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Electron spill-out effect on third-order optical nonlinearity of metallic nanostructure
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Over the last three decades, plasmonics using metallic nanostructures has become central to nanophotonics
research. Recently, its targets have been extended to nonlinear optical phenomena. In a nonlinear regime,
quantum mechanical effects, as exemplified by electron spill-out on the surface of nanostructures, significantly
influence the optical response. Quantum hydrodynamic theory (QHT) is a promising basis for the analysis of
nonlinear optical responses involving such quantum mechanical effects. Herein, QHT was applied to calculate
the third-order optical nonlinearity of a spherical metallic nanostructure. The results demonstrate how electron
spill-out strongly affects plasmon resonance and third-order optical nonlinearity.
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I. INTRODUCTION

Metallic nanostructures that interact with an optical field
can generate plasmons, the collective motion of the conduc-
tion electrons confined in the nanostructure, which enhances
the original field with spatial localization beyond the diffrac-
tion limit. Their enhancement- and localization abilities have
attracted extensive attention in the field of nanophoton-
ics [1–4]. Recently, research targets of plasmonic systems
using metallic nanostructures have been extended to nonlin-
ear optical applications [5–12]. In a nonlinear regime, the
quantum mechanical effects are important. As such quan-
tum effects emerged in nanostructures, there have been the
three typical examples: spatial nonlocality [13–20], electron
spill-out [21–30], and quantum tunneling [31–41]. Over the
last decade, these effects mentioned above have been the-
oretically and experimentally confirmed; additionally, some
groups have theoretically reported how these effects enhance
optical nonlinearity [14,20,21,27,39,41], which is essential
for the development and improvement in various applications
[7–12].

The most straightforward way to numerically predict the
quantum mechanical effects is to employ methods that use
electronic orbitals; an example is time-dependent density-
functional theory (TDDFT) in first-principles level or with
jellium approximation [42,43]. However, TDDFT-based nu-
merical calculations are significantly time-consuming because
the computational costs are proportional to the product of the
number of orbitals and the spatial size of the system. This
substantially limits their applicability to structures of several
nanometers [34–41]. To overcome the limitation of applied
TDDFT, several research groups in the field of plasmonics
[13–18,20–30] have recently introduced semiclassical ap-
proaches that employ kinetic energy (KE) functionals that
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incorporate important quantum effects [44–47]. Such an ap-
proach regards the electron dynamics as a fluid that is
dependent on local physical quantities, such as the electron
density n(r, t ) and electric current density J(r, t ) or veloc-
ity field v(r, t ). This semiclassical approach is free from
electronic orbitals, thus allowing to calculate significantly
larger nanostructures at a moderate computational cost (i.e.,
as compared to TDDFT). Over the last decade, this ap-
proach has been employed in the field of plasmonics to
describe the quantum mechanical effects of metallic nanos-
tructures. Spatial nonlocality can be described by introducing
the Thomas-Fermi (TF) KE functional with an n dependence
[13–18,20]. Thereafter, electron spill-out and quantum tun-
neling can be incorporated by adopting the von Weizsäcker
(vW) KE functional with a ∇n dependence [21–30]. This is
referred to as a TFλvW approach, where λ is an adjustable and
phenomenological parameter that is typically selected to re-
produce the electron spill-out predicted by density-functional
theory (DFT) calculations. Furthermore, a recent study fo-
cused on the application of higher-order KE functionals,
including the ∇2n contribution, to more precisely describe
the electron dynamics [48]. Semiclassical approaches with or
beyond TFλvW have previously been referred to as quantum
hydrodynamic theory (QHT); this appellation is also ap-
plied here. As another efficient approach to quantify quantum
mechanical effects, time-dependent orbital-free DFT (TD-
OFDFT) has been proposed and actively studied since the
late 1990s [49–54]. TDOFDFT employs the single-orbital
Schrödinger equation to express the electron dynamics with
KE functionals, thus reducing the computational cost rela-
tive to that required for TDDFT. Given that the QHT and
TDOFDFT have previously been reported to be inextricably
linked [54], in a recent study, QHT was applied to derive a
similar single-orbital Schrödinger equation [30].

QHT-based calculations have previously been demon-
strated to yield good results when applied to a linear regime to
reproduce the quantum mechanical effects of metallic nanos-
tructures [21–29]. However, in the case of nonlinear regimes,
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applications of QHT remains limited. To the best of our
knowledge, only a few studies have focused on using QHT
in combination with TF λ vW (hereafter referred to as QHT-
TFλvW) to clarify or reproduce nonlinear optical responses
[21,27]. These previous studies demonstrated how electron
spill-out affects the interface of a 2D metallic thin film;
specifically, they demonstrated that it could induce second-
harmonic generation and be directly applied to determine the
magnitude of the nonlinear signal. From the perspective of ad-
vances in theoretical and practical applications, their research
findings are intriguing. However, no reports on the use of
QHT elucidate the relationship between electron spill-out and
nonlinear optical processes for 3D metallic nanostructures.

In this study, the third-order optical nonlinearity of a
metallic nanosphere was investigated by performing QHT-
TFλvW–based numerical calculations. In particular, how
electron spill-out at the surface of the nanosphere contributes
to the third-order nonlinearity is clarified here by adjusting the
length of the spill-out. Furthermore, the effects of nanosphere
size on nonlinearity are also quantified from the perspective of
electron spill-out. The results show that the electron spill-out
of the nanosphere substantially alters the optical responses in
the linear and nonlinear regimes. In particular, it is shown that
the third-order optical nonlinearity monotonically increases
with increasing electron spill-out volume ratio.

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce QHT and our numerical method
to calculate nonlinear optical responses. In Sec. III, the cal-
culated results for nanospheres are presented, where optical
nonlinearity originating from the electron spill-out is explored
in terms of the electron spill-out length and nanosphere size.
Finally, conclusions are presented in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, a QHT-TFλvW–based numerical approach,
recently developed by our group, which discretizes all phys-
ical quantities into real-space and real-time grids, is briefly
reviewed [30]. The investigated system is assumed an iso-
lated metallic nanostructure interacting with an optical field.
From here, the QHT is shown in the following equation to
describe the electron dynamics by the electric current density
J(r, t ) with the elementary charge e (>0) and electron mass
m [26,30]:

∂J
∂t

= ne2

m
E − e

m
J × B + 1

e

{
J
n

(∇ · J) + (J · ∇ )
J
n

}

+ ne

m
∇

(
δEXC

δn
+ δG

δn

)
, (1)

where E(r, t ) and B(r, t ) are the electric and magnetic fields,
respectively, and n(r, t ) is the electron density, which satisfies
the equation of continuity, ∂n/∂t = (1/e)∇ · J. δEXC/δn =
VXC(r, t ) is the exchange-correlation (XC) potential whereas
δG/δn = VG(r, t ) is the contribution from the KE functional
G. Equation (1) can include the XC vector potential term AXC;
however, it is ignored here for simplicity. m and e are the
electron mass and elementary charge, respectively. SI units
were applied throughout this study.

To describe the spatial nonlocality, electron spill-out, and
quantum tunneling, in TFλvW-based approaches, G in Eq. (1)
is given as follows:

G = TTF + λTw, (2)

where TTF and Tw denote the TF and vW KE functionals,
respectively, and their functional derivatives with respect to
n are as follows, with cTF = (h̄2/m)(3/10)(3π )2/3:

δTTF

δn
= 5

3
cTFn2/3, (3)

δTw

δn
= h̄2

8m

(∇n · ∇n

n2
− 2

∇2n

n

)
= − h̄2

2m

∇2√n√
n

, (4)

where h̄ is the reduced Planck constant. Equation (2) includes
an adjustable phenomenological parameter λ as the weight
of the vW term, the value of which determines the length of
the electron spill-out; it is generally selected to range from
1/9 to 1 [47]. Intriguingly, this QHT-TFλvW approach can be
directly derived from a fully quantum mechanical approach,
TDDFT, with λ = 1 and an additional term consisting of
electronic orbitals that also contributes to electron spill-out
[26]. The next section describes how the length of the electron
spill-out can be controlled by applying different values of λ

and details the investigation into its influence on the nonlinear
optical response of metallic nanostructures.

As mentioned before, previous studies on linear regime
have already shown QHT-TFλ vW–based calculations to yield
results that effectively clarify how electron spill-out affects
the optical response, particularly in terms of the plasmon
resonance. However, it is considerably difficult to develop
computational codes that can stably execute Eqs. (1)–(4)
under nonlinear conditions. The reason for the difficulty is re-
lated to the spatiotemporal changes in the electron density that
are governed by ∂n/∂t = (1/e)∇ · J that, in a linear regime,
can be handled without problem by linearizing the equation.
Equations (3) and (4), which, respectively, include n1/3 and
1/n components, presuppose n to be a positive-definite quan-
tity; thus, the numerical calculation process will immediately
break down if the update of n induces a numerical error that
results in even a single spatial and/or temporal point becoming
n � 0. To mitigate this problem, a new numerical scheme was
developed to stably analyze the nonlinear optical response
of metallic nanostructures using a TFλvW approach. The
numerical scheme utilized to rewrite the basic equations for
the QHT-TFλvW system [i.e., Eqs. (1)–(4)] to the following
effective Schrödinger equation (ESE) [30] with λ = ξ 2:

ih̄ξ
∂�

∂t
=

[
(−ih̄ξ∇ + eA)2

2m
− eφ + δEXC

δn
+ δTTF

δn

]
�, (5)

where A(r, t ) and φ(r, t ), respectively, denote the vector and
scalar potentials related to the electromagnetic fields as E =
−∂A/∂t−∇φ and B = ∇ × A. �(r, t ) is the effective wave
function, which produces the electron density n and electric
current density J as follows:

n = |�|2, (6)

J = − e

m
Re[�∗(−ih̄ξ∇ + eA)�]. (7)
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Equations (5)–(7) can be directly derived from Eqs. (1)–
(4) with no assumptions, as they are equivalent. (Details
are provided in our previous paper [30].) Nevertheless, it
can be easily understood that the numerical stability of the
ESE-based calculations is better than that of the original
QHT-based calculations using Eqs. (1)–(4). Particularly, (i)
vW potential of Eq. (4) does not appear in Eq. (5), while
it appears in TDOFDFT [49–54]. The vW term is treated
through a kinetic operator with h̄ → h̄ξ , and thus Eq. (5) does
not include a singular point with respect to 1/n; (ii) Equation
(6) guarantees n to be a positive-definite quantity n � 0. This
is the reason why the numerical calculations presented as
Eqs. (5)–(7) are stably executable for the nonlinear optical
phenomena described in a QHT-TFλvW system.

The electromagnetic potentials that appear in Eqs. (5) and
(7), i.e., A and φ, can be updated by applying the Lorenz
gauge condition to Maxwell’s equations, as follows:

∂E

∂t
= 1

ε0μ0
∇ × B − 1

ε0
J, (8)

∂B
∂t

= −∇ × E, (9)

∂A
∂t

= −E − ∇φ, (10)

∂φ

∂t
= − 1

ε0μ0
∇ · A. (11)

In the developed ESE-based numerical scheme, Eqs. (5)–
(7) and (8)–(11) are concurrently solved in discretized real-
space and real-time grids based on three-dimensional finite-
difference method without any symmetry assumptions; details
on their implementation are available in Ref. [30].

III. NUMERICAL RESULTS

This section reveals how the effects of electron spill-out
contribute to the nonlinear optical response of a metallic
nanostructure in QHT-TFλvW–based numerical calculations.
The target system is displayed in Fig. 1(a), which shows a
metallic nanosphere with a diameter a that is subjected to an
applied incident electromagnetic field formed by E(i) and B(i).
Generally, QHT describes metallic nanostructures through the
use of a jellium model (JM) that replaces an original atomistic
structure of material to a uniform positive background density
n(+)

JM (r) [55]. For the nanosphere applied in this study, n(+)
JM (r)

is given by the following expression, with ns = ((4π )r3
s /3)−1:

n(+)
JM =

{
ns if |r| � a/2,

0 if |r| > a/2,
(12)

where rs is the Wigner-Seitz radius of the medium and has
been set to rs = 3.99 bohr to correspond to Na metal. The
application of the JM constitutes a considerable simplification
that serves to reduce computational costs. However, by link-
ing to TDDFT or other related numerical schemes including
QHT, the JM has so far succeeded in reproducing exper-
imental results, which contain typical quantum mechanical
effects that emerged in metallic nanostructures, such as spatial
nonlocality, electron spill-out, and tunneling [27,31–41]. The
XC potential δEXC/δn in Eqs. (1) and (5) can be calculated
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FIG. 1. (a) Target system consisting of the Na nanosphere with
a diameter a and the incident light electromagnetic field represented
as E(i) and B(i), which propagate in the z direction. Center of mass
of the nanosphere is located at the origin. Note that a = 4.3 nm in
(b)–(e). (b) Spatial distribution of initial electron density n0 along
the x axis near the surface of the nanosphere. Blue (black) solid line
with circles, red (black) dashed line with triangles, and green (gray)
dashed line with squares, respectively, show n0 results for λ = 1, 1/2,
and 1/9. Gray-shaded area indicates the positive background density
n(+)

JM . Their amplitudes have been normalized with respect to ns.
(c)–(e) Spatial distribution of potential Vall/ξ described in Eq. (13),
where λ = 1, 1/2, and 1/9, respectively. Horizontal dashed black
lines indicate energy eigenvalue h̄
.

by adopting adiabatic and local density approximations [56].
All calculations were performed using SALMON, which is an
open-source code developed by our group [57].

A. λ dependence

Here, the dependence of λ is explored by varying the
parameter between 1/9 and 1, which is the range generally
applied to treat the vW correction and determine the length
of the electron spill-out [47]. In QHT, the electron spill-out
appears only by the presence of the vW term and its spatial
extension increases as λ increases. Physically, this fact can be
understood by Eq. (5) in which λ = ξ 2 acts as an inverse-mass
parameter of the kinetic-energy operator in the ESE. The in-
crease of λ means the decrease of effective electron mass and
leads to the increase of the spatial extension of the electron
spill-out. The diameter of the nanosphere, a, was set at 4.3 nm,
which corresponds to an electron number of Ne = 1074 for Na
metal. Although the length of the electron spill-out was ad-
justed by varying λ in this calculation, for actual experiment,
such adjustments cannot be made for isolated nanoparticles.
However, the electron spill-out can be changed by introducing
a coating material that surrounds the nanostructure, thereby
forming a core-shell nanostructure [27]. When a small λ was
employed, there was rapid electron spill-out decay on the
order of subnanometers, closing to the hard-wall boundary as-
sumed in classical electromagnetism theory. To reproduce this
rapid decay in numerical calculations, we employed particu-
larly fine spatial grid spacings, i.e., �x = �y = �z = 0.05
nm, under the conditions of a computational domain set to
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be a cube with side lengths of 14.6 nm, which is sufficiently
larger than a.

In QHT, the initial electron density of a metallic nanos-
tructure n0(r) must be known before the optical response
can be calculated. Although several candidates for n0(r) have
been utilized in linear response calculations, including one
that was calculated based on DFT or model density [25,48],
the equilibrium density should be used here to investigate
nonlinear responses; this density was determined by applying
the following condition to Eq. (1): the electric current density
J at n0(r) completely vanishes anywhere in the spatial grids.
In the case of the ESE, the equilibrium density is obtained
by substituting the ground-state wave function �0(r, t ) =√

n0(r) exp(−i
t ) in Eq. (5) with λ = ξ 2 as follows:

h̄

√

n0 =
[
− h̄2

2m
ξ∇2 + Vall

ξ

]√
n0, (13)

Vall = −eφ0 + δEXC

δn
+ δTTF

δn
, (14)

where h̄
 corresponds to the energy eigenvalue of �0. Then,
φ0(r) in Eq. (14) is the static scalar potential that satisfies the
following Poisson equation that considers n(+)

JM and n0:

∇2φ0 = −e(n(+)
JM − n0)

ε0
. (15)

We employed the multipolar expansion to determine the
boundary value of φ0.

√
n0 was obtained by applying an

imaginary time-propagation method [30,58].
Figure 1(b) shows the n0 results calculated for λ = 1 (the

solid blue line with circles), 1/2 (the dashed red line with
triangles), and 1/9 (the dashed green line with squares); each
n0 was shown for the x axis near the surface of the nanosphere
and normalized with respect to ns. As the figure indicates, λ

is a direct determinant of the electron density distribution;
particularly, the electron spill-out decreases with decreasing
λ. We also notice a spatial region in which n0 is slightly larger
than ns. This corresponds to the onset of the Friedel oscillation
[23,25]. This behavior with respect to the density tail has been
well documented by previous authors who have conducted
related QHT studies [21–29]. Thus, to further analyze these
results, we plotted the spatial distribution of Vall/ξ that con-
fines n0, as described by Eq. (13). Figures 1(c)–1(e) show the
results for λ = 1, 1/2, and 1/9, respectively; the horizontal
dashed black line in each figure indicates the energy eigen-
value h̄
. As can be seen, the same three general trends were
observed for all values of λ: (i) a flat line at Vall/ξ ≈ h̄
 inside
the sphere (|x| < 1.7 nm); (ii) two spikes extending in a neg-
ative direction at the points along the x axis near the surface
of the sphere (1.7 � |x| � 2.2 nm); and (iii) a sharp increase
toward Vall/ξ = 0 outside of the sphere (|x| > 2.2 nm). For
all values of λ, h̄
 was calculated to be close to the bottom of
Vall/ξ , the value of which decreased with λ. In the asymptotic
region where Vall is ignorably small, the density behaves as
n0 ∼ e−2κr with κ = √−2m
/h̄ξ . Since the magnitude of the
eigenvalue |h̄
| increases as ξ = √

λ decreases, the length
of electron spill-out decreases as λ decreases, as shown in
Fig. 1(b).

Hereafter, the focus will be on real-time calculations per-
formed using Eqs. (5)–(11). The temporal interval �t was

FIG. 2. Spectral distribution of the linear optical absorption cross
section Sabs of the nanosphere (a = 4.3 nm). Solid blue (black) and
dashed red (black) and green (gray) lines show Sabs for λ = 1, 1/2,
and 1/9 using QHT, respectively, whereas the dotted black line is
that calculated by TDDFT. Yellow- (light-gray) shaded stars found in
QHT spectra indicate peak position of plasmon resonance, whereas
gray- (dark-gray) shaded stars denote the Bennett state.

set as 9.628 × 10−5 fs to satisfy the Courant-Friedrichs-Lewy
condition for the applied spatial grid spacing conditions, i.e.,
�x = �y = �z = 0.05 nm [59]. We employed the perfect
matched layer as the electromagnetic absorbing boundary
condition. The calculations were performed on a supercom-
puter, Fugaku at RIKEN, Japan, with OpenMP and MPI
parallelizations. A single calculation took 16 h using 32 nodes.

Before investigating the nonlinear optical response, the
linear properties of the metallic nanospheres were calculated.
Generally, a loss mechanism must be incorporated into QHT-
based numerical calculations to mimic the damping effect of
plasmons. For example, in previous QHT studies that entailed
the use of Eq. (1), a friction term was added to the equa-
tion with the phenomenological damping rate parameter γ

[21–29]; however, such a friction term cannot be easily intro-
duced into the ESE [Eq. (5)] for the QHT-based calculations
in this study. Thus, in our previous study [30], we proposed
another way to replicate the loss mechanism with the ESE by
introducing the following conductive current density JC (r, t ):

JC (r, t ) = σg(r)[E(r, t ) − Egs(r)], (16)

where σ is a phenomenological conductivity parameter, and
the second term in square brackets Egs(r) is the electric field
in the ground state and has been added to maintain JC = 0
at the ground state prior to light irradiation. g(r) specifies the
spatial distribution of JC and is modeled as

g(r) = n0(r)

ns
. (17)

The total electric current density in Eq. (8) can be modified
as J(r, t ) = JQ(r, t ) + JC (r, t ), where JQ denotes the original
value defined in Eq. (7). In this study, σ = 5.05 × 103 S/m
(1.10 × 10−3 a.u.) was applied, the value of which could re-
produce the linear and nonlinear optical resonances calculated
by TDDFT for the same JM nanosphere [30].

Figure 2 displays the spectral distribution results for the
linear optical absorption cross section Sabs of the metal-
lic nanosphere with a = 4.3 nm; the calculation process to
obtain Sabs through the ESE is described in detail in our
previous paper [30]. As shown in Figs. 1(b)–1(e), Sabs was
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calculated for λ = 1, 1/2, and 1/9 using QHT, and the results
are respectively presented as the solid blue, dashed red, and
dashed green lines. Additionally, we plotted Sabs calculated
by TDDFT as a reference that is presented as the dotted black
line. In our previous study [30], we mentioned that QHT with
λ = 1/2 could well mimic the electron spill-out calculated in
DFT, therefore reproducing optical responses almost identical
to those for TDDFT in both the linear and nonlinear regimes.
In the present study, we explore how the electron spill-out
controlled by λ in QHT calculation differentiates their op-
tical responses. Each peak of QHT results appearing in the
lower-energy region corresponds to the plasmon resonance,
the position of which is marked by a yellow-shaded star.
As can be ascertained from the QHT results, the stars were
blueshifted as λ decreases. This blueshift reflects the impact
of the electron spill-out on the linear optical response, as has
been confirmed in previous reports on QHT studies [21–29].
It has been shown that the amount of the blueshift can be
described by using the centroid of the induced surface charge
density measured from the edge of the nanosphere [23,60].
The gray-shaded stars in the higher-energy region indicate the
spectral position of the Bennett state, which is induced by the
nonuniformity of the electron density, to which the spill-out
is a contributing factor, and is known to be overestimated in
QHT-based calculations as can be seen in comparison with
λ = 1/2 and TDDFT [25,38,48,61]. The spectral area of the
Bennett state, which is equivalent to the number of electrons
that are photoexcited through the state, decreases for smaller
values of λ. This can be explained by the change in n0 with
respect to λ, as indicated in Fig. 1(b), which shows that there
was less electron spill-out for smaller values of λ, such as
λ = 1/9. This phenomenon indicates that n0 in the nanosphere
tends to be uniform with a hard-wall boundary as is used
in classical electromagnetism. The Bennett states observed
at λ = 1/2 and 1/9 had a single peak; however, the results
for λ = 1 show several fragmented peaks at energies higher
than 3.2 eV. Recently, Ciracì et al. mentioned that the spectral
structure of the Bennett state is not only often overestimated
but also strongly dependent on the size of the computational
domain [48]. This is consistent with the results presented in
Figs. 1(c)–1(e), which show that the magnitudes of the energy
differences between h̄
 and 0 eV for λ = 1/2 and 1/9 were
larger than their respective Bennett-state energies (Fig. 2),
whereas that for λ = 1 was smaller than its Bennett state. This
means that the Bennett state appears, in the ESE system, as the
bound excited state below the threshold for λ = 1/2 and 1/9,
and as the continuum excited state above the threshold for
λ = 1. Therefore, in consequence, artificial quantum states,
the energy levels of which are characterized by the inverse
of computational domain size, interfere with the Bennett state
for λ = 1, producing the many fragmented peaks that can be
observed in Fig. 2 (blue line). To obtain a fully convergent
spectrum under the conditions of λ = 1, a wider compu-
tational domain is required; however, this was not applied
herein because the focus was solely on the plasmon resonance
with electron spill-out, not the Bennett state overestimated in
QHT.

Let us now explore the nonlinear optical response of the
metallic nanospheres with a = 4.3 nm. For the incident light
illustrated in Fig. 1(a), the following pulsed electric field E(i)

FIG. 3. (a) Power spectra for the x component of the total dipole
moment dx for a nanosphere with a = 4.3 nm. Solid blue (black)
and dashed red (black) and green (gray) lines correspond to λ = 1,
1/2, and 1/9, respectively. Fundamental frequencies of the incident
pulse ωi were set to be 0.94, 1.00, and 1.10 eV for λ = 1, 1/2,
and 1/9, respectively. Yellow-shaded stars indicate peak position
of the plasmon resonance, whereas gray-shaded stars denote the
Bennett state. (b), (c) Spatial distributions of |J (k)

x (x, y)| for k = 1
and 3, respectively [see Eq. (21)], as calculated for λ = 1 condition.
(d) Spatial distributions of |J (3)

x (x, y = 0)| for λ = 1, 1/2, and 1/9
conditions; results are, respectively, presented as a solid blue (black)
line with circles, dashed red (black) line with triangles, and dashed
green (gray) line with squares.

was employed:

E(i)(t ) = Fcos2

[
π

T

(
t − T

2

)]
sin(ωit )x̂ (0 < t < T ), (18)

where F , T , and ωi are the pulse parameters specifying the
amplitude, duration, and fundamental frequency, respectively,
and x̂ denotes the unit vector along the x axis. Hereafter,
the values of F and T have been fixed at 274 MV/m (cor-
responding to 5.34 × 10−4 a.u. and I = 1010 W/cm2) and
55 fs, respectively.

Figure 3(a) shows the power spectra for the x component of
the total dipole moment dx, which is defined by the following
expression:

dx(t ) = x̂ ·
∫ t

0
dt

[∫∫∫
dxdydz{JQ(r, t ) + JC (r, t )}

]
. (19)

The following window function w(t ) is also used to elim-
inate the spurious oscillations that originate from the finite
period of the Fourier transformation:

w(t ) = 1 − 1

3

(
t

Tmax

)2

+ 2

(
t

Tmax

)3

, (20)

where Tmax is the duration of the real-time computation and
has been fixed at 2T in this study. The calculated |dx(ω)|2
results for λ = 1, 1/2, and 1/9 are shown in Fig. 3(a). The fun-
damental frequencies of the incident pulse ωi were set at 0.94,
1.00, and 1.10 eV for the λ = 1, 1/2, and 1/9 conditions,
respectively. These ωi values approximately satisfy one-third
of each plasmon resonance energy; thus, their third-harmonic
generation was plasmonically enhanced. In Fig. 3(a), it can
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be seen that the spectral positions of the plasmon resonance
marked by the yellow-shaded stars, which overlap with their
third-harmonic generation, emerged near 3 eV. It is also
intriguing that the third nonlinear signals increased with in-
creasing λ, whereas the magnitudes of the fundamental signals
around 1 eV were nearly the same. Other peaks have been
classified as those enhanced by the Bennett state and denoted
by gray-shaded stars; the fifth-harmonic generation occurred
at approximately 5 eV.

To explore the mechanism that determines the magnitude
of the third-harmonic generation, the x component of the
k th-order electric current density distribution J (k)

x (x, y) was
evaluated; it is defined as

J (k)
x (x, y) = x̂ ·

∫ Tmax

0
dt[w(t )JQ(x, y, z = 0, t )

+ JC (x, y, z = 0, t )eikωit ]. (21)

Figures 3(b)–3(c), respectively, show the results for k = 1
and 3 for the λ = 1 condition. As shown in Fig. 3(b), the
linear component, which corresponds to k = 1, has an al-
most uniform current distribution. In contrast, as shown in
Fig. 3(c), in the case of the third-order nonlinear component
(i.e., k = 3), the current is more enhanced at the edges of
the nanosphere, the locations of which reflect electron spill-
out, as indicated by the result shown in Fig. 1(b). To clearly
elucidate the respective relationships between the nonlinear
current and electron spill-out, |J (3)

x (x, y = 0)| was plotted for
λ = 1, 1/2, and 1/9; the results are shown in Fig. 3(c).
Each maximum |J (3)

x (x, y = 0)| value can be observed cor-
responding to a position near the surface of the nanosphere;
furthermore, the current in the whole spatial region is more
than linear increase with respect to λ. This clearly indicates
that electron spill-out is important for the third-order optical
nonlinearity.

The results in Fig. 3 are presented with a focus on the one
ωi value that approximately satisfies one-third of the plasmon
resonance energy. Thus, to investigate the dependence of ωi

for nonlinear responses, the following third-order optical non-
linearity along the x axis, i.e., d (3)

x (ωi ), has been defined as
follows:

d (3)
x (ωi ) = ∫3.5ωi

2.5ωi
dω[|dx(ω)|2]

∫∞
0 dω

[∣∣E (i)
x (ω)

∣∣2] , (22)

where E (i)
x (ω) and dx(ω) are obtained by applying a Fourier

transformation to Eqs. (18) and (19) with the window function
w(t ) defined in Eq. (20). Here, d (3)

x (ωi ) denotes the magni-
tude of the third-harmonic generation for an incident pulse
with ωi. Figure 4 shows the d (3)

x results for λ = 1, 1/2, and
1/9 using QHT. To compare the archived nonlinearities, here
again we plotted d (3)

x (ωi ) calculated by TDDFT as a refer-
ence. The yellow-shaded stars associated with QHT results
in the figure denote the ωi values that approximately satisfy
one-third of the plasmon resonance energy, as discussed in
Fig. 3(a), whereas the gray-shaded stars denote the Bennett
state. Each yellow-shaded star indicates a peak, the value
of which shows more than linear increase with respect to
λ, as has been illustrated in Fig. 3(d). These results again
confirm that the plasmonically enhanced nonlinear process is
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FIG. 4. ωi dependence of the third-order optical nonlinearity
d (3)

x , as defined in Eq. (22) for the nanosphere with a = 4.3 nm.
Solid blue (black) line with circles, dashed red (black) line with
triangles, and dashed green (gray) line with squares, respectively,
denote results for the λ = 1, 1/2, and 1/9 conditions using QHT,
whereas the dotted black line with crosses is that calculated by
TDDFT. Yellow-shaded stars found in QHT results denote ωi val-
ues that approximately satisfy one-third of the plasmon resonance
energy, whereas gray-shaded stars denote the Bennett state.

strongly influenced by the electron spill-out. The calculation
with λ = 1/2 that reproduces the electron spill-out in the
TDDFT calculation [30] also shows accurately the third-order
nonlinear response in the plasmonically enhanced region. The
gray-shaded stars that mark the other peaks in the higher-ωi

region of the results for λ = 1 and 1/2 are attributable to
the Bennett state, which, as previously mentioned, is overes-
timated in QHT-based calculations, and therefore should not
be observed in actual measurements. Actually, there appears
no such peak but a gentle shoulder in the TDDFT result in
comparison with QHT calculation using λ = 1/2. Note that
there is no gray-shaded star for the λ = 1/9 condition because
the corresponding value for the Bennett state was found to be
outside the bounds of this plot, and because its influence was
found to be much smaller than that for the other λ conditions,
as illustrated in Fig. 2.

We briefly mention here with respect to the nonlinear-
ity caused by the spatial nonlocality in the optical response
of nanostructures. Our formalism involves nonlocality orig-
inating from the TF KE functional, TTF, as well as the vW
functional, TvW in Eqs. (1) and (2). This TF KE term may
induce nonlinear effects. We note, however, that it has been
reported in Ref. [14], which investigates the nonlocal effect
on the second-harmonic generation, that the nonlinearity that
originates from the TTF is rather weak.

B. Size dependence

In the previous subsection, the nonlinear optical property
of a metallic nanosphere with a diameter a = 4.3 nm was
explored from the perspective of λ dependence appearing in
Eq. (2), which directly controlled the length of the electron
spill-out. This subsection presents an investigation into the
size dependence of the metallic nanospheres in the nonlin-
ear optical response. As the diameter increases, the effect of
curvature on the surface decreases, and the spatial extension
of the electron spill-out converges to that of a flat surface.
Therefore, here the value of λ is fixed at 1/2, which has been
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FIG. 5. Spectral distributions of the linear optical absorption
cross section Sabs of nanospheres with λ = 1/2 and a = 5 [solid blue
(black) line], 10 [dashed red (black) line], 15 [dashed green (gray)
line], 20 [dashed purple (dark-gray) line], and 25 [dashed orange
(light-gray) line] nm. The vertical axis has been normalized with
respect to VS , i.e., the volume of the nanospheres. Yellow-shaded
stars indicate peak positions of the plasmon resonance, and gray-
shaded stars denote the Bennett state.

demonstrated to yield an accurate reproduction of the electron
spill-out results calculated by DFT-based calculations with the
JM for a metallic nanosphere without a coating material [30].
This λ value allows for the use of grid spacing conditions that
are less precise than those used in the previous subsection;
this is because fine grids were essential to reproduce rapidly
decayed electron spill-out under the condition of λ = 1/9.
Thus, the spatial grid spacing applied to investigate the size
dependence was set at �x = �y = �z = 0.1 nm. Addition-
ally, the application of the Courant-Friedrichs-Lewy condition
also allows for the extension of the temporal interval to �t =
1.925 × 10−4 fs. The computational domain size was set at
3 a. The other parameters and conditions were the same as
those described in the previous subsection. A single calcu-
lation took 34 h using 128 nodes of Fugaku for the largest
nanosphere case.

Here again, let us begin by investigating the size depen-
dence with respect to the linear optical response. Figure 5
shows the spectral distribution results for the linear optical ab-
sorption cross section Sabs of metallic nanospheres with a = 5,
10, 15, 20, and 25 nm. The electron number Ne contained
in these spheres approximately ranged from 1700 to 208000.
Equations (13)–(15) were applied to determine the corre-
sponding initial electron density n0. For those nanospheres
with sufficiently large size, the electron spill-out keeps the
same length because λ is fixed as 1/2. Because the spectral
area of Sabs is proportional to Ne = nsVS , where VS denotes
the volume of the nanosphere, the y axis in Fig. 5 was
normalized with respect to VS . As with Fig. 2, the peaks
found in the lower-energy region indicate the plasmon reso-
nance, the positions of which are marked by yellow-shaded
stars, and the peaks of the Bennett state are indicated by
the gray-shaded stars. Figure 5 shows two characteristic ten-
dencies for varying a. First, the maximum values of Sabs

were slightly decreased for larger values of a, whereas the
spectral widths were broadened. The area of the peak that
is proportional to the oscillator strength is found to decrease
slightly (3–4%) for larger value of a. This phenomenon of

FIG. 6. (a) ωi dependence of the third-order optical nonlinearity
d (3)

x , as defined by Eq. (22), for nanospheres with λ = 1/2 and
a = 5 [solid blue (black) line with circles], 10 [dashed red (black)
line with triangles], 15 [dashed green (gray) line with squares], 20
[dashed purple (dark-gray) line with diamonds], and 25 [dashed
orange (light-gray) line with crosses] nm. The vertical axis has
been normalized with respect to V 2

S because d (3)
x is proportional to

it. Yellow-shaded stars indicate the ωi values that approximately
satisfy one-third of the plasmon resonance energy, whereas the gray-
shaded stars denote the Bennett state. (b)–(f) Spatial distributions of
|J (3)

x (x, y)| [see Eq. (21)] for each a value condition; the ωi values
applied to obtain the results are denoted by the yellow-shaded stars
in (a). The x and y axes have been normalized with respect to a, but
the color scale has not been normalized.

slight decreasing and broadening may be attributable to the
propagating effect as well as nondipole effect that are en-
hanced for larger nanospheres. Secondly, the spectrum of the
plasmon resonance (Bennett state) was found to be blueshifted
(redshifted) for larger values of a. This can be attributed to
the volume ratio between the uniform electron density inside
the nanosphere and the electron spill-out near its interface.
Because the length of the electron spill-out has been fixed
by setting λ = 1/2, the nanosphere associated with larger
values of a becomes similar to the characteristics defined by
the hard-wall boundary condition applied in classical elec-
tromagnetism, since the bulk effect eventually drives out the
surface effect. These changes with respect to the linear optical
response have already been discussed in previous studies on
QHT [23,25].

Lastly, as with Fig. 4, d (3)
x was calculated using Eq. (22),

which reflected the third-order optical nonlinearity produced
by an incident pulse with a fundamental frequency ωi; the
other parameters related to the pulse [see Eq. (18)] were set
to be the same as those used in the previous subsection. Fig-
ure 6(a) shows the d (3)

x results obtained under the conditions
of a = 5, 10, 15, 20, and 25 nm. As described by Eq. (22), d (3)

x
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was derived from the square of dx, and dx is also proportional
to Ne = nsVS; thus, the vertical axis was normalized with
respect to V 2

s . As before, the yellow-shaded stars in the figure
denote the ωi values that approximately satisfy one-third of
the plasmon resonance energy, whereas the gray-shaded stars
denote the Bennett state. As was observed in Fig. 4, specifi-
cally the results obtained under the conditions of λ = 1/2 and
a = 4.3 nm, the d (3)

x results shown in Fig. 6(a) exhibited two
peaks that reflect the plasmon resonance and Bennett state,
which were, respectively, blueshifted and redshifted as a in-
creased. The maximum values for the linear optical absorption
Sabs in Fig. 5 were nearly the same following normalization.
This is because, in the linear response, the behavior of the
optical absorption cross section is strongly constrained by the
Thomas-Reiche-Kuhn (TRK) sum rule that ensures the spec-
tral integral of the oscillator strength distribution to be equal to
the electron number in the nanostructure. However, the third-
order nonlinearity (d (3)

x ) results presented in Fig. 6(a), for
which there is not such constraint as the TRK sum rule, show
that different values of a corresponded to different maximum
values even after the normalization. For example, in Fig. 6(a),
d (3)

x calculated from a = 5 nm was nearly 10 times larger
than that for a = 25 nm, indicating that the third-order non-
linearity per unit volume was enhanced by decreasing a. This
finding has very intriguing implications for metamaterials, pe-
riodically arrayed nanostructures. Particularly, metamaterials
composed of nanospheres with a = 5 nm or a = 25 nm that
also maintain the volume ratio between the nanosphere and
unit cell would have nearly identical linear optical absorp-
tions, although they would likely have a significantly different
third-order nonlinearity.

To explore the mechanism that determines the d (3)
x for

each a, |J (3)
x (x, y)|, as defined in Eq. (21), was again eval-

uated. Figure 6(b)–6(f) display the results for each a; the
applied ωi values correspond to the values marked by yellow-
shaded stars in Fig. 6(a). The x and y axes were normalized
with respect to a, but the color scale has no normalization.
Figure 6(b), which shows the results for a = 5 nm, can be
observed to have a spatial distribution that is very similar to
that shown in Fig. 3(c), in which the nonlinear current density
at the electron spill-out near the edges of the nanosphere is
more enhanced than that of inner region. In the cases of the
results shown in Figs. 6(c)–6(f), however, the volumes of such
electron spill-out component were relatively small, and con-
siderably decayed nonlinear current was present throughout
the interior of the nanosphere. Thus, Fig. 6(a) demonstrates
that the third-order optical nonlinearity per volume tends to
significantly decrease with increasing values of a. We con-
sider that the strong dependence of third-order nonlinearity
on electron spill-out can be understood in the following way:
in JM, we expect there is no bulk effect for the nonlin-
earity since electrons move as free particles in the uniform

medium. Then the nonlinearity is expected to appear as a
surface effect, and could be strongly influenced by the electron
spill-out.

IV. CONCLUSION

In this study, the third-order optical nonlinearity of metallic
nanospheres was investigated by performing QHT-TFλvW–
based calculations. In particular, how electron spill-out at the
surface of a nanosphere contributes to the third-order nonlin-
earity has been clarified. As the first step, the length of the
electron spill-out was adjusted by varying the phenomenolog-
ical parameter λ for a small nanosphere with a diameter of
4.3 nm. Then, the third-order optical nonlinearity was strongly
enhanced by increasing the amount of electron spill-out. In the
second step, the size dependence of the nanosphere was inves-
tigated with respect to the third-order optical nonlinearity and
under the condition of a fixed electron spill-out length. The
diameter of the nanospheres was varied between 5 and 25 nm.
The results revealed that, intriguingly, the third-order optical
nonlinearity per volume was enhanced as a result of decreas-
ing the diameter, whereas the linear optical absorption per
volume was nearly unchanged. The electron spill-out played
a key role in size dependence, as the surface-to-volume ratio
was found to determine the third-order optical nonlinearity.
These findings provide insight that is believed to be essential
to the realization of metamaterials with large nonlinearity.
Furthermore, the results presented here are also believed to
provide useful information for researchers in the fields of
nonlinear plasmonics and quantum mechanical physics.

Finally, we would like to mention a possible extension of
the present study to take into account nonlinear effects that
arise not only from the electron spill-out but also from atom-
istic ionic structures that cause bulk nonlinearity. Although
such bulk effects are expected to play a minor role in small
nanospheres, it should be clarified at which size the bulk
effect will be sizable. We plan to perform such investigation
using our code SALMON [57] that can perform first-principles
TDDFT calculations as well as the jellium-QHT calculations
presented in this paper.
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