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Light propagation in (2 + 1)-dimensional electrodynamics: The case of linear constitutive laws
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In this paper, we turn our attention to light propagation in three-dimensional electrodynamics. More specif-
ically, we investigate the behavior of light rays in a continuous bidimensional hypothetical medium living in
a three-dimensional ambient spacetime. Relying on a fully covariant approach, we assume that the medium is
endowed with a local and linear-response tensor which maps field strengths into excitations. In the geometric
optics limit, we then obtain the corresponding Fresnel equation and, using well-known results from algebraic
geometry, we derive the effective optical metric and indicate possible applications of this formalism in the context
of solid-state physics.
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I. INTRODUCTION

The study of light propagation in nontrivial media contin-
ues to spread new insights into the structure of modern field
theories. The main reason behind this relies (we think) on
the fertile interplay of areas this task generally requires: op-
tics, premetric electrodynamics, geometric analysis, algebraic
geometry, and analog models of gravity [1–9]. A remarkable
consequence of these studies is that the dispersion relation of
light in a local and linear medium is governed by a quartic
homogeneous polynomial in the wave covector, the coeffi-
cients of which depend in a cubic manner on the medium
parameters: electric permittivity, magnetic permeability, and
magnetoelectric cross terms. Although this result was already
implicit in the early papers of Bateman [10] and Tamm [11],
only in 2002 Rubilar managed to give a rigorous derivation in
the most general case [12]. Since then, this “Fresnel surface”
has been rederived by several authors [13–17] and it is still at
the focus of active theoretical and experimental investigations.

The task here is to derive the dispersion relation and the
corresponding effective optical metric for an electromagnetic
theory in two spatial dimensions. More specifically, we shall
deal with light propagation in a three-dimensional (3D) elec-
trodynamics inside material media assuming a local and linear
constitutive relation between field strengths and excitations.
Mimicking the four-dimensional formalism as far as possi-
ble and essentially sticking to the eikonal approximation, we
show that the dispersion relation is determined by a quadratic
homogeneous polynomial in the wave covector, the coeffi-
cients of which depend in a quadratic manner on the medium
parameters. In particular, this shows that the dimension reduc-

*egoulart@ufsj.edu.br
†bittencourt@unifei.edu.br
‡ellitonbrandao@unifei.edu.br

tion completely modifies the algebraic character of the Fresnel
surface and so the derivation of the effective optical metric. In
other words, light propagation in a genuine three-dimensional
theory is not, in general, equivalent to light propagation in
a four-dimensional theory restricted to a three-dimensional
submanifold. We shall see that the main reason behind this
difference relies on the algebraic identities the constitutive
tensor must satisfy in three dimensions. It is worth mentioning
that this claim is not in disagreement with experiments, since
it has been shown that the surface parameters characterizing
two-dimensional (2D) media are not a two-dimensional limit
of the bulk coefficients [18] and, therefore, it is expected that
the optics is different.

Although there are few theoretical papers on the issues
discussed here [19–22], the scrutiny and applications of
two-dimensional media have a wide literature from the exper-
imental perspective, with several technological promises (see
Ref. [18] and references therein). The latter started with the
advent of graphene in 2004 and, since then, the class of known
two-dimensional materials enlarged tremendously, with the
great interest of the scientists lying on the peculiar optical
response of such devices in comparison with their three-
dimensional counterparts: a consequence of the monolayer
structure giving a special band distribution for the electrons
composing the lattice. In general, the theoretical background
for the optical analysis is the four-dimensional Maxwell’s the-
ory, where one of the spatial directions is treated as negligible.
We shall see that the dimensional reduction, in fact, changes
the tensor rank of some constitutive tensors, corroborating the
disregard of the coefficients perpendicular to 2D material, but
keeping the covariance of the formalism. We leave for exper-
imental physicists the task of deciding which approach better
fits the increasing amount of data concerning these materials.

This paper is organized as follows. In Sec. II we derive
the equations of motion for the electrodynamics inside a two-
dimensional linear material and study the decomposition of
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the general constitutive tensor into its irreducible parts. In
Sec. III, we use the eikonal approximation to get the Fresnel
equation, and using the properties of classical adjoint matrices
from linear algebra we find the general expression for the
dispersion relation. Next, in Sec. IV, we obtain the effective
optical metric for light rays propagating inside 2D materials
and, finally, in Sec. V we analyze some particular cases for
the sake of comparison and completeness.

II. ELECTRODYNAMICS IN (2 + 1) DIMENSIONS

To begin with, we let (M, gab) denote a three-dimensional
spacetime with signature convention (−,+,+). For the sake
of concreteness we assume M to be smooth and globally
hyperbolic, but make no further assumptions on the spacelike
geometries which foliate the manifold [23]. We shall be con-
cerned with the electromagnetic field Fab = −Fba in a region
of the manifold where a bidimensional polarizable medium
is present. Therefore, we assume that the macroscopic equa-
tions of motion read as (see Appendix A for conventions)

Pab
;b = Ja, F[ab;c] = 0, a, b, c, . . . = 0, 1, 2. (1)

Here Pab = −Pba is the excitation tensor, “;” stands for the
covariant derivative compatible with the metric gab, and Ja is
the electric current density. We notice that there are only four
partial differential equations for a total of six unknowns: the
system cannot be solved until a relationship is found between
excitations and fields. Consequently, we must supply Eqs. (1)
with a constitutive law and, for simplicity, we consider local
and linear relations of the type

Pab = 1
2 X ab

cdF cd , Xabcd = −Xbacd = −Xabdc, (2)

where the generic double (2,2) form, Xabcd , is allowed to
depend on time and space but not on the electromagnetic field.
In three spacetime dimensions, such a constitutive tensor has
a total of nine independent components and, therefore, has the
same degrees of freedom as a generic rank-2 tensor. For future
convenience we define also the contraction maps

X a
c = X ab

cb, X = X a
a. (3)

As usual, to make contact with standard vector notation, we
need to decompose the field strength and the excitation tensor
into their corresponding “electric” and “magnetic” parts. To
do so, we start by defining the Hodge dual of Fab as

�F a = 1
2εabcFbc, (4)

with εabc denoting the totally antisymmetric Levi-Civita ten-
sor. With this convention, for any timelike, future-directed,
and normalized congruence of observers, henceforth denoted
by t a, we write the decompositions

Fab = (gabcd Ed + εabcB)t c, �F a = (εa
cd Ed − δa

cB)t c,

(5)

Pab = (gabcd Dd + εabcH )t c, �Pa = (εa
cd Dd − δa

cH )t c,

(6)

where gabcd = gacgbd − gad gbc is the Kulkarni-Nomizu prod-
uct of the metric with itself and

Ea = F abtb, Da = Pabtb, B = �F ata, H = �Pata. (7)

We then notice that the electromagnetic-field strength and
the induction tensor are each constructed from a spacelike
vector orthogonal to t a and a pseudoscalar. Similarly, it can
be checked by direct calculation that the constitutive tensor
uniquely decomposes as a sum of four independent parts:

Xabcd = {−gabpq(gcdrsA
pr + εcdsB

p) + εabq(gcdrsC
r

+ εcdsD)}t qt s. (8)

The latter is entirely analogous to the so-called Bel decompo-
sition of the Riemann and Weyl tensors in general relativity
[24–28] and routine calculations show that

Aac ≡ −Xabcdtbtd , Ba ≡ X �
abc tbt c, Cb ≡ −�Xabct

at c,

D ≡ �X �
abtatb, (9)

with the right, left, and double Hodge duals defined in the
obvious way as

X �
abc ≡ 1

2 Xabpqε
pq

c,
�Xabc ≡ 1

2 Xpqbcε
pq

a,

�X �
ab ≡ 1

4 Xpqrsε
pq

aε
rs

b. (10)

It is clear from the above definitions that

Aabtb = 0, Aabta = 0, Bata = 0, Cata = 0, (11)

from which one concludes that the permittivity matrix Aac car-
ries four independent components, the magnetoelectric terms
Ba and Ca carry a total of four, and the inverse permeability
D carries the remaining one. This is in sharp contrast with the
four-dimensional case, where each of these terms would be
described by a generic 3 × 3 matrix [29]. Finally, combining
Eqs. (5), (6), and (8), there follow

Da = Aa
bEb + BaB, H = CrEr + DB. (12)

It should be clear from this construction that the constitu-
tive tetrad {Aab,Ba,Ca,D} is an observer-dependent set and,
therefore, depends implicitly on the choice of the auxiliary
vector field t a. In principle, we could write down the equa-
tions of motion explicitly in terms of the above quantities, but
this will not be necessary for our subsequent analysis.

III. DISPERSION RELATION

What can be said about light propagation inside the
medium? This leads us to the corresponding dispersion rela-
tion. In general, the latter is obtained either using Hadamard’s
method of weak discontinuities [30] or the eikonal approxi-
mation [14,31], which we now apply. Roughly speaking, we
assume an approximate wavy solution to Eqs. (1) of the form

Fab ≈ fab(x)ei�(x), (13)

with fab(x) a slowly varying amplitude and �(x) a rapidly
varying phase. In this eikonal approximation we neglect gradi-
ents in the amplitude and retain only the gradients of the phase
∂a� ≡ ka. This is enough to achieve the regime of geometrical
optics, where the notion of light rays is well defined. A simple
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calculation shows that the Bianchi identity in Eqs. (1) gives

fabkc + fcakb + fbcka = 0, (14)

from which one concludes that the amplitude of the electro-
magnetic disturbance reduces to a simple 2-form, which may
be written as

fab = kaab − kbaa, (15)

with aa denoting the polarization 1-form. Applying the latter
to the first equation in Eqs. (1) gives the nontrivial algebraic
condition

(X ambnkmkn)ab = 0, (16)

which is the building block of the dispersion relation: it
implies an algebraic constraint which must be fulfilled by
the characteristic covectors ka in order to obtain a physi-
cally meaningful solution. It is worth mentioning that, up to
now, the eikonal approximation has lead us to exactly the
same equations as in the four-dimensional analog. It should
also be remarked that a corresponding expression can be
obtained from the metric-free approach [4], as described in
Appendix B.

In order to investigate the algebraic implications of Eq. (16)
in more details, we proceed very much in the same way as in
Refs. [15–17]. Since our considerations here are essentially
algebraic, we shall fix a point x on the manifold and consider
the map

Y : T ∗
x M → Mat3×3(R), qm �→ Y ab(q) ≡ X ambnqmqn.

(17)
An important property of this map is that every covector in the
domain produces a matrix which automatically annihilates the
corresponding covector. In other words, we have

Y ab(q)qb = Y ba(q)qb = 0. (18)

Roughly speaking, this means that the image of T ∗
x M in

the nine-dimensional space Mat3×3(R) is not arbitrary, but
rather belongs to the eight-dimensional determinantal variety,
defined by rk Y ab(q) � 2. When combined with the Cayley-
Hamilton theorem, this fact guarantees that

Y a
cZc

b = Za
cY

c
b = 0, (19)

where

Za
b ≡ 1

2δ
apq

brsY
r
pY

s
q = Y a

cY
c
b − σ1Y

a
b + σ2δ

a
b (20)

is the classical adjoint tensor with the following kth elemen-
tary symmetric polynomials:

σ1 ≡ Y p
p, σ2 ≡ 1

2

(
Y p

pY
q
q − Y p

qY q
p

)
, σ3 ≡ det

(
Y a

b

) = 0.

(21)
Clearly, the classical adjoint is a quadratic combination of the
constitutive tensor X abcd and a quartic combination of the cov-
ector qm. Essentially, it is here that the three-dimensional case
departs from the four-dimensional one: the rank of a given el-
ement of Mat3×3(R) will be directly related to the structure of
its adjoint, and a well-known result of linear algebra adapted
to three dimensions states that (1) when rk Y ab(q) = 2 then
rk Zab(q) = 1 and (2) when rk Y ab(q) = 1 then Zab(q) = 0.
In what follows, in order to distinguish between the two
types of covectors, we shall identify qa with ka when the

the second condition is fulfilled. Accordingly, the matrix
Y a

b(k) will belong to a subset of the determinantal variety of
dimension 5.

Let us suppose first that rk Y a
b(q) = 2, for some nonzero

covector qa. In this case, simple algebraic manipulations using
Eq. (18) show that the adjoint must have a trivial dyadic
structure of the form

Zab = H (x, q)qaqb, where H (x, q) ∼ ĝab(x)qaqb. (22)

Here the homogeneous quadratic function H (x, q) is charac-
terized by a second-order contravariant tensor ĝab, henceforth
called the effective optical metric [32], which is a quadratic
combination of the constitutive tensor X abcd . Interestingly, due
to continuity arguments, in order to obtain the restricted case
of rk Y a

b(k) = 1, we need to impose

ĝab(x)kakb = 0. (23)

Up to an arbitrary conformal factor, this equation has the
form of the dispersion relation we are looking for. In other
words, Eq. (16) will admit nontrivial solutions if and only if
the corresponding wave covectors coincide with the vanishing
set of the quadratic polynomial defined above. This is a direct
consequence of the rank-nullity theorem and the fact that
ker Y ab(k) = span(kb, ab) in our case.

IV. EFFECTIVE OPTICAL METRIC

In this section, we shall calculate the explicit form of the
function H (x, q). To do so, we first consider the following
lemma, the proof of which involves straightforward manipula-
tions of three-dimensional Levi-Civita tensors and generalized
Kronecker deltas (see, e.g., Ref. [33])

Lemma 1. Let A{�}
ab and Bab

{ϒ} be two tensors with {�}
and {ϒ} schematically denoting a generic number of indices,
plus a pair of skew indices ab. Then, in three dimensions,

(A�{�}a)(�Bb{ϒ}) = A{�}
mbBma

{ϒ} − 1
2 A{�}

mnBmn
{ϒ}δ

a
b. (24)

The main feature of the identity is that it involves a term
containing no contraction on the left-hand side, a term with a
single contraction, and a term with two contractions. Applying
the latter to the constitutive tensor and its Hodge duals gives
the following corollaries.

Corollary 1. Putting A�{�}a → X �i1i2i3 and �Bb{ϒ} →
�Xj1 j2 j3 one gets the identity

(X �i1i2i3 )(�Xj1 j2 j3 ) = X i1i2
k1 j1

X k1i3
j2 j3

− 1
2 X i1i2

k1k2
X k1k2

j2 j3
δ

i3
j1
.

(25)

Corollary 2. Putting A�{�}a → �X �i1i2 and �Bb{ϒ} →
�X �

j1 j2 one gets the identity

(�X �i1i2 )
(
�X �

j1 j2

) = (
�X i1

k1 j1

)(
X �k1i2

j2

)
− 1

2

(
�X i1

k1k2

)(
X �k1k2

j2

)
δi2

j1 . (26)

In order to compute the homogeneous quadratic function
H (x, q) using the above identities, we start by realizing that
the trace of the adjoint matrix, as defined in Eq. (20), is
proportional to the second elementary symmetric polynomial.
Combining this fact with the trivial dyadic structure of the
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adjoint Eq. (22), one obtains

H (x, q)q2 = 1
2

(
Y k1k2Yk2k1 − Y k1

k1
Y k2

k2

)
= 1

2

(
X k1i2k2i1 Xk2 j2k1 j1 − X i1i2 Xj1 j2

)
qi1 qi2 q j1 q j2 ,

(27)

with q2 = qkqk , for conciseness. The problem of finding
H (x, q) thus reduces to showing the following theorem.

Theorem 1. The homogeneous fourth-order polynomial on
the right-hand side of Eq. (27) factorizes as a product of two
homogeneous quadratic polynomials.

proof. Since this algebra is somehow cumbersome, we
present the calculations in their full details.

First, recalling that X i1
j1

= X i1k1
j1k1

and X = X k1
k1

, one eas-
ily proves the (2 + 1)-dimensional analog of the so-called
Ruse-Lanczos identity:

�X �i1 j1 = X j1i1 − 1
2 Xgj1i1 . (28)

Now, contracting i2 with j1 in Corollary 2 gives

(�X �i1k1 )
(
�X �

k1 j2

) = − 1
2

(
�X i1

k1k2

)(
X �k1k2

j2

)
, (29)

and reinserting this in the original equation yields(
�X i1

k1 j1

)(
X �k1i2

j2

)=(�X �i1i2 )
(
�X �

j1 j2

)−(
�X �i1k1

)(
�X �

k1 j2

)
δi2

j1 .

(30)
Contracting i1 with j2 in Corollary 1 and rearranging the terms
gives(
�X i1

k1 j1

)(
X �k1i2

j2

)=X k1i2k2i1 Xk2 j2k1 j1 + 1
2 X i2

k1k2k3
X k2k3k1

j1
δ

i1
j2
.

(31)
Thus, combining Eq. (30) with Eq. (31), one gets

X k1i2k2i1 Xk2 j2k1 j1 = (�X �i1i2 )
(
�X �

j1 j2

) − (�X �i1k1 )
(
�X �

k1 j2

)
δi2

j1

− 1
2 X i2

k1k2k3
X k2k3k1

j1
δ

i1
j2
. (32)

Multiplying Eq. (32) by qi1 qi2 and q j1 q j2 and using Eq. (28)
reveals that

Y k1
k2

Y k2
k1

− Y k1
k1

Y k2
k2

= −q2
(
X i1

k1
X k1

j2
+ 1

2 X i1
k1k2k3

X k2k3k1
j2

)
qi1 qi2 (33)

and, finally, contracting i2 with j1 and i3 with j3 in Corollary
1 gives the desired result

Y k1
k2

Y k2
k1

− Y k1
k1

Y k2
k2

= q2[(X �i1
k1k2

)(
�X k1k2

j2

)]
qi1 q j2 . (34)

Equation (34) shows that the quartic multivariate polynomial
in Eq. (27) is indeed proportional to the squared norm of the
covector, as expected. �

Furthermore, since Eq. (27) is valid for all covectors in
T ∗

x M, there follows

H (x, q) = 1
2

[(
X �i1

k1k2

)
(�X k1k2i2 )

]
qi1 qi2 . (35)

Comparing this relation with Eq. (22) we then read off the
effective optical metric as

ĝi1i2 (x) = − 1
2

�X k1k2(i1 X �i2 )
k1k2 (36)

with the minus sign chosen for convenience. We notice that
Eq. (36) is the three-dimensional analog of the celebrated
Tamm-Rubilar tensor, which in its turn is cubic in the con-
stitutive tensor of the medium and governs light propagation
in four-dimensional electrodynamics.

So far, we have derived the effective optical metric treating
the constitutive tensor X abcd as a whole. However, in practi-
cal situations, one is more often concerned with its smaller
projected pieces: the constitutive tetrad. In order to compute
Eq. (36) explicitly in terms of these pieces, we recall Eq. (8)
to write the right and left Hodge duals, respectively, as

X �
abc = {gabpq(−εcrsA

pr + gcsB
p)

+ εabq(εcrsC
r − gcsD)}t qt s,

�Xbcd = {−εbpq(gcdrsA
pr + εcdsB

p)

− gbq(gcdrsC
r + εcdsD)}t qt s.

After a lengthy but straightforward calculation, Eq. (36) then
becomes

ĝab(x) = DA(ab) + 1
2

(
Ap

qA
q

p − Ap
pA

q
q

)
t at b − B(aCb)

+ εpqr (Ap(bta)Bq − t (aAb)pCq)t r . (37)

In the particular case of an ordinary material medium without
magnetoelectric terms, we get

ĝab(x) = DA(ab) + 1
2

(
Ap

qA
q

p − Ap
pA

q
q

)
t at b. (38)

V. APPLICATIONS

In this section, we briefly investigate some interesting con-
sequences of Eqs. (37) and (38). More precisely, we consider
particular constitutive laws for the cases of vacuum, isotropic,
anisotropic, linear magnetoelectric, and pure skewonic media.
To do so, we start by writing the projector tensor orthogonal
to the observer as

hab ≡ gab + t at b, (39)

which satisfies the relations

hab = h(ab), habtb = 0, ha
chc

b = ha
b, ha

a = 2. (40)

We notice also that a generic constitutive tensor in three
dimensions is irreducibly decomposed into symmetric and
antisymmetric (skewonic) parts as

Xabcd = (s)Xabcd + (a)Xabcd (41)

where
(s)Xabcd ≡ 1

2 (Xabcd + Xcdab) → (s)Xabcd = + (s)Xcdab,

(a)Xabcd ≡ 1
2 (Xabcd − Xcdab) → (a)Xabcd = − (a)Xcdab.

When combined with Eq. (8), the latter gives the following
splitting of the constitutive tetrad:

{Aab,Ba,Ca,D} = {(s)Aab,
(s)Ba,−(s)Ba,

(s)D}
⊕ {(a)Aab,

(a)Ba,
(a)Ba, 0}, (42)

where (s)Aab is symmetric and (a)Aab is antisymmetric. There-
fore, the symmetric part has a total of six independent
components whereas the antisymmetric part has a total of
three. This is in sharp contrast with the four-dimensional case,
where the former would have 21 and the latter 15. Further-
more, we recall that an additional totally antisymmetric part
(the axion) is also allowed in the four-dimensional decompo-
sition. That the latter does not appear in our analysis is a direct
consequence of the algebraic identity X[abcd] = 0, valid for all
rank-4 tensors in three dimensions.
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A. Vacuum medium

This case is characterized by the simple symmetric consti-
tutive tensor Xabcd = gabcd . Using Eqs. (9) with the splitting
Eq. (42), the nonvanishing elements of the constitutive tetrad
read as

(s)Aab = hab,
(s)D = 1, (43)

which is absent of all possible magnetoelectric cross terms
and has a symmetric permittivity matrix. Using Eq. (38) with
Eq. (40), one obtains the effective optical metric and its in-
verse as

ĝab = gab ↔ ĝab = gab, (44)

which recovers the well-known fact that, in vacuum, the dis-
persion relation is governed by the background spacetime
metric itself. The next two examples consist of generalizations
of this result for two types of symmetric medium without
magnetoelectric parts.

B. Isotropic medium

This case is governed by a constitutive tetrad of the type

(s)Aab = εhab,
(s)D = μ−1, (45)

where the electric permittivity ε and the (inverse) magnetic
permeability μ−1 are arbitrary functions of position in space-
time. Again, using Eq. (38) with Eq. (40), one obtains (up to
a conformal factor)

ĝab=gab + (1 − με)t at b ↔ ĝab = gab +
(

1 − 1

με

)
tatb.

(46)
This is precisely the metric obtained by Gordon and Pham
Mau Quan in the classic Refs. [34,35], but now restricted to
two spatial dimensions. In order to ensure that the propagation
of light rays is well defined in the effective spacetime, the
determinant of ĝab must be negative definite. In a local frame
such that gab(x) = ηab and t a = δa

0, a direct calculation gives

det(ĝab) = −1/με, (47)

that is always negative if the product με is positive. This con-
dition encompasses most dielectric materials found in nature.
That the lower-dimensional case presented here reproduces
the same behavior of the four-dimensional one is a direct
consequence of the simple algebraic symmetries assumed for
the constitutive tensor.

C. Anisotropic medium

In order to introduce an anisotropic behavior (as in the
case of crystals) at a spacetime point, it suffices to consider
a symmetric electric permittivity matrix the principal values
of which do not coincide. In other words, we consider a
constitutive tetrad of the form

(s)Aab =
⎛
⎝0 0 0

0 ε1 0
0 0 ε2

⎞
⎠, (s)D = μ−1, (48)

where the constitutive parameters ε1, ε2, and μ−1 are all
allowed to depend on position and t a = δa

0, for simplicity.

Using Eq. (38), there follows (up to a conformal factor)

ĝab =
⎛
⎝−ε1ε2 0 0

0 ε1/μ 0
0 0 ε2/μ

⎞
⎠ ↔

ĝab =
⎛
⎝−1/ε1ε2 0 0

0 μ/ε1 0
0 0 μ/ε2

⎞
⎠. (49)

The reader is invited to consult Refs. [1,2] for similar results
in the four-dimensional case. Now, the determinant of the
effective optical metric is

det(ĝab) = −μ2/ε2
1ε

2
2, (50)

which is always negative for nonvanishing parameters. How-
ever, in order to obtain the physically meaningful signature,
we need to impose either the positivity or negativity of all
constitutive parameters.

D. Magnetoelectric medium

We now consider a particular type of anisotropic medium
endowed with generic magnetoelectric terms. Hence, in a
local frame such that gab(x) = ηab and t a = δa

0, we assume
a constitutive tetrad as follows:

(s)Aab =
⎛
⎝0 0 0

0 ε1 0
0 0 ε2

⎞
⎠, Ba = (0 Bx By),

Ca = (0 Cx Cy), (s)D = μ−1, (51)

where the dielectric parameters ε1, ε2, and μ as well as the
magnetoelectric ones Bx, By, Cx, and Cy are arbitrary func-
tions of the spacetime coordinates. Here the effective optical
metric, given by Eq. (37), can be written (up to a conformal
factor) as

ĝab =

⎛
⎜⎜⎝

−ε1 ε2
1
2 (By − Cy ) ε1 − 1

2 (Bx − Cx ) ε2

1
2 (By − Cy ) ε1 ε1/μ − Bx Cx − 1

2 (Bx Cy + By Cx )

− 1
2 (Bx − Cx ) ε2 − 1

2 (Bx Cy + By Cx ) ε2/μ − By Cy

⎞
⎟⎟⎠.

(52)

After some manipulations, one can show that the determinant
of this metric can be put in the form

det(ĝab) = −1

4

(
ε1 ε2

μ
− ε1ByCy − ε2BxCx

)

×
[

4
ε1 ε2

μ
+ ε1(By − Cy)2 + ε2(Bx − Cx )2

]
.

(53)

From the latter, one realizes that Lorentzian signature cannot
be guaranteed without further assumptions on the magneto-
electric terms. For instance, if the products of magnetoelectric
coefficients are positive and large enough to exceed the first
term in parentheses, then the effective optical metric has a
Euclidean signature and there is no good propagation. On
the other hand, if those terms are negative, then ĝab has a
Lorentzian signature and we have propagation again. Finally,
for sufficiently weak magnetoelectric media, where the prod-
uct of any two magnetoelectric coefficients can be neglected,
the determinant ĝab reduces to Eq. (50).
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E. Pure skewonic medium

The last case we analyze here corresponds to a hypothetical
medium the constitutive tensor Xabcd of which contains only
its antisymmetric part with respect to the change of skew
indices. In a local frame such that gab(x) = ηab and t a = δa

0,
we assume a constitutive tetrad as follows:

(a)Aab =
⎛
⎝0 0 0

0 0 −ε

0 ε 0

⎞
⎠, (a)Ba = (0 Bx By),

(a)Ca = (0 Bx By), (a)D = 0. (54)

Consequently, Eq. (37) gives for the effective optical metric
the following expression (up to a conformal factor):

ĝab =
⎛
⎝ −ε2 −εBx −εBy

−εBx −Bx
2 −BxBy

−εBy −BxBy −By
2

⎞
⎠. (55)

Interestingly, the rank of the effective optical metric is 1 and,
therefore, there is no room for hyperbolicity in pure skewonic
media in two spatial dimensions. This result is entirely con-
sistent with Itin’s claim in four dimensions that the skewon
part alone does not provide a nontrivial dispersion relation.
Thus, in a three-dimensional spacetime as well, the skewon
can serve only as a supplement to the principal (symmetric)
part (see Ref. [36] for details).

VI. CONCLUSION

With the help of the eikonal approximation, the algebraic
properties of the constitutive tensor Xabcd of an electromag-
netic theory inside a (2 + 1)-dimensional medium led us
to the dispersion relation and the effective optical metric.
In particular, we show that such relation can be written as
a quadratic homogeneous polynomial in the wave covector
the coefficients of which also depend quadratically on the
medium parameters. Then, we studied cases of interest, for
instance, isotropic and anisotropic dielectrics and magneto-
electric media, emphasizing the necessary conditions for a
well-defined propagation of light rays.

The recent and increasing interest of experimentalists and
technologists on the optical features of two-dimensional me-
dia have expanded this area faster than their theoretical
counterparts, leaving some conceptual questions behind, for
instance, the absence of a covariant description of manifestly
2D phenomena. On the other hand, we expect that the ap-
proach described in our paper may shed some light towards an
explanation of the optical phenomena measured in laboratory,
particularly, the effective number of degrees of freedom of
the medium since the elements of the constitutive tetrad have
different tensor rank in comparison to the same set in the
(3 + 1)-dimensional formalism.

Beyond the limits of geometric optics, it is well established
that a genuine covariant 2D electromagnetic field is useful
in describing the constitutive law associated to the quantum
Hall effect [4], because of the topological character of the
Hall current. It is possible to set a linear phenomenological
relation between the Hall current jμ and the Hodge dual of the
Faraday tensor �Fμ of the form jμ = σH

�Fμ, where σH is the
Hall resistance. Setting a congruence of observers, it yields the

correct two-dimensional relations 
j = σH 
E and ρ = −σH B,
where 
j and ρ are the 2D Hall current and the charge density,
respectively. On the other hand, in the last decades, the de-
velopment of photonic [37] and spin [38] analogs of quantum
Hall effects have given rise to broad interest in topological
phenomena described by 3D electromagnetism and quantum
mechanics.

It is also worth noticing that a two-dimensional electro-
magnetism in fact admits two possible formulations, based
upon the method of descent proposed by Hadamard [19,20].
It means that the electromagnetic field could be represented
either by a 2-form Fab (as we proceed here) or by a 1-form Fa,
leading to nonequivalent formulations. However, adding the
extra assumption of planar invariance of the Lorentz force, it
is easy to show that the approach of the 2-form Fab formulation
is favored over the other. Furthermore, it is equivalent to
the three-dimensional Maxwell’s theory restricted to a plane
where the fields, charges, and currents are independent of
the direction perpendicular to the plane of symmetry [21,22].
Ultimately, for further investigation, we shall address sepa-
rately the case of a nonlinear constitutive relation [39], where
the discussion in terms of phase and group velocities and
polarization seems very enlightening. We also intend to study
other mathematical aspects of this theory, for example, the
characteristics of propagation for degenerate effective optical
metrics and the interplay between the causal structure and the
covariant hyperbolizations as discussed in Refs. [40,41].
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APPENDIX A: CONVENTIONS

Throughout, all lower-case latin indices take their values in
the set 0,1,2 and the velocity of light in vacuum is normalized
to unity (c ≡ 1). The Levi-Civita tensors are defined by

εabc = √−g[abc], εabc = − 1√−g
[abc], (A1)

where g ≡ det(gab) in any coordinate system and [abc] is the
totally antisymmetric symbol, with [012] = +1. The general-
ized Kronecker delta of order k is defined by the multilinear
determinant

δa1...ak
b1...bk ≡ det

∣∣∣∣∣∣∣∣

δa1
b1 δa1

b2 · · · δa1
bk

δa2
b1 δa2

b2 · · · δa2
bk

...
...

. . .
...

δak
b1 δak

b2 · · · δak
bk

∣∣∣∣∣∣∣∣
, (A2)

and there follow the fundamental identities

εabcεpqr = −δabc
pqr, εabrεpqr = −δab

pq,

εaqrεpqr = −2δa
p, εpqrεpqr = −6. (A3)

As usual, total antisymmetrization of a tensor is defined as

T[a1...ak ] ≡ 1

k!
δb1...bk

a1...ak Tb1...bk , (A4)
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and for all k � 4 there follows T[a1...ak ] = 0. In particular,
the latter shows that an arbitrary constitutive tensor in three
dimensions contain no axionic counterpart.

APPENDIX B: PREMETRIC APPROACH

From a theoretical standpoint it is often convenient to
formulate electromagnetism on a bare manifold that need
not carry a metric or a connection. This tradition dates back
at least to the works of Kottler, Cartan, van Dantzig, and
Schrödinger and is at the roots of the premetric approaches
developed in Refs. [3,4]. For the sake of comparison with
the metric formalism adopted in the paper we briefly review
here some essential features of the metric-free approach. To
start with, we consider a three-dimensional bare manifold M
and treat the electromagnetic-field strength Fab(x) as a closed
untwisted (even) 2-form. In order to construct consistent equa-
tions of motion for the field, we are allowed to use only
objects permitted by the differential structure of the manifold,
i.e., tensors, densities, partial derivatives, and related quanti-
ties. Following Refs. [4,14], we write Maxwell equations in
(2 + 1) dimensions as

F[ab,c] = 0, H[a,b] = −Jab. (B1)

Here Ha is the electromagnetic excitation and Jab is the electric
current and the minus sign is chosen for convenience. We
notice that, for this particular dimension, all quantities above
carry exactly the same number of degrees of freedom. Un-
der coordinate transformations, it is assumed that these fields
change according to

F̃ab = ∂xc

∂ x̃a

∂xd

∂ x̃b
Fcd , H̃a = sgn

(
det

∂x

∂ x̃

)
∂xb

∂ x̃a
Hb,

J̃ab = sgn

(
det

∂x

∂ x̃

)
∂xc

∂ x̃a

∂xd

∂ x̃b
Jcd .

Hence, Ha transforms as a twisted (odd) 1-form whereas Jab

transforms as a twisted (odd) 2-form. In particular, this dis-
tinction turns out to be important in the realm of optics in
questions related to chirality. It is clear that Eqs. (B1) are
metric free and that they must be compatible with

J[ab,c] = 0, (B2)

which is nothing but the conservation law for the electric
charge.

In order to make the theory consistent from the point of
view of partial differential evolution equations, we must sup-
ply it with a “spacetime” local relation of the form

Fab �→ Ha = 1
2κ bc

a Fbc, (B3)

where the mixed twisted quantity κ bc
a = −κ cb

a carries a total
of nine independent components, is allowed to depend on
position, and provides a linear map between the space of
untwisted 2-forms to the space of twisted 1-forms. Defining
the Levi-Civita tensor densities of weights +1 and −1, re-
spectively, by ε̌abc and ε̌abc, we write down Eqs. (B1) in the
form

F[ab,c] = 0, (Ȟab),b = J̌a, (B4)
where

Ȟab ≡ ε̌abcHc, J̌a ≡ 1
2 ε̌abcJbc, ε̌abcε̌de f = δabc

de f . (B5)

A closer inspection of Eq. (B3) then shows that the constitu-
tive law may be alternatively written as

Ȟab = 1
2χabcd Fcd , with χabcd ≡ ε̌abmκ cd

m . (B6)

The nine functions χabcd (x) contain the same information as
κ bc

a (x) and have the following symmetries:

χabcd = −χbacd = −χabdc. (B7)

Due to the properties of the Levi-Civita symbol, the latter
qualifies as an untwisted tensor density of weight +1 (see
Ref. [4], p. 247). It is clear that Maxwell’s equations in their
metric-dependent form Eqs. (1) are a particular instance of
Eq. (B4). Indeed, the former may be obtained via the identifi-
cations

Ȟab → √−gPab, J̌a → √−gJa. (B8)

The important point here is that Hadamard’s method of dis-
continuities may be straightforwardly applied to Eqs. (B4),
thus yielding a dispersion relation of the form Eq. (36) with
just minor algebraic adaptations.
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