding the
physical interpretation of our proposal in terms of a fluid of
light circulating around the ring cavity.

Such a partial differential equation can be written as

i
∂a(ϕ, t )

∂t
= h0 a − gNL|a|2a + iP0 a

1 + |a|2/nS

− iγTa − F (ϕ, t ), (A1)

where F (ϕ, t ) encodes the external driving by the incident
light and the linear evolution term h0a is easiest written in
angular-momentum space as

h0ā(�, t ) = ω
(0)
� ā(�, t )

=
[
ω

(0)
P + v(|�| − |�P|) + α

2
(|�| − |�P|)2

]
ā(�, t ),

(A2)

where ā(�, t ) = 1
2π

∫
dϕ a(ϕ, t ) e−i�ϕ . In this formula, the

roles of v and α as respectively the group velocity and the
inverse mass of photons circulating around the ring cavity are
transparent. The intermode coupling terms proportional to the
β coefficients are instead easier introduced directly at the level
of the coupled-mode equations.

Based on this evolution equation, the equations of mo-
tion (10)–(12) for the �P,±�S,±�I modes of interest can be
obtained by expanding the field amplitude a(ϕ, t ) according
to the ansatz (9) and then projecting (A1) onto the relevant
modes while only keeping first-order terms on the signal and
idler field amplitudes.
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