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Three-dimensional polarization state and spin structure of a tightly focused radially polarized
Gaussian Schell-model beam
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In this work, we revisit the tight focusing of a radially polarized partially coherent Gaussian Schell-model
beam and examine the effect of spatial coherence of the incident beam on the focal-plane three-dimensional (3D)
polarization characters, including the 3D degree of polarization, polarimetric dimensionality, and polarimetric
structure. The polarimetric structure and the associated structure for the spin density vector of the tightly focused
field are obtained via the 3D characteristic decomposition of the 3 × 3 polarization matrix. We demonstrate that
the generated focused field shows the genuine 3D polarization state and a sophisticated spin structure due to the
reduced spatial coherence in the incident beam. We find the contributions to whole 3D polarization state of the
focused field from the pure state, middle-term state, and 3D unpolarized state in the characteristic decomposition,
as well as the contributions to the total spin density vector from the spins of pure state and middle-term state can
be controlled by the transverse spatial coherence width of the incident Gaussian Schell-model beam. In addition,
the genuine 3D polarization and the spin structure are analyzed in the connection of the recently introduced
concept of polarimetric nonregularity.
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I. INTRODUCTION

Polarization is one of the most fundamental characteristics
of light, which has played an important role in understand-
ing the nature of light and has become a key attribute in
a wide array of situations including, e.g., optical imaging,
three-dimensional displays, and remote sensing [1]. Classi-
cal polarization optics usually considers the light exhibiting
two-dimensional (2D) polarization states. For example, for
the paraxial beams, the evolution of the electric field is al-
ways restricted to a fixed 2D plane that is orthogonal to the
beam’s propagation direction. In the case of paraxial beams,
the 2 × 2 polarization matrix can be used to fully characterize
the polarization properties [2]. A fundamental quality of the
2D polarization state is that its polarization matrix can be
decomposed as a superposition of a fully polarized state and a
2D completely unpolarized state [3]. The state of polarization
is involved in the fully polarized part, while the degree of po-
larization is determined by the distance between the matrices
for the complete polarization state and the 2D unpolarized
state.

With the rapid development of the modern nanopho-
tonics, the extension of 2D polarization optics to the
three-dimensional (3D) situation becomes significantly im-
portant [4]. This is because the light fields in the nanoscale,
such as the surface waves and the tightly focused fields, are
generally nonparaxial, i.e., all their three orthogonal spatial
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components of the field vector playing the role. A 3 × 3
polarization matrix was successfully used to describe the po-
larization properties of the 3D polarization states [5]. It is
important to note that one can always find a 2D plane where
the evolution of the electric field vector of a deterministic
(monochromatic and fully coherent) nonparaxial structured
light field at a single spatial point is restricted to [6], al-
though the electric field vectors at different points in the space,
in general, oscillate in the different planes. Contrarily, the
electric field of true 3D light fluctuates in three orthogonal
spatial directions at a single point in any reference frame. The
polarization dimensionality of light fields can be examined
with the help of the intensity anisotropy of the polarization
state in the intrinsic coordinate frame [7], in which the real
part of the polarization matrix is diagonalized. Three nonvan-
ishing elements of such a diagonal matrix represent a true 3D
light field.

Similar to a 2D polarization state, the polarimetric structure
of a 3D polarization states is achieved by the characteristic
decomposition [8]. With such a decomposition, the 3 × 3
polarization matrix turns into an incoherent superposition of
a fully polarized (pure) state, a middle-term state, and a 3D
unpolarized state. Regularly, the middle-term is regarded as
a 2D unpolarized state since it is an equiprobable mixture
of two uncorrelated orthogonal fully polarized states [9,10].
However, a new insight has been gained recently for the char-
acteristic decomposition of the 3D polarization state [11,12].
It was showed that, when the polarization ellipses of the above
two uncorrelated states are confined to different planes, the
middle term does not describe a 2D unpolarized state but a
genuine nonregular 3D polarization state. A measure for the
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nonregularity of the 3D polarization state is provided by the
definition of the degree of nonregularity [13].

Meanwhile, the spin angular momentum (SAM) is another
intriguing characteristic of light [14], which has gained wide
interest in photonics [15–18]. The SAM is associated with the
circular polarization state in a light field. For a regular 3D
polarization state, the SAM is carried only by the pure state, as
the middle-term state (now is a 2D unpolarized state) and the
3D unpolarized state carry no spin. However, for a nonregular
3D state, a distinguishing physical property is that the middle-
term state always carries a nonzero spin as the polarization
matrix for this state is now a complex matrix and the degree
of circular polarization is present [19]. As a result, the total
SAM of a nonregular 3D polarization state is generally given
as a vector sum of those of the pure state and the middle-term
state.

The genuine 3D polarization state exists only in the random
light fields with the field components being partially corre-
lated [7,20]. For example, it was demonstrated only recently
that any random evanescent wave created in total internal
reflection of a partially polarized or 2D unpolarized planar
field is in a 3D and nonregular polarization state [21]. The
purely transverse spin in the partially polarized evanescent
wave observed quite recently in experiment [22] is due to
its true nonregular 3D nature. It was shown that the random
light field generated by tight focusing of a partially polar-
ized 2D planar wave also possesses genuine 3D polarization
and exhibits high degree of nonregularity [23], and therefore,
the random focused field is endowed with rich internal spin
structure [24].

On the other hand, it was demonstrated that, when a fully
polarized, but spatially partially coherent beam is taken to be
the incident beam for the tight focusing system, the partial
correlations will also be induced within the orthogonal field
components of the focused field at a single point [25], indicat-
ing that the true 3D polarization state in the random focused
field generated by spatially partially coherent beam is possi-
ble. A recent study has shown that the tightly focused radially
polarized Gaussian Schell-model beam indeed exhibits the 3D
nonregular polarization character [23]. However, how will the
associated spin density vector of the middle-term state affect
the total spin in the focused field and what is the role of the
spatial coherence on the 3D polarization characters and the
spin structures have not yet been addressed.

To this end, in this work, we revisit the tight focusing of a
radially polarized Gaussian Schell-model beam [26] with the
help of the recently developed convolution approach for fast
calculation of the tightly focused partially coherent vectorial
Schell-model beams [27]. We focus on the effect of two-point
spatial coherence of incident beam on the 3D polarization
properties of the focused field by examining the 3D degree
of polarization, polarization dimensionality, 3D characteristic
decomposition, polarimetric nonregularity, and spin structure
of the 3D polarization state.

This work is organized as follows. In Sec. II we recall
the theoretical background for the genuine 3D polarization
state. In Sec. III, we introduce the fast calculation method
for the tight focusing of an electromagnetic partially coherent
Schell-model beam. In Sec. IV, we present the simulation
results and discuss the behavior of the polarimetric quantities

in the focal plane for the tightly focused radially polarized
Gaussian Schell-model beam. Section V summarizes the main
findings of this work.

II. THEORETICAL BACKGROUND

We consider a random, but statistically stationary, three-
component electromagnetic field. The (second-order) statisti-
cal properties of such a field in the space-frequency domain
are involved in a 3 × 3 cross-spectral density matrix [28]

W(r1, r2) = 〈E∗(r1)ET(r2)〉, (1)

where r1 and r2 are two arbitrary spatial points, E(r) =
[E1(r), E2(r), E3(r)]T are the three-component random field
realization vector with E1(r), E2(r), and E3(r) being the field
components in the Cartesian coordinates along x, y, and z
directions, respectively. The asterisk, superscript T, and the
angle brackets denote the complex conjugate, matrix trans-
pose, and ensemble average, respectively. The polarization
properties of such a random field can be characterized by
a 3 × 3 polarization matrix, which is fully specified by the
single-point value of the cross-spectral density matrix, i.e.,

�(r) = W(r, r). (2)

The polarization matrix �(r) is Hermitian and satisfies the
nonnegative definiteness conditions [5]. Thus, the polarization
matrix can be decomposed as �(r) = �′(r) + i�′′(r), where
the prime and double prime denote the real and imaginary
parts, respectively. The real part matrix �′(r) is a symmetric
and positive semi-definite matrix, while the imaginary part
matrix �′′(r) is skew symmetric [5]. The polarization ma-
trix has three nonnegative eigenvalues λ1 � λ2 � λ3 and the
corresponding eigenvectors are expressed as û1, û2, and û3,
respectively. The three eigenvectors are the orthonormal and
column vectors.

A. Polarization dimensionality

To see the polarization dimensionality of the random field,
the polarization matrix �(r) is rotated into the intrinsic co-
ordinate frame with an orthogonal transformation matrix Q0.
Here, Q0 is a 3 × 3 matrix which obeys QT

0 = Q−1
0 and

detQ0 = 1. We note that the physical polarization properties
of the field do not change under such orthogonal transforma-
tion. In the intrinsic coordinate frame, the polarization matrix
becomes [7]

�0(r) = QT
0 �(r)Q0 = �′

0(r) + i�′′
0 (r), (3)

where

�′
0(r) =

⎛
⎝a1 0 0

0 a2 0
0 0 a3

⎞
⎠, (4)

�′′
0 (r) =

⎛
⎝ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞
⎠. (5)

The real part �′
0(r) is a diagonal matrix with the el-

ements a1 � a2 � a3 � 0 being the three eigenvalues of
�′(r). The elements in the imaginary part �′′

0 (r) form the
angular-momentum vector n = 2(n1, n2, n3) of the state with
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the factor of 2 confirming the bosonic nature of photons
[11,29,30]. The eigenvalues a1, a2, and a3 are the principal in-
tensities, which constitute the total intensity I = a1 + a2 + a3

of the state �(r). For the principal intensities a1 > 0, a2 = 0,
and a3 = 0, it is found that the electric field fluctuates only
in a single direction and thus the field is regarded as one-
dimensional (1D) light. In the case when only a3 = 0, the field
oscillation is restricted to a plane and the light is considered
as 2D light. When all three eigenvalues are positive, the in-
tensity of each Cartesian field component is nonzero for any
orientation of the frame. Thus, the field fluctuates in all three
dimensions and is considered as 3D.

To characterize the dimensionality of the light field more
quantitatively, one may adopt the definition of polarimetric
dimension [7]

D(r) = 3 − 2d (r), (6)

where d (r) is the distance between the real-valued matrix
�′(r) and the 3 × 3 identity matrix (corresponding to the
intensity-isotropic 3D light), i.e.,

d (r) =
√√√√3

2

[
tr�′2(r)

tr2�′(r)
− 1

3

]
. (7)

The quantity d (r) describes the degree of intensity anisotropy
of the polarization state �(r) and is bounded as 0 � d (r) �
1. The polarimetric dimension, therefore, obeys 1 � D(r) �
3 with the upper and lower limits corresponding to the
1D light and the intensity-isotropic 3D (unpolarized) light,
respectively. It is remarkable that the polarimetric dimen-
sion remains invariant under coordinate rotations since the
rotations do not change the polarization state. Thus, the po-
larimetric dimension can also be written in terms of the
eigenvalues of �′(r), i.e.,

D(r) = 3 −
√

2[(a1 − a2)2 + (a1 − a3)2 + (a2 − a3)2]

a1 + a2 + a3
.

(8)

We note that only for a1 > 0, a2 = a3 = 0 (1D light), D(r) =
1. For the 2D light (a1 � a2 > 0 and a3 = 0), 1 < D(r) � 2.
For 2 < D(r) � 3, the light field is essentially 3D as the
three orthogonal components have nonzero intensity for any
orientation of the Cartesian reference frame. It is noted here
that, for 1 < D(r) � 2, the light can also be 3D if the intensity
distribution is anisotropic.

B. Characteristic decomposition

To show more intuitively the polarimetric structure of
the 3D polarization state, we decompose the 3 × 3 polariza-
tion matrix with the characteristic decomposition, i.e., the
3 × 3 polarization matrix is decomposed as an incoherent
superposition of three polarization matrices with particular
interpretations [8]

� = I[P1�̂p + (P2 − P1)�̂m + (1 − P2)�̂u], (9)

where I = λ1 + λ2 + λ3 is the total intensity with λ1, λ2, and
λ3 being the nonnegative eigenvalues of �, as before. The

parameters P1 and P2 are the indices of polarimetric purity,
which can be obtained by

P1 = (λ1 − λ2)/I, (10)

P2 = 1 − 3λ3/I, (11)

and they obey 0 � P1 � P2 � 1. The three polarization matri-
ces are expressed as

�̂p = û1û†
1, (12)

�̂m = 1
2 (û1û†

1 + û2û†
2), (13)

�̂u = 1
3 (û1û†

1 + û2û†
2 + û3û†

3), (14)

where û1, û2, and û3 are the eigenvectors of the polarization
matrix � corresponding to the eigenvalues λ1, λ2, and λ3,
respectively. It is obvious that the first polarization matrix �̂p

describes a fully polarized (pure) state with its polarimetric di-
mension bounded as 1 � D � 2. The last polarization matrix
�̂u = I/3, with I being the 3 × 3 identity matrix, denotes a 3D
completely unpolarized field with its polarimetric dimension
D = 3.

However, the physical interpretation of the middle-term
state �̂m requires more attention. Traditionally, the middle
term is regarded as a 2D unpolarized light (with polarimet-
ric dimension D = 2) since the matrix is composed by two
uncorrelated orthonormal states û1 and û2. This is true when
the polarization ellipses of the two states lie in the same
plane. However, when the middle term �̂m corresponds to
an incoherent mixture of two equal-intensity states whose
polarization ellipses are confined to different planes, the po-
larization state �̂m does not describe 2D unpolarized light but
genuine 3D light [12]. In such a case (excluding the special
case P2 − P1 = 0), the polarization state is named as the non-
regular 3D polarization state. The polarimetric dimension for
the nonregular state �̂m is bounded as 2 < D � 5/2 (shown
below) with the upper limit corresponding to the perfectly
nonregular state, i.e., the state �̂m is an equiprobable mix-
ture of a circularly polarized state and a mutually orthogonal
linearly polarized state.

A measure for the nonregularity of the state �̂m is provided
by the degree of nonregularity [13]

PN (�̂m) = 4m̂3, (15)

where 0 � m̂3 � 1/4 is the smallest eigenvalue of the real part
of �̂m. The degree of nonregularity PN (�̂m) is bounded be-
tween 0 and 1, with the lower and upper limits corresponding
to a regular and a perfectly nonregular state. The degree of
nonregularity and polarimetric dimension of �̂m are related
as [13]

D(�̂m) = 3 −
√

1 − 3PN (�̂m)[2 − PN (�̂m)]/4. (16)

As shown in Eq. (16) when the polarization state is nonregular,
i.e., 0 < PN (�̂m) � 1, the polarimetric dimension obeys 2 <

D(�̂m) � 5/2 indicating the true 3D character. Considering
the weight of �̂m in the characteristic decomposition, the
degree of nonregularity of the full state � is given by

PN = (P2 − P1)PN (�̂m), (17)
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which is also bounded between 0 and 1. When PN = 1, the
whole state � = I�̂m with PN (�̂m) = 1, indicating that not
only the middle-term state but also the whole polarization
state � itself is perfectly nonregular.

From the above characteristic decomposition, it is found
that 3D nature of a light field is from not only the 3D unpo-
larized state but also the 3D nonregular state, which, however,
is normally regarded as a 2D unpolarized state. The degree
of polarization for the 3D light field can be characterized by
the distance between the polarization matrix �(r) and the
polarization matrix I for the completely 3D unpolarized light
[31], i.e.,

P3D(r) =
√√√√3

2

[
tr�2(r)

tr2�(r)
− 1

3

]
. (18)

P3D(r) = 0 denotes that polarization matrix �(r) is propor-
tional to a 3 × 3 identity matrix and the state is a fully 3D
unpolarized state. For P3D(r) = 1, the field is fully polarized
with its polarimetric dimension fixed in the range 1 � D � 2.
Furthermore, it was proved that, for P3D(r) < 0.5, the field
is genuinely 3D. This is because for a 2D field, its smallest
degree of polarization is P3D(r) = 0.5 when the field is a
2D unpolarized light. The degree of polarization can also by
characterized by the polarimetric purity by taking into account
all the contributions of the degrees of linear polarization and
circular polarization as well as the degree of directionality in
the pure state �̂p and in the nonregular polarization state �̂m,
i.e., the 3D degree of polarization can be written in terms of
the indices of polarimetric purity P1 and P2 as [12,32]

P3D = 1

2

√
3P2

1 + P2
2 . (19)

C. Spin structure

The spin angular momentum (SAM) of light is closely
related to the degree of circular polarization. In view of the tra-
ditional characteristic decomposition, the SAM of a 3D light
field is determined solely by the pure state (first term in the
decomposition) since the middle term and the last term denote
the 2D unpolarized and 3D unpolarized states, respectively,
with both states lacking the degree of circular polarization.
However, when the middle-term state in the characteristic
decomposition is a nonregular state, the degree of circular
polarization is nonzero. As a result, the SAM of the 3D light is
involved not only in the pure state, but also in the nonregular
state. The total spin density vector of the polarization state �

thus can be expressed as [19]

s = sp + sm = IP1n̂p + I (P2 − P1)n̂m, (20)

where n̂p and n̂m are the spin density vectors for the states �̂p

and �̂m, respectively. The spin density vector n̂p of the pure
state �̂p is orthogonal to the plane containing the polarization
ellipse of the state û1 and can be obtained by the imaginary
part of �̂p, i.e., the imaginary part is of the form

�̂
′′
p = 1

2

⎛
⎝ 0 n̂p3 −n̂p2

−n̂p3 0 n̂p1

n̂p2 −n̂p1 0

⎞
⎠. (21)

The related spin density vector is [19,29]

n̂p = (n̂p1, n̂p2, n̂p3). (22)

As shown in Eq. (13), the spin density vector n̂m for the
nonregular state �̂m is determined by both the states û1 and
û2, i.e.,

n̂m = 1
2 (n̂1 + n̂2), (23)

where the spin density vector n̂1 = n̂p for û1, and the spin
density vector n̂2 for the state û2 can be obtained by extracting
the imaginary part of the polarization matrix û2û†

2 with the
similar fashion shown in Eq. (21). Since the spin n̂m does not
vanish only when the field is nonregular, its value is connected
with the degree of nonregularity of the nonregular polarization
state by [13,19]

PN (�̂m) = 1 −
√

1 − 4|n̂m|2. (24)

The middle component necessarily has nonzero spin when
PN (�̂m) > 0. The length of the spin density vector reaches
its maximum value |n̂m| = 1/2 when the middle component
is a perfectly nonregular state [PN (�̂m) = 1]. Remarkably,
the total spin density vector obtained from the characteris-
tic decomposition coincides with that obtained by averaging
over the spins of the monochromatic field realizations, i.e.,
s = 〈E∗ × E〉′′ (double prime denotes the imaginary part).

III. TIGHT FOCUSING OF ELECTROMAGNETIC
SCHELL-MODEL BEAM

In this work, we aim to examine the 3D polarization char-
acters, including the 3D degree of polarization, polarization
dimensionality, polarimetric nonregularity, and spin structure
of a tightly focused electromagnetic Gaussian Schell-model
beam with the help of the general theory presented above.
We consider that the incident beam of the tight focusing sys-
tem is a statistically stationary, partially coherent beam-like
vector field that propagates along, say, the z axis. The cross-
spectral density of such beam can be characterized by a 2 × 2
matrix [28]

W(0)(ρ1, ρ2) =
[

W (0)
11 (ρ1, ρ2) W (0)

12 (ρ1, ρ2)

W (0)
21 (ρ1, ρ2) W (0)

22 (ρ1, ρ2)

]
, (25)

where the elements W (0)
αβ (ρ1, ρ2) = 〈E (0)∗

α (ρ1)E (0)
β (ρ2)〉,

(α, β ) = (1, 2) with the superscript (0) denoting the
input plane, ρ1 = (ρ1x, ρ1y) and ρ2 = (ρ2x, ρ2y) being
two arbitrary transverse spatial positions in the input plane,
and [E (0)

1 (ρ), E (0)
2 (ρ)] being the components of the field

realization vector E(0)(ρ) along the x and y directions,
respectively. For the partially coherent vector beams with
Schell-model-type correlation functions, the elements in the
cross-spectral density matrix can be expressed as [2]

W (0)
αβ (ρ1, ρ2) = A∗

α (ρ1)Aβ (ρ2)μαβ (ρ1 − ρ2), (26)

where A1(ρ) and A2(ρ) are the (complex) amplitudes of the
field components along the x and y directions, respectively,
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which determines the initial polarization properties of the
incident beam; μαβ (ρ1 − ρ2) is the normalized correlation
function among the field components along the α and β

directions. We note that for the Schell-model-type partially
coherent beam, the correlation functions depend only on the
position difference.

It is considered that the tight focusing system is an
aplanatic objective lens that obeys the sine condition. The
transmission of light through such a lens can be treated within
the ray picture. The incident rays are refracted at the ref-
erence sphere whose radius equals the focal distance f of
the lens. After transmitted through the sphere, the polariza-
tion state of the incident beam changes. In the basis of the
spherical coordinate, the radial polarization vector tilts at
the off-axial points and acquires a longitudinal component,
i.e., the transmitted radial polarization vector changes from
êr = cos φêx + sin φêy to ê(t)

r = cos θ êr + sin θ êz, while the
transmitted azimuthal polarization vector remains unchanged,
i.e., ê(t)

φ = êφ with êφ = − sin φêx + cos φêy. Above, êx, êy,
and êz are the Cartesian unit vectors along the x, y, and z
directions, respectively; 0 � φ < 2π is the azimuthal angle

with respect to the x axis, θ is the angle formed by a ray
emanating from the reference sphere and the z axis, which is
bounded between 0 and θmax = arcsin(NA/nt ) with NA being
the numerical aperture of the objective lens and nt being the
refractive index of the medium after the lens. A point on the
reference sphere can be expressed in terms of the angles φ and
θ . The transverse spatial position vector of the beam in the
input plane can also be written in terms of the angles via ρ =
( f cos φ sin θ, f sin φ sin θ ). By transforming the polarization
unit vectors in the spherical coordinate into the Cartesian co-
ordinate, we obtain that the transmitted field realization vector
through the reference sphere can be expressed as

E(t)(φ, θ ) = P(θ )E(0)(ρ)N(φ, θ ), (27)

where P(θ ) is the apodization function of the objective lens.
For the lens obeying the sine condition, we have P(θ ) =√

cos θ , according to the power conservation requirement dur-
ing the transmission of light through the lens. The transform
matrix N(φ, θ ) in the Cartesian coordinate is written as

N(φ, θ ) =
(

sin2 φ + cos2 φ cos θ sin φ cos φ(cos θ − 1) cos φ sin θ

sin φ cos φ(cos θ − 1) cos2 φ + sin2 φ cos θ sin φ sin θ

)
, (28)

which is 2 × 3 normalized matrix that transforms the two-component field vector to the three-component field vector.
Based on the Richards-Wolf’s method [33], the electric field in the focal region is given by the vectorial diffraction integral

of the field over the reference spherical surface. Thus, the field realization vector near the focal region is obtained by

E(r, z) = − i f

λ

∫ 2π

0

∫ 2π

0
T (φ, θ )E(t)(φ, θ )ei(kzz−kxx−kyy) sin θdθdφ, (29)

where r = (x, y) is the transverse position vector in the plane of distance z from the focus, and T (φ, θ ) is a truncation function
with its value T (φ, θ ) = 1 in the region where E(t)(φ, θ ) differs from zero and vanishes in the region where E(t)(φ, θ ) = 0. The
components of the wave vector k are expressed as kx = −k cos φ sin θ , ky = −k sin φ sin θ , and kz = k cos θ with k = 2πnt/λ.
By using the relation ρ = ( f cos φ sin θ, f sin φ sin θ ), the above integral can be written as

E(r, z) = − i

λ f

∫∫ +∞

−∞

T (ρ)√
1 − ρ2/ f 2

E(t)(ρ)eik(ρ·r)/ f eik
√

1−ρ2/ f 2zd2ρ. (30)

We now take all the field realizations into account. The 3 × 3 coherence matrix near the focal region at z is therefore
expressed as

Wi j (r1, r2, z) = 1

λ2 f 2

2∑
α=1

2∑
β=1

∫∫ +∞

−∞

∫∫ +∞

−∞

T (ρ1)T (ρ2)

(1 − ρ2
1/ f 2)1/4(1 − ρ2

2/ f 2)1/4
e−ik(ρ1·r1−ρ2·r2 )/ f

× e−ikz(
√

1−ρ2
1/ f 2−

√
1−ρ2

2/ f 2 )N∗
αi(ρ1)Nβ j (ρ2)W (0)

αβ (ρ1, ρ2)d2ρ1d2ρ2, (31)

where (i, j) = (1, 2, 3), Nαi(ρ) and Nβ j (ρ) denote the elements in the transform matrix N(ρ), and W (0)
αβ (ρ1, ρ2) is the element

of the cross-spectral density matrix for the incident beam. By using the relation of Schell-model correlation in Eq. (26)

and introducing the function Aαi(ρ, z) = eikz
√

1−ρ2/ f 2
T (ρ)Nαi(ρ)Aα (ρ)/(1 − ρ2/ f 2)1/4, the 3 × 3 coherence matrix can be

rewritten as

Wi j (r1, r2, z) = 1

λ2 f 2

2∑
α=1

2∑
β=1

∫∫
A∗

αi(ρ1, z)Aβ j (ρ2, z)e−ik(ρ1·r1−ρ2·r2 )/ f μαβ (ρ1 − ρ2)d2ρ1d2ρ2. (32)

The above integrals can be reduced to

Wi j (rs, rd , z) = 1

λ4 f 2

2∑
α=1

2∑
β=1

∫
Ã∗

αi

(
f u − rd

λ f
, z

)
Ãβ j

(
u
λ

, z

)
μ̃αβ

(
− 2rs − rd + 2 f u

2λ f

)
d2u. (33)
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Above, rs = (r1 + r2)/2, rd = r1 − r2, ρs = (ρ1 + ρ2)/2,
and ρd = ρ1 − ρ2 are the sum and difference coordinates,
the tilde ˜ denotes the Fourier transform, and the vector u is
introduced in the Fourier transform process. By letting the
r1 = r2 = r, i.e., rs = r and rd = 0 in Eq. (33), the 3 × 3
polarization matrix near the focal region is obtained as

	i j (r, z) = 1

λ2 f 2

2∑
α=1

2∑
β=1

[
Ã∗

αi

(
− r

λ f
, z

)
Ãβ j

(
− r

λ f
, z

)]

⊗ μ̃αβ

(
− r

λ f

)
, (34)

where ⊗ denotes a convolution operator, i.e.,
∫

A(u)
B(r − u)d2u = A(r) ⊗ B(r) with which the integral
in Eq. (33) can be converted into the convolution
in Eq. (34). The polarization matrix for a tightly
focused partially coherent electromagnetic Schell-model
beam thus can be solved effectively with the help
of fast algorithms for the Fourier transform and
the convolution operation in Eq. (34). It is worth noting
that the efficiency of the convolution method used here is
independent of the spatial coherence width of the incident
beam. Thus, it is more efficient to calculate the polarization
matrix for the lowly coherent incident beam [27], compared
to the pseudomode representation method developed before
[34]. However, the pseudomode representation method can
be used to calculate the tightly focusing properties (including
one-point polarization and two-point coherence properties)
for the incident beam with arbitrary coherence properties,
while the convolution method is only available for calculating
the one-point polarization properties for the incident beam
with Schell-model coherence.

IV. SIMULATION RESULTS

In this section, we present the simulation results con-
cerning the 3D polarization properties in the focal plane
of the tightly focused partially coherent electromagnetic
Schell-model beam. The incident beam is considered to be a
radially polarized Gaussian Schell-model beam [35,36]. The
deterministic amplitudes of such beam along x and y direc-
tions are expressed, respectively, as

A1(ρ) = (ρx/w0)e−ρ2/w2
0 , (35)

A2(ρ) = (ρy/w0)e−ρ2/w2
0 , (36)

and the normalized correlation functions obey

μαβ (ρ1 − ρ2) = e−(ρ1−ρ2 )2/(2δ2
0 ), (37)

where w0 and δ0 denote the beam waist and the transverse
spatial coherence width, respectively. We note that the in-
cident beam is fully polarized and it will become partially
polarized and show 3D polarization properties during strong
focusing due to its partial spatial coherence. In the simulation,
the parameters of the focusing objective lens are taken to
be NA = 0.95, f = 3 mm, and nt = 1. The wavelength and
the beam waist of the incident beam are λ = 632.8 nm and
w0 = 1 mm, respectively. The transverse spatial coherence
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FIG. 1. Simulation results for the 3D degree of polarization P3D

and the polarimetric dimension D in the focal plane (z = 0) for a
tightly focused radially polarized Gaussian Schell-model beam when
the transverse spatial coherence width δ0 is (a) 10 mm, (b) 2.63 mm,
(c) 1.27 mm, (d) 0.62 mm, (e) 0.4 mm, and (f) 0.05 mm, respectively.
The dashed vertical lines show the boundary of the region where the
intensity is larger than 10% of its maximum value.

width δ0 varies in the simulation to show the effect of spatial
coherence on the 3D polarization features.

A. 3D degree of polarization and polarimetric dimension

We first examine the 3D degree of polarization and the
polarimetric dimension of the tightly focused beam in the
focal plane with the help of Eqs. (8) and (18) as well as
Eq. (34). Figure 1 shows the simulation results for the spa-
tial distributions of the 3D degree of polarization P3D and
the polarimetric dimension D in the focal plane (z = 0) for
a tightly focused radially polarized Gaussian Schell-model
beam whose transverse spatial coherence width δ0 is 10,
2.63, 1.27, 0.62, 0.4, and 0.05 mm, respectively. Since the
beam shows circular symmetry in a transverse plane during
strong focusing, we plot only the cross line along the x direc-
tion (y = 0) for P3D and D. The dashed vertical lines in the
figures show the boundary of the area where the intensity is
larger than 10% of its maximum value. At the same time,
we present in Fig. 2 the focal-plane intensity distributions in-
cluding the total intensity S(r, 0) = 	11(r, 0) + 	22(r, 0) +
	33(r, 0), the intensity for the transverse field components
Sx(r, 0) + Sy(r, 0) = 	11(r, 0) + 	22(r, 0), and the intensity
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FIG. 2. Simulation results for the focal-plane intensity distri-
butions including the total intensity S(r, 0), the intensity for the
transverse field components Sx (r, 0) + Sy(r, 0), and the intensity
for the longitudinal field component Sz(r, 0) for the tightly focused
radially polarized Gaussian Schell-model beam when the transverse
spatial coherence width δ0 is (a) 10 mm, (b) 2.63 mm, (c) 1.27 mm,
(d) 0.62 mm, (e) 0.4 mm, and (f) 0.05 mm, respectively. The dashed
vertical lines show the boundary of the region where the total inten-
sity is larger than 10% of its maximum value.

for the longitudinal field component Sz(r, 0) = 	33(r, 0) for
the tightly focused radially polarized Gaussian Schell-model
beams with the above six spatial coherence widths.

From the simulation results in Fig. 1, we find that for the
highly coherent incident beam [Fig. 1(a), δ0 = 10 mm], the
field in the focal plane is effectively highly polarized with
its 3D degree of polarization P3D(r) tending to unity. As a
result, the focus field lacks 3D character with the polarimetric
dimension bounded as 1 � D(r) � 2. It is further found that
at the beam center (r = 0), the field is nearly 1D polarized
with D → 1. This is because, for the highly coherent radially
polarized incident beam, the transverse field in the focal plane
shows a dark-hollow intensity distribution and the longitudi-
nal field shows a bright spot as shown in Fig. 2(a). Thus, the
beam at the center is strongly linearly polarized along the z
direction [37]. Around the beam center, the field is elliptically

polarized and becomes circularly polarized when D(r) = 2 as
both the intensities for the transverse and longitudinal fields
do not vanish and the transverse and longitudinal fields are
strongly correlated with a π/2 phase difference. It is found
that with the further increase of the radial distance, the field
becomes 1D again, and now, with a radial polarization state in
the 2D transverse plane. As shown in the intensity distribution
in Fig. 2(a), this is due to the vanishment of the longitudinal
field.

When the spatial coherence of the incident beam decreases,
i.e., the transverse spatial coherence width δ0 changes from
10 mm to 2.63 mm, the polarimetric dimension D starts to
assume values larger than 2, indicating the true 3D polariza-
tion character of the focused field. In addition, the focused
field becomes partially polarized in the high-intensity region.
At the beam center in the focal plane, we find that the 3D
degree of polarization reduces to its smallest value (≈0.5)
and the polarimetric dimension D ≈ 2. It is noted that the
state at the center is not a 2D unpolarized state since the field
contains three nonvanishing orthogonal components as shown
in Fig. 2(b) and all these components are partially correlated.
The polarization constituents of the state at the center will be
discussed below in Fig. 3. Around the beam center, it is found
that the degree of polarization increases, which means that
the state becomes farther away from the 3D unpolarized state.
However, it is counterintuitive that the polarimetric dimension
D increases to the value larger than 2. One possible reason is
that the 3D nonregular state appears in the polarization state of
the focused field [12]. This point will be confirmed in Fig. 3
when we discuss the polarimetric nonregularity of the field.
With further expanding the radial distance, the intensity of
the longitudinal field component quickly vanishes, while the
intensity of the transverse field component remains nonzero.
As a result, the field becomes radially polarized again with
polarimetric dimension tending to 1.

With the spatial coherence width of the incident beam
reducing to δ0 = 1.27 mm, we find in Fig. 1(c) that the polari-
metric dimension D reaches its maximum value D = 3 at the
beam center and the corresponding 3D degree of polarization
decreases to 0. The only possible state at this point is the
3D unpolarized state with the field components at this point
along x, y, and z directions being completely uncorrelated
and having identical intensities. As shown in Fig. 2(c), at the
beam center the intensity Sx(r, 0) + Sy(r, 0) for the transverse
field components are two times of the intensity Sz(r, 0) for
the longitudinal field component. It is also found in Fig. 1(c)
that the field is essentially 3D with the polarimetric dimen-
sion D > 2 when the 3D degree of polarization P3D < 0.5.
In addition, we find in Fig. 1(c) that the minimum value for
the polarimetric dimension increases with the decrease of the
incident beam’s spatial coherence. This is because the inten-
sity distribution for the longitudinal field component expands
as shown in Fig. 2(c). Thus, the polarization state along the
ring where D reaches its minimum value is no longer a radial
polarization state in the transverse plane as the longitudinal
field component does not vanish.

When the spatial coherence of the incident beam continues
to decrease, we find the minimum value for the polarimetric
dimension in the significant intensity region increases since
the intensity distribution for the longitudinal field component
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FIG. 3. Simulation results for the coefficients P1, P2 − P1, and
1 − P2 in the 3D characteristic decomposition and the degrees of
nonregularity PN (�̂m ) and PN of the middle-term state �̂m and the
whole polarization state � for a tightly focused radially polarized
Gaussian Schell-model beam in the focal plane (z = 0) when the
transverse spatial coherence width δ0 is (a) 10 mm, (b) 2.63 mm,
(c) 1.27 mm, (d) 0.62 mm, (e) 0.4 mm, and (f) 0.05 mm, respectively.
The dashed vertical lines show the boundary of the region where the
intensity is larger than 10% of its maximum value.

expands further. At the same time, it is observed that the
maximum value for the polarimetric dimension at the beam
center decreases with the reducing of the incident beam’s
spatial coherence. This can be explained with the help of the
intensity distributions in Fig. 2. It is found that the intensity
contribution from the longitudinal field decreases with the
spatial coherence. When δ0 = 1.27 mm, we show that the
intensities for the longitudinal field component and the x and
y field components are equal, representing an 3D intensity-
isotropic unpolarized state. When δ0 < 1.27 mm, the intensity
distribution becomes anisotropic with the intensity along the
longitudinal direction being smaller than the intensities along
x and y directions. As a result, the polarimetric dimension
decreases at the beam center and the 3D degree of polarization
increases. Nevertheless, the polarimetric dimension D > 2
still holds when the 3D degree of polarization P3D < 0.5 as
shown in Figs. 1(d) to 1(f). In Figs. 1(e) and 1(f), it is found
that in all the significant intensity region the 3D degree of
polarization P3D < 0.5 and the the polarimetric dimension

D > 2, indicating that the field is genuinely 3D in charac-
ter over the whole focal domain. In the limit case δ0 � w0

[Fig. 1(f), δ0 = 0.05 mm], we find the spatial distributions
for the 3D degree of polarization and polarimetric dimension
become nearly uniform within the high-intensity region with
P3D ≈ 0.33 and D ≈ 2.35.

B. 3D characteristic decomposition and polarimetric
nonregularity

We now turn to examine the characteristic decomposi-
tion of the polarization state for the tightly focused radially
polarized Gaussian Schell-model beam and find out the polari-
metric structure of the 3D polarization state. The polarization
state � obtained with the convolution method is decomposed
into the states �̂p, �̂m, and �̂u with the help of the formu-
las introduced in Sec. II B. In Fig. 3, we display the spatial
distributions for the weights P1, P2 − P1, and 1 − P2 for the
above three states. First of all, we find the polarization state
of the tightly focused field is composed mainly by the pure
state for the case when the incident beam is highly coherent
[Fig. 3(a), δ0 = 10 mm], which also reflects that the focused
field is highly polarized and the polarimetric dimension is
bounded as 1 � D(r) � 2. With the decrease of the spatial
coherence of the incident beam, the contribution of the pure
state to the polarization matrix decreases as well. Meanwhile,
the contributions of the middle-term state �̂m and the 3D
unpolarized state �̂u to the polarization matrix increase. When
the spatial coherence width of the incident beam decreases to
δ0 = 2.63 mm [Fig. 3(b)], it is found that at the beam center
the polarization matrix is composed by the pure state and the
3D unpolarized state with their weights P1 ≈ P2 − P1 ≈ 0.5,
indicating that the field at the center shows the true 3D char-
acter, although as shown in Fig. 1(b) that P3D(0) = 0.5 and
D(0) = 2. Around the beam center, the contribution from the
pure state increases again and the contribution from the 3D
unpolarized state decreases. Thus, the field becomes more po-
larized, which coincides with the result obtained in Fig. 1(b).
In addition, we find that around the beam center, the contribu-
tion from �̂m appears [see the green solid curve in Fig. 3(b)].
To show whether the state is a 3D nonregular state, we plot in
Fig. 3 the degree of nonregularity for �̂m (blue dashed curve)
and for �̂ (purple dashed curve) as well. It is found that �̂m

is almost perfectly nonregular with PN (�̂m) ≈ 1 on a certain
ring surrounding the beam center. Thus, the 3D character
of the field on this ring is determined by not only the 3D
unpolarized state but also the 3D nonregular state. Therefore,
we observe in Fig. 1(b) that the polarimetric dimension of the
field is highest (D > 2) on this ring although the contribution
of the 3D unpolarized state reduces, compared to the field at
the beam center. We remark that for the highly coherent case,
δ0 = 10 mm, the component �̂m also shows perfectly nonreg-
ular on a certain ring surrounding the beam center. However,
in this case the weight factor P2 − P1 is virtually zero. Thus,
the contribution of �̂m to the total state � is negligible.

With the further decrease of the spatial coherence, we
find in Fig. 3(c) that the field at the beam center is now
composed only by the 3D unpolarized state. Thus, the 3D
degree of polarization at this point vanishes and the polari-
metric dimension reaches 3. Around the beam center, we find
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the contribution of the 3D unpolarized state decreases, while
the contributions from the pure state �̂p and the middle-
component state �̂m increase. As a result, the field becomes
more polarized and the polarimetric dimension decreases with
the radial distance increasing. At the same time, it is found
from the curve of the degree of nonregularity that the middle
component �̂m shows the 3D nonregular polarization state.
When the spatial coherence of the incident beam decreases to
δ0 = 0.62 mm, the contributions from both the 3D unpolar-
ized state and the pure state decrease everywhere, while the
contribution from �̂m increases. The field at the beam center
is now contributed to equally by �̂m and �̂u with P2 − P1 =
1 − P2 = 0.5. In addition, at the beam center �̂m is a regular
2D unpolarized state with PN (�̂m) = 0 at the beam center.
Thus, the field at the beam center in this case is composed
by a 2D unpolarized state and a 3D unpolarized state with
identical weights. The 3D degree of polarization is therefore
fixed at P3D(0) = 0.25 and the polarimetric dimension is fixed
at D(0) = 2.5. With the increase of the radial distance, the
contributions from �̂m and �̂u decrease, while that from the
pure state �̂p increases. As a result, the 3D degree of polar-
ization increases and the polarimetric dimension decreases.
However, as shown in Fig. 3(d) the field in the focal plane
is always partially polarized in the high-intensity region since
the contributions from both �̂m and �̂u are still significant at
the edge of the high-intensity region.

When the spatial coherence width decreases to δ0 =
0.4 mm, we find the contribution from �̂m further increases,
while the contributions from �̂p and �̂u decrease. In the
high-intensity region, both the contributions from �̂m and
�̂u become dominant. Thus, the 3D degree of polarization
becomes less than 0.5 and the polarimetric dimension D > 2
in the high-intensity region. When the spatial coherence width
decreases to a limited case, i.e., δ0 = 0.05 mm, it is found that
the polarization state is composed only by �̂m and �̂u with
their weights distributed uniformly in the space.

Throughout the evolution of the incident beam’s spatial
coherence, it is observed that the contribution from the pure
state decreases from 1 to 0 with the incident beam becom-
ing from highly coherent to highly incoherent. In the mean
time, the contribution from the 3D unpolarized state first
increases from 0, then decreases after reaching the maxi-
mum at δ0 = 1.27 mm, and finally tends to 0.35 at the low
coherence limit [Fig. 3(f)]. The contribution from the middle-
term state, on the other hand, increases monotonously with
the decrease of δ0 and reaches 65% at δ0 = 0.05 mm. It is re-
markable that, although the contribution from the middle-term
state �̂m increases with the decrease of the spatial coher-
ence, we find the degree of nonregularity PN (�̂m) decreases
as well. Thus, the field gradually becomes regular with the
decrease of the spatial coherence as shown in Figs. 3(d), 3(e),
and 3(f).

C. Spin structure

From the above simulation results, we show that the fo-
cused field is composed mainly by pure polarization state
for the highly coherent incident beam, while for the virtually
incoherent incident beam, the focused field is composed by
the 2D unpolarized state and the 3D unpolarized state. For

the partially coherent incident beam with the spatial coher-
ence width δ0 compared to the beam waist w0, the tightly
focused field is composed by all three constituents in the
polarization matrix’s 3D characteristic decomposition. In
addition, the middle-term state in the characteristic decompo-
sition shows the 3D nonregularity. Therefore, we can predict
that the total spin density is contributed by the pure state only
for the highly coherent case, while it is contributed by both
the pure state and the 3D nonregular polarization state for the
partially coherent case. For the incoherent incident beam, the
focused field contains no spin since the field is composed only
by the 2D and 3D unpolarized states.

In Fig. 4, we present the simulation results for the spin
density vectors sp and sm as well as their x, y, and z com-
ponents for the tightly focused radially polarized Gaussian
Schell-model beams with the initial spatial coherence widths
δ0 = 2.63 mm, 1.27 mm, and 0.62 mm. It is found in Fig. 4(a)
that for the relatively high coherence case, the total spin
is composed mainly by the spin density vector sp for the
pure state in the significant-intensity region. This is because
the contribution from the middle-term state �̂m to the total
polarization matrix is small at δ0 = 2.63 mm, although its
degree of nonregularity is quite high. In addition, we find
in the spatial distributions for the spin density components
that both sp and sm show the pure transverse spin distribution
with the longitudinal spin components spz and smz vanishing.
Physically, the transverse spin density is induced due to the
out-of-phase longitudinal field component generated during
light strong focusing [38,39]. The longitudinal spin density
is zero because the two orthogonal field components in the
transverse plane are always in phase. Furthermore, it is found
that the transverse spin density vectors show the azimuthal
vortex distribution. This is due to the circularly symmetric
spatial coherence and radial polarization state of the incident
beam.

With the decrease of the spatial coherence, we find the
contribution of sm to the total spin increases. When the spatial
coherence width δ0 = 1.27 mm, the contribution from the spin
sp for the pure state is still dominant. However, when the
spatial coherence width δ0 = 0.62 mm, the spin sm for the
middle-term state becomes dominant in the center region [see
the light green zone in Fig. 4(c)]. From the spatial distribu-
tions of the spin density components, it is found that, with the
decrease of the spatial coherence, the spatial distributions for
the spin density vectors remain almost unchanged. However,
we remark that with the decrease of the spatial coherence of
the incident beam, the magnitude of the spin density of the
tightly focused field decreases as well. This can be understood
in the following way. Based on the vectorial diffraction theory,
the field at an arbitrary position in the focal plane is deter-
mined by the contributions from the fields at all the positions
in the input plane. For a radially polarized incident beam,
the input fields at different positions, in general, will create
the fields with different polarization states at a same point in
the focal plane. Moreover, due to the decreased coherence
between the fields at different positions in the input plane,
the correlation among the transverse and longitudinal field
components in the focal plane will become weaker. As a
result, the magnitude of the spin density decreases with the
spatial coherence of the incident beam. In the limit case when
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FIG. 4. Simulation results for the spin density vectors sp = (spx, spy, spz ) and sm = (smx, smy, smz ) and their x, y, and z components for the
tightly focused radially polarized Gaussian Schell-model beam in the focal plane (z = 0) when the transverse spatial coherence width δ0 is
(a) 2.63 mm, (b) 1.27 mm, and (c) 0.62 mm, respectively. Inside the dark gray areas in the first column and inside the white dashed rings in
the last three columns, the intensity is larger than 10% of its maximum value. The light green zone in the first column of (c) corresponds to the
regions where |sm| > |sp|.

the incident beam is incoherent, the spin density in the focal
plane becomes zero since the focused field is now composed
only of the 2D and 3D unpolarized states.

V. CONCLUSIONS

In summary, we studied the 3D polarization properties of
a tightly focused electromagnetic partially coherent Gaussian
Schell-model beam by examining the 3D degree of polariza-
tion, polarimetric dimension, and polarimetric structure of its
3 × 3 polarization matrix. The 3D polarimetric structure was
obtained via the characteristic decomposition, with which the
polarization matrix is decomposed as an incoherent superposi-
tion of a pure state, a middle-term state, and a 3D unpolarized
state. We also studied the polarimetric nonregularity and the
associated spin structure of the 3D polarization state in the fo-
cused field with such a decomposition. The 3 × 3 polarization
matrix of the tightly focused partially coherent Schell-model
beam was computed with a fast convolution method oper-

ated in the generalized (two-point) Richards–Wolf’s vectorial
integral.

It was demonstrated that the highly focused field showed
the genuine 3D partially polarized state even though the in-
cident beam is fully radially polarized. We showed that the
3D polarization state induced in the focal plane is due to the
reduced spatial coherence in the incident beam. By examining
the effect of the incident beam’s spatial coherence width on
the focal-plane 3D polarization characters, it was found that
with the decrease of the initial spatial coherence, the contri-
bution to the polarization matrix from the pure state in the
characteristic decomposition decreases and from the middle-
component state increases, while the contribution from the
3D unpolarized state first increases and then decreases after
reaching the maximum. In the limiting case when the incident
beam is spatially incoherent, it was found that the focused
field is composed only by the middle-term state and the 3D
unpolarized state. The simulation results for the polarimet-
ric nonregularity showed that the weight and the degree of
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nonregularity of the middle-term state reduce, respectively,
with the increase and decrease of the spatial coherence.
Therefore, the focused field created by the radially polarized
Gaussian Schell-model beam is in the 3D nonregular state
only when the spatial coherence width is compared to the
initial beam’s waist.

In addition, we demonstrated that the spin density vector
in the focused field, induced by the generation of the out-of-
phase longitudinal field component during tight focusing of
the radially polarized beam, is contributed by the spins from
both the pure state and the middle-term state when the field
is in the 3D nonregular state. It was found that the total spin
density vector is contributed mainly to by the pure state for the
highly coherent incident beam, while with the decrease of the
spatial coherence, the contribution to the total spin from the
middle-term state increases and can even be dominant when
the spatial coherence width is smaller than the initial beam’s
waist. We observed that the magnitude of the total spin, how-
ever, decreases with the spatial coherence of the incident beam

as the correlation between the transverse and longitudinal
field components in the focal plane becomes weaker and the
middle-term state becomes more regular. In the limiting case
when the incident beam is spatially incoherent, the focused
field lacks spin since the field is now composed only by the
2D and 3D unpolarized states. We expect that our findings
could be useful in shaping the 3D polarization state and spin
structure of light on nanoscale with modulating the degree of
spatial coherence of light.
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