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Solid-state high-order harmonic generation (HHG) continues to attract a lot of interest. From the theory and
simulation standpoint, two issues are still open; The first is the so-called transition-dipole phase problem. It has
been recognized that the dipoles must be treated as complex-valued quantities and that their corresponding Berry
connections must be included to ensure phase-gauge invariance. However, while this has been successfully im-
plemented for lower-dimensional systems, fully vectorial and three-dimensional simulations remain challenging.
The second issue concerns the symmetry of the high-order harmonic response, when simulations sometimes fail
to honor the symmetry of the crystalline material. This work addresses both of these problems with the help
of a HHG-simulation approach which (a) is manifestly free of the transition-dipole phase problem, (b) does
not require calculation of dipole moments, (c) can account for the contributions from the entire Brillouin zone,
and (d) faithfully preserves the symmetry of the simulated crystalline material. We use the method to show
that high-order harmonic sources are distributed throughout the Brillouin zone with various phase shifts giving
rise to significant cancellations. As a consequence, for the simulated response to correctly capture the material
symmetry, contributions from the entire Brillouin zone must be included. Our results have important implications
for a number of HHG applications, including all-optical band and dipole reconstruction.
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I. INTRODUCTION

High-order harmonic generation (HHG) in solid-state me-
dia has been studied with keen interest ever since the first
observations a decade ago [1] followed by experiments with
many different materials and structures [2,3]. Mediated by
the light-matter interactions at high density, the phenomenon
opens a new window into the dynamics of the solid-state
medium at attosecond timescales, including all-optical re-
construction of the band structure [4–6], mapping of the
transition-dipole moments [7], characterization of higher-
order nonlinearity [8], and measurements of Berry curvatures
[9].

Numerical simulations have played an important role in
this field [2,10,11]. The broad spectrum of applied approaches
ranges from the ab initio time-domain Schrödinger equa-
tions [12], multiscale time-domain density-functional theory
[13], through many variants of the semiconductor Bloch equa-
tions (SBEs) and density-matrix methods [11,14–16], to the
studies including propagation effects [17] and coupling with
Maxwell equations [13,18–20].

One of the issues that attracted attention over the last few
years is that of the transition-dipoles. It concerns the phase-
gauge degree of freedom in the description of the electronic
Bloch states; they can be modified by arbitrary phase factors
[2,11,21] which in turn change the complex phase of the
off-diagonal dipole-matrix elements. Closely related to this
is the Berry connection which, assuming that Bloch-states
are differentiable, gives a gauge-dependent measure of how
the Bloch basis changes from one point to the next over the
Brillouin zone.

While semiconductor Bloch equations are phase-gauge
invariant [22], some early simulations broke this symmetry
with the dipole moments treated as real-valued quantities
(see discussions in Refs. [23–25]). Moreover, Berry connec-
tions [2,11] are still often neglected, which also breaks the
gauge-invariance of SBEs. The proper treatment requires the
construction of a differentiable [21] and Brillouin-zone pe-
riodic phase-gauge [26]. Imposing such a phase-gauge have
been demonstrated in one-dimensional models, but doing the
same in three-dimensional reciprocal space have not been
shown explicitly yet. At any rate, the fact that the Berry
connections and dipole-moment phases need careful attention
makes the simulation of the HHG from crystals even more
difficult—this is what we refer to as the transition-dipole
phase (TDP) problem.

Another issue complicating the modeling is that in
principle all states from the Brillouin zone contribute
to HHG. Currently only a few approaches account
for the full three-dimensional Brillouin zone (see, e.g.,
Refs. [12,13,19,27–29]), and this requires extreme computa-
tional efforts. In contrast, most of the modeling to date has
been done with lower-dimensional spaces such as straight
paths across the center of the Brillouin zone, raising the ques-
tion of whether the chosen subset really dominates the HHG
process [30]. Efficient methods which include all Bloch states
are therefore needed.

Intimately related to these two problems is the issue of
the symmetry. Clearly, at least for the low excitation inten-
sity the simulated medium response must have the symmetry
dictated by the space group of the crystal. For example, the
simulated second-order nonlinear tensor must exhibit “hard
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zeros” where the symmetry implies vanishing components.
This sometimes proved problematic (see, e.g., Refs. [24,25]
for a discussion and references therein), when earlier simula-
tions failed to produce and/or to suppress even harmonics as
required by the symmetry of the problem.

One of the goals of this work is to put forward a
HHG-simulation approach which addresses these issues. It is
designed with the recognition that the phase problem is very
much self-imposed, it is in fact not required by physics and
can be bypassed [31]. By eliminating any and all phase-gauge
dependencies, the resulting method (i) is manifestly free of the
TDP-problem because it does not require dipole moments or
the Berry connection in the first place, (ii) it can efficiently add
up the HHG contributions from the full Brillouin zone, and
(iii) it automatically produces the response with the correct
symmetry. It should be emphasized that the algorithm, while
oblivious to Berry connections and to transition dipoles, does
not neglect them. Instead, it can work with arbitrary phases
implicitly assigned to the band-structure states. In this respect,
the approach is distinctly different from other treatments of
the TDP issue, including the Wannier representation [31].

It is important that the algorithm we put forward does
not depend on the nature of the model to calculate the band
structure. All that is required is the ability to obtain the energy
eigenvalues and the corresponding eigenvectors for a vector
from the Brillouin zone, together with an assumption of the
minimal coupling to the electromagnetic field.

We utilize the SBE simulation tool to gain insight into
how the HHG is sourced across the Brillouin zone. We show
that significant destructive interferences can occur between
the HHG contributions originating from distant parts of the
Brillouin zone. Moreover, it is not always the case that the
regions with the strongest dipoles dominate the generated
radiation. These observations imply that simplified models
based on one-dimensional subsets of the reciprocal space
must be treated with extreme caution, while the full three-
dimensional (3D) approach should be preferred whenever
computationally feasible.

While ours is not the first simulation which can account
for the whole Brillouin zone, the speed and accuracy of the
method makes it much more practical to study a number of
open problems in the solid-state HHG field (e.g., see review
[32]), such as the carrier-envelope phase and propagation
effects, perturbative-nonperturbative transitions [33], the role
of distinct features in the band-structure [29], higher-energy
band gaps [28], and sample-orientation [34] and polarization
dependencies [35] in the HHG.

II. SEMICONDUCTOR BLOCH EQUATIONS

Semiconductor Bloch equations [14–16] represent one of
the most frequently utilized approaches to the high-order har-
monic generation in solid-state media [11]. For the sake of
completeness, we review the most important components of
the method in this section. We choose to follow Ref. [36]
by Wilhelm et al. and refer the reader to this well-rounded
exposition for details.

It is assumed for this work that the excitation by an optical
pulse is at mid-infrared or longer wavelength for which the
interaction with the material can be considered off-resonance.

Consequently, the Coulomb interactions play a lesser role [37]
and are neglected in what follows. Note that this may not be
justified for effectively two-dimensional materials [38], but
HHG from bulk crystals is often treated this way.

Assuming that the band-structure of the material is known
throughout the Brillouin zone, let εn(k) with n = 1, . . . , Nb

describe the Nb energy bands with corresponding eigenvec-
tors {|nk}〉. The quantum state of the system is given by the
density matrix ρmn(k; t ) with k running over the Brillouin
zone. The initial condition before the excitation pulse arrives
is approximated by the zero-temperature density matrix with
all conduction bands completely empty and valence bands
full.

A. Evolution equations for the density matrix

The SBE system constitutes a set of coupled differential
equations, which can be represented in a number of equiva-
lent ways and gauges (described in a recent tutorial by Yue
and Gaarde [11]). Here it is written in the time-dependent
basis {|nkt 〉}n as an evolution equation for the density matrix
ρnm(k; t ),

[i∂t − εnm(kt )]ρnm(k; t )

= E(t )
∑

a

[ρna(k; t )dam(kt ) − dna(kt )ρam(k; t )], (1)

where the dipole-moment matrix

dam(kt ) = 〈akt |i∂kt |mkt 〉 (2)

and the band-energy differences

εnm(kt ) = εn(kt ) − εm(kt ) (3)

are calculated for the time-dependent k vector

kt = k − A(t ), (4)

reflecting the effect of the electromagnetic vector potential
A(t ) of the excitation pulse. For the moment, dephasing terms
are omitted for the sake of simplicity—they will be included
later.

Equations (1) to (4) are in the velocity gauge. One ad-
vantage over their counterpart in the length gauge is that the
latter contains gradients which result in a coupling between
equations for different k. This version is therefore easier to
parallelize with a near-perfect load balance. Because we in-
tegrate the evolution for all relevant Bloch states, the parallel
efficiency is an important aspect to consider.

B. Observables

Once the evolution system is integrated for all k, the in-
duced current density is calculated by integrating the Brillouin
zone and adding contributions from all bands [formula (62) in
Ref. [36]] like so:

j(t ) =
∑
mn

∫
dk

(2π )3 〈nkt |∂kt h(kt )|mkt 〉ρmn(k; t ). (5)

Here, h(k) is the instantaneous Hamiltonian with eigenstates
{|nk〉} corresponding to the given k vector, and ∂kh(k) is the
Hamiltonian-matrix gradient in the reciprocal space. Note that
the current density can be separated into various components
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[36], including inter- and intraband contributions [39] for
more physical insight, but this is not pursued here.

With the current density coupled to Maxwell equations,
“all one needs to do” to simulate high-order harmonic gen-
eration in a medium exposed to an electromagnetic pulse is
to integrate the Maxwell-SBE system. However, the above
equations were derived with certain assumptions which bring
complications. One has to evaluate the dipole moment opera-
tor (2) which obviously requires |mk〉 to be differentiable with
respect to k. This is where the transition-dipole phase issue
comes in.

III. TRANSITION-DIPOLE PHASE

There is an extensive literature dealing with the so-called
transition-dipole phase (TDP) problem (see, e.g., Ref. [26]).
Not long ago, in the early simulations of HHG from solids,
the fact that the dipole moment as a function of the k vector is
a complex-valued quantity was ignored and only the absolute
values were utilized in the calculations. The state of the art
improved in recent years, and the community has a good
understanding of these issues [11]. Nowadays there is a con-
sensus that the “transition-dipole phase plays a role” in HHG
(see, e.g., Refs. [23–25]), but we feel it is useful to emphasize
that the absolute phase of any dipole matrix element is not a
measurable quantity. This is why we want to include a very
brief review here.

A. Gauge invariance

Let us start with the origin of the TDP problem. In quantum
theory, the state of a system is represented not by a vector,
as it is often inaccurately described in the physics literature,
but by a ray which is a one-dimensional subspace of the
Hilbert space (see, e.g., Refs. [40,41]). In other words, after
multiplication by an arbitrary nonzero complex number, the
vector still stands for the exactly same physical state. This
means that, as k runs over the Brillouin zone, bases {|nk〉} can
be replaced by ones which differ by arbitrary phase factors
on each of their elements, {eiφn (k)|nk〉}, where the phase φn(k)
can be anything, including nondifferentiable, noncontinuous,
or even completely random.

Any change in the chosen phase of the basis vectors by
φn(k) modifies the transition dipole (2)

dam(k) → e−iφa (k)〈ak|i∂k|mk〉e+iφm (k), (6)

which makes it evident that the SBE system in fact assumes
that the phases of the basis vectors throughout the Brillouin
zone were chosen such that the resulting dipole moments are
differentiable. This has been called differentiable gauge, and
one usually adds a requirement that the dipoles are also made
Brillouin-zone periodic.

Of course, changing the gauge also modifies the off-
diagonal elements of the density matrix. However, once the
physical observables are calculated as, e.g., in (5) the choice of
the phases gets completely “erased.” This is a manifestation of
the phase-invariance of the SBE system which has been shown
via explicit calculations for various SBE-representations [22].
The same conclusion can be obtained already from the ba-
sic principles of the quantum mechanics. Indeed, since the

phase-modified basis vectors represent the same physical
states, observable quantities are always completely indepen-
dent of how φn(k) may be set. Thus, there is no measurement
which could reveal the absolute phase of a vector or of a
matrix element, including that of the dipole moment (2). This
does not mean that the dipole moment phase can be set arbi-
trarily because one only has Nb − 1 free parameters to adjust
phases of Nb(Nb − 1)/2 off-diagonal elements of dam(k).

B. Numerical issues

Before running a HHG simulation based on the SBE, one
must obtain the dipole moments. Density-functional theory
(DFT) software are most often used to calculate the band
structure of a material and they can also provide the dipole
matrices. No matter what kind of a solver is used to di-
agonalize the model Hamiltonian, the resulting eigenstates
calculated for two nearby k vectors may or may not end up
close to each other. In particular, the phases of the bases ob-
tained at different location inside Brillouin zone may appear
“random” (although in practice they are not truly random). For
this reason, algorithms to generate a “smooth periodic phase”
have been developed [26]. It is relatively straightforward to
obtain a smooth phase along a one-dimensional subspace of
the Brillouin zone, and it can also be arranged to have a
desired periodicity. However, to the best of our knowledge the
methods were not yet explicitly demonstrated for the three-
dimensional reciprocal space.

Another consideration relevant for the numerical treatment
is the calculation of the off-diagonal dipole moments and of
the Berry connection which is the diagonal part of dam(k). The
off-diagonal part can be obtained without numerical differen-
tiation [36], but this depends on expressions which become
numerically inaccurate when close to degeneracy. Neverthe-
less, since it is possible to avoid numerical differentiation for
the off-diagonal dipoles, one may wonder if the SBE represen-
tation (1), which does not feature any gradients, needs to care
about the dipole phase at all; is it perhaps possible to execute
the simulation with whatever phases were given to the dipoles
by the eigensolver? The answer would be affirmative if not for
two serious issues: (i) Extremely poor accuracy around sharp
“phase jumps” (which are guaranteed to occur) and, more
importantly, (ii) the diagonal part, i.e., the Berry connection,
which is a gauge-dependent quantity.

The inclusion of the Berry connection is crucial for main-
taining the phase invariance of the system [22]. One reason it
was possible to ignore it in many simulations is that leaving
out Berry connection may still produce a reasonably look-
ing high harmonic spectrum. Nevertheless, such results are
incorrect because they depend on the nonphysical (as in unob-
servable) phase choice for the Hamiltonian bases. Numerical
evaluation of Berry connections involves “comparison” of
Hamiltonian bases at nearby k vectors. This calculation is
essentially similar to numerical differentiation and it may
require an extremely fine grid in the k vector space.

To summarize this section, once we have committed to
simulate the SBE-system (1) or its gauge-related counterparts
(see Ref. [36]) in the precise form as written, we must address
the problem of the smooth, Brillouin-zone periodic phases
assigned to the states of the material band structure. Moreover,
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we need to evaluate the transition dipole matrix elements and
the Berry connection which brings a set of further numerical
challenges. This begs the question if all of this is really nec-
essary, because the requirement of the differentiable TDP is
“self-inflicted” by the choice of assumptions underlying (1).
Quantum theory says that, for any observable quantity, all
phase choices are equivalent, so one could design the SBE
solver to be “phase-choice oblivious.” This is demonstrated
next.

IV. SEMICONDUCTOR BLOCH EQUATION
SOLVER ALGORITHM

To lay out the idea of the algorithm, it would be use-
ful to appreciate the roles played by the different terms in
the SBE system (1). Detailed derivations, as shown, e.g., in
Refs. [11,36], make it evident that the part proportional to
the electric field originates from the time-dependent basis.
Even a constant solution appears to depend on time when a
time-dependent basis is used, and it is this that the term ac-
complishes upon integration. Namely, it smoothly transforms
the density matrix from the Hamiltonian basis at time t1 to
a different basis at time t2. So if it is sufficient to know the
solution only at these discrete points in time, we can transform
the density matrix with a unitary matrix in a single step, and
thus skip all the work needed to solve the system of ordinary
differential equations and avoid accumulation of numerical
errors at the same time.

To demonstrate that we get the correct solution, consider
the right-hand side of (1) between times ti and ti+1 and con-
struct the following unitary matrix:

Uab(t ) = 〈akt |bki〉, (7)

with

kt = k − A(t ) and ki = k − A(ti ). (8)

Next, calculate

ρ(t ) = U (t )ρ(ti )[U (t )]† (9)

for ti < t < ti+1, and differentiate it with respect to t to obtain,

iρ̇(t ) = iU̇ (t )ρ(ti )[U (t )]† + iU (t )ρ(ti )[U̇ (t )]†. (10)

Inserting I = UU † = U †U between the constant ρ(ti ) and the
dotted (time-differentiated) operators and subsequently using
(9) we get

iρ̇(t ) = iU̇ (t )[U (t )]†ρ(t ) + iρ(t )U (t )[U̇ (t )]†. (11)

Using U̇U † = −UU̇ † one obtains the right-hand side in the
form of a commutator,

iρ̇(t ) = iU̇ (t )[U (t )]†ρ(t ) − iρ(t )U̇ (t )[U (t )]†, (12)

which is to be compared with that in (1), so we want to expand
U̇U †. The time derivative of the transformation matrix is

U̇ab(t ) = ∂t 〈akt |bki〉 = E(t ) · 〈∂kt akt |bki〉, (13)

and U̇U † reveals the dipole moment and the electric field,

iU̇ab(U †)bc = iE(t ) · 〈∂kt akt |bki〉〈bki|ckt 〉
= −E(t ) · 〈akt |i∂kt ckt 〉 = −E(t ) · dac(kt ). (14)

Using this in (12) gives

iρ̇nm = E(t )
∑

a

[ρnadam(kt ) − dna(kt )ρam], (15)

which is precisely the E-field term in (1). Thus, the basis
transformation (7) would give an exact solution if not for the
diagonal part of the SBE system. Because the exact solution
can be also obtained for the diagonal part, Eq. (1) is a natural
candidate for the operator-splitting approach.

Let us assume that the evolution of the system is sampled
on a discrete grid of times, ti, and let ki stand for kt calculated
for t = ti. Furthermore, let {|mki〉}Nb

m=1 be the Hamiltonian
eigenbasis at time ti and use it with whatever phases an
eigensystem solver assigned to the eigenvectors. The basis
transformation between ti → ti+1 is given by the unitary ma-
trix

U (i)
ab = 〈aki+1|bki〉, (16)

and this is used as in (9) to evolve the density matrix from ti
to ti+1.

The other split operator is diagonal; it represents the adia-
batic evolution in the time-dependent basis. Joining the two
split-operator actions together, the density-matrix evolution
over the time-step interval �t = ti+1 − ti can be approximated
by

ρ(ti+1) = P(i)ρ(ti )(P
(i) )†, (17)

where the evolution operator is

P(i)
ab = e−iεa (ki )�t/2U (i)

ab e−iεa (ki )�t/2. (18)

This operator-splitting formula is locally second-order accu-
rate [42], but that alone tells us little about how long �t
can be. At any rate, the permissible integration step depends
on the electric-field intensity and it must be established in
a case-by-case convergence study. For the simulation results
presented in this work the time step was �t = 0.07 fs.

To complete one integration step, the phenomenological
damping can be included between the split steps by appropri-
ate modification of the off-diagonal parts of the density matrix
[11]. We used a dephasing time of five femtoseconds for our
examples in Sec. VI.

Since we have not assumed anything about the phase
relations between the bases at ti and ti+1, the Hamiltonian
eigenstates can be used as calculated by the eigensystem
solver, and this algorithm is manifestly free of the transition-
dipole phase problem. As a sanity check, we have inserted in
the numerical evolution scheme a procedure which generates
and assigns truly random phases to all Hamiltonian eigenvec-
tors after each and every call to the eigensystem solver—with
no significant change in observables.

The fact that we can work with any eigenvector phases
including random ones is a crucial advantage over the ap-
proaches which rely on the numerical integration of SBE
using ODE-solvers. An additional important benefit is that this
algorithm does not require calculation of the dipole-moment
matrix elements. Given that accurate dipole calculations are
challenging, this feature alone eliminates the most significant
source of numerical noise and makes it possible to calculate
HHG spectra with the dynamic range well beyond what is
typical for the traditional approach.
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V. HIGH-ORDER HARMONIC GENERATION
IN ZINC-BLENDE MATERIALS

To illustrate the capabilities of the SBE-solver algorithm
described in the previous sections, we present simulations
of high-order harmonic generation in zinc-blende structures,
choosing GaAs and ZnSe for our examples.

A. Material model

As for the choice of the material model, most of the
HHG simulations utilize DFT calculations to obtain the ma-
terial band-structure and related quantities such as dipole
moments. While the method described above is in principle
applicable with any material description capable of producing
Hamiltonian eigenstates for any k throughout the Brillouin
zone, for this work we prefer to use tight-binding models.
One could argue that such a description is less accurate in
terms of the band structure, and it is a valid point. On the
other hand, SBE-based simulations using DFT-based material
model over a three-dimensional Brillouin zone has yet to be
demonstrated. Moreover, the results from DFT calculations
suffer from numerical issues, for example, it may be difficult
to tell apart Bloch states which are energetically close from
truly degenerate states. Because we concentrate on qualita-
tive properties of the HHG, for this work we choose the
tight-binding description which is free of such numerical is-
sues. Given that the theory-experiment comparisons are still
qualitative rather than quantitative in the field of solid-state
high-order harmonic generation, we believe that these models
will be useful in their own right for a number of computer-
aided studies.

We have used the empirical tight-binding models to obtain
the quantities required by the solver, i.e., the k-dependent
Hamiltonian h(k) built on the frequently used sp3s∗ model
[43,44]. For simplicity, we neglect the spin-orbit coupling
and include ten bands. The explicit form of the Hamiltonian
matrix and its parametrization can be found in Ref. [45].
Exact diagonalization procedure is executed “on the fly” as
needed for any given k, producing the set of eigenvectors
|mk〉 and band energies ε(k). For the calculation of the current
density (5), the vector matrix ∂kh(k) is also calculated exactly
from the model. Thus, there is no interpolation or any finite-
difference approximations needed.

Needless to say, repeated diagonalization on the fly would
be impractical should one want to use first-principle calcula-
tions, such as DFT, to obtain the material properties. However,
localized Wannier functions [46] can be used to transform
ab initio calculation into an effective tight-binding
Hamiltonian [31,47], and this then can be used in our
algorithm in the same way as we do in our illustrations.

It should also be emphasized that the on-demand diagonal-
ization is not a requirement in our method. For the readers who
may want to use the algorithm with other than tight-binding
material descriptions, and especially with methods relying on
ab initio calculations, we outline in the Appendix an imple-
mentation using precalculated material data.

B. Pulsed excitation

The examples given next assume excitation by a linearly
polarized pulse with the central wavelength of λ = 3.6 µm,
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FIG. 1. High-order harmonic generation in crystals excited by a
linearly polarized pulse oscillating along the x=y (crystal) direction.

envelope duration of 100 fs (cos2 shape), and a field intensity
of 8.7×108 V/m. We explore different crystal orientations to
demonstrate that the nonlinear response exhibits the expected
orientation and polarization properties. As propagation effects
[17] are not studied in this work, the observable of interest
is the vector of the current density calculated for the given
excitation pulse.

C. High-order harmonic generation spectra
from the whole Brillouin zone

For the first example we consider a crystal sample oriented
such that the linearly polarized pulse oscillates along direction
(1,1,0), i.e., perpendicular to the crystal z axis. In this geom-
etry, the material symmetry dictates that the second-harmonic
response only appears in the z direction. This is because the
second-order tensor χ

(2)
abc of the zinc-blende structure vanishes

unless all a, b, c are different. In contrast, the third harmonic
excited by the Kerr effect is expected to show up along the
x = y direction.

Figure 1 depicts the simulated HHG spectra for GaAs and
ZnSe samples and shows that the polarization properties are
indeed as one expects, with even and odd harmonics separated
between the parallel and perpendicular polarizations.

We have intentionally used a relatively long duration
pulse so that the well-separated harmonics showcase that the
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FIG. 2. Convergence of the numerical HHG spectra for two dif-
ferent numbers of sampling points in the 3D Brillouin zone.

calculated spectra are free of the noise floor so typical of
many HHG simulations—here the noisy background occurs
about ten orders of magnitude below the lower edge of these
plots. This indicates the excellent numerical fidelity of the
algorithm.

The question of convergence is obviously important. Mak-
ing sure that the time step is short enough and does not
affect the convergence, we compare the spectra simulated with
different number of sampling points in the Brillouin zone.
Figure 2 shows an example where convergence is achieved
over a dynamic range of fifteen orders of magnitude.

To show a case when both even and odd harmonics appear
simultaneously in the parallel and perpendicular polarizations,
we include Fig. 3. Although we do not actually propagate
the excitation pulse, we assume that the sample orientation
is 110 and then rotate the sample about the beam axis as
it is often done in experiments. In this figure the sample is
rotated by 45 degrees, and we look at the current density
polarized parallel (p) and perpendicular (s) to the polarization
direction of the excitation pulse. In this particular case, the
even harmonics, while clean and well defined, are weaker
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FIG. 3. High-order harmonic generation in 110-oriented GaAs
crystal. Linearly polarized excitation pulse oscillates at 45 degrees
with respect to the crystal axis. In this geometry, both even and odd
harmonics should appear in the p as well as in the s polarization.

Jp

Js

(a)

Jp

Js

(b)

FIG. 4. Orientation-dependent high-order harmonic generation
in a 110-oriented GaAs crystal. (left) Simulated second harmonic
filtered from the current density in the parallel (p) and perpendicular
(s) polarizations shown as functions of the sample rotation angle.
(right) The second-harmonic radiation pattern for the zinc-blende
nonlinear tensor.

than the odd harmonics and this is especially the case for the
p-polarized component.

The relative strength between the odd and even harmonics
depends on the angle of the sample rotation. This is illustrated
in Fig. 4 for the second-harmonic frequency band. The radia-
tion pattern (left) is essentially the same as expected from the
classical χ (2) tensor of the zinc-blende structure (right), and
this corroborates that the simulated response has the correct
symmetry. It should be interesting to study the deviations from
the classical (equilibrium) predictions based on a fixed χ (2) as
a function of the excitation pulse intensity, but we will not
pursue this here.

For a more difficult-to-pass test of the symmetry properties
of the simulated high-order harmonics, Fig. 5 shows the re-
sults for the excitation with a pulse polarized along one of the
crystal axes (x). In this case the response components z and y
are supposed to vanish and indeed they do. The z component
shows up in these plots as a noisy background (gray area be-
low the black curve) about fifteen orders of magnitude below
the level of the x-polarized signal. One could say that this
is nothing but a simple sanity check because our SBE-based
simulation automatically inherits the correct symmetry prop-
erties from the material model. Nevertheless, it is important
to note that the “numerical zero” demonstrated for the current
components which are forbidden by symmetry does not occur
point by point (in the reciprocal space). Instead, all regions
throughout the Brillouin zone contribute nonzero signals, and
the symmetry appears only after significant (or complete in
the case here) cancellations. Because of their important impli-
cations, we discuss these issues next.

D. Mapping the Brillouin zone for the high-order
harmonic generation source

One often-utilized simplification in the solid-state HHG
simulations is that, instead of the entire Brillouin zone only
a one-dimensional line is used to represent the reciprocal
space. We now present a few examples which demonstrate
that a great deal of caution is in order when trying to interpret
HHG-simulation results based on a low-dimensional subset of
the reciprocal space because

(a) the source of the high-order harmonics is distributed
throughout the entirety of the Brillouin zone, and
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FIG. 5. High-order harmonic generation in crystals excited by a
linearly polarized pulse oscillating along the (crystal) x direction. In
this geometry, the current density in the perpendicular direction (y, z)
must vanish due to the material symmetry.

(b) different portions of the zone give rise to radiation with
various phase shift and significant cancellation occur between
them.
These illustrations also elucidate how it happens that the
second-harmonic signals are absent in Fig. 5.

Let us consider a lineout of the Brillouin zone, for example
a line of k vectors connecting two W points at the opposite
sides of the Brillouin zone, or the X-
-X path going through
the center of the zone, as depicted in Fig. 6. Black arrows
indicate the polarization direction of the electric field, and
of the parallel (Jx) and perpendicular (Jz) components of the
induced current.

We calculate ρ(k; t ) for each point of such a lineout and
evaluate the corresponding current density as the trace with
∂kh(k) as required by (5). The result is a contribution to the
current which originates in the electronic states starting their
evolution at a point of the lineout. We aim to compare the
“strength of the response” between different regions of the
reciprocal space.

Instead of the HHG spectrum, we visualize the induced
current density because in this way one can appreciate dif-
ferent phase shifts and see how various contributions can
interfere. To make figures easier to read we assume a shorter
pulse, 50 fs duration, and we filter out the second-harmonic

FIG. 6. Lineouts through the first Brillouin zone are shown in
dashed red lines. The X
X path is often used to simulate HHG from
materials such as GaAs. We wish to visualize the contribution of
different points along the lineout and see how they change when
moving away from the center of the zone to, say, the WW lineout.
The arrows indicate the direction of the excitation (E ) and induced
current components (Jx, Jz) corresponding to the components shown
in Fig. 5.

contribution from the current density. Then we plot a two-
dimensional map of the current versus time and the initial k
location along the selected lineout.

To elucidate the mechanism behind the vanishing second
harmonics in Fig. 5. we first consider the z polarization output
shown in Fig. 7 for the lineouts X
X (top) and WW (bottom).
What the top plot shows is merely numerical noise, so we can
see that the points along X
X do not generate the s-polarized
second-harmonic contributions at all. However, moving away
from the axis of the Brillouin zone to the line WW (bottom
panel), one can see that every point gives a strong individual
contribution. It is because the middle and outer portions of
the lineout are out of phase that the total second harmonic
vanishes in the end.

The mechanism that extinguishes the second harmonic for
the polarization along the electric-field direction [cf. absent
second-harmonic peak in the red (top) lines in Fig. 5] is
similar and is illustrated in Fig. 8. This time we see strong
contributions along both lineouts, but different regions in the
reciprocal space exhibit out-of-phase contributions that inter-
fere destructively.

These results are merely examples which of course can-
not provide a complete “map” of how different parts of the
Brillouin zone contribute to the observed HHG. Nevertheless,
they make it quite evident that all parts of the Brillouin zone
contribute to the HHG output on a qualitatively equal footing,
and only when they are added together does the correct picture
emerge. It is obvious that for a sample rotated with respect
to that in the above example, the resulting strength of the
harmonics of different polarization will sensitively reflect the
interference between different parts of the Brillouin zone.

Our results also suggest that it is not given that the observed
response is dominated by the initial k states with the strongest
transition dipoles. Indeed, the k dependence of the signal
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FIG. 7. The vector component of the time-dependent current
density perpendicular to the driving electric field. Shown here is the
filtered second harmonics in arbitrary units as a function of the initial
k vector localized along the indicated lineout (dashed red line in
Fig. 6) of the Brillouin zone. The lineout axis is in relative units.

amplitudes in Figs. 7 and 8 does not follow the magnitude
of the dipole moments which tend to be strongest in the
vicinity of the 
 point. To emphasize this even more, Fig. 9
shows an example for a crystal sample with 110 orientation
rotated about the beam by 90 (top panel) and 45 (bottom
panel) degrees. While in this case the response from different
k location appears to be in phase, the bottom panel shows that
the strongest response depends on the polarization; when in
the upper panel it is correlated with the strongest dipoles in
the center, and the lower panel exhibits an asymmetry which
is “out of sync” with the magnitude of the local transition
dipoles. Moreover, it becomes evident that this particular Bril-
louin zone lineout should not be considered in isolation from
its counterparts related by the crystal symmetry.

We therefore contend that the integration over the entirety
of the Brillouin zone should be the default approach preferred
over the numerically less intensive investigations restricted to
low-dimensional subsets in the reciprocal space.

FIG. 8. Time-dependent current density as in Fig. 7, but for the
current-density vector component parallel to the electric field.

VI. CONCLUSIONS

We have presented an approach to the high-order har-
monic generation from crystalline solid-state media which is
completely free of any considerations related to the complex
phases of the elements of the transition-dipole moment. In
fact, the method does not require calculations of the transition
dipole matrices which is a distinct advantage by itself. The
simulation algorithm is informed by the fact that the absolute
phases of these quantities are not physical observables, and
the method is “phase blind” by design in the sense that it
can work with arbitrary phases assigned to the Hamiltonian
eigenstates. In particular, there is no requirement of differ-
entiability or even continuity between the Hamiltonian bases
used at “mutually close” points of the Brillouin zone. As
such, our approach offers the best possible solution to the
so-called transition-dipole phase problem by eliminating the
issue entirely.

The method is computationally efficient and admits a
perfectly-load-balanced parallelization. The speed is suf-
ficient for future integration with the pulse-propagation
simulators such as our gUPPE [48], making the spatially
resolved studies of propagation effects in solid-state HHG
feasible with the account of the whole Brillouin zone.
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FIG. 9. Time-dependent current density (in arbitrary units) for
the WW lineout (red dashed line in Fig. 6) and 110-oriented crystal
sample. The top panel shows the p-polarized response for the sample
rotated by 90 degrees, while the lower panel is for the s-polarized
response and sample rotated by 45 degrees. It is obvious that the
induced current amplitude is not always correlated with the local
magnitude of the transition dipoles, which are strongest in the middle
of the lineout.

It is actually relatively easy to integrate all induced current-
density contributions over the whole three-dimensional Bril-
louin zone. This is shown crucial for the preservation
of the material symmetry. Once the initial model utilized
to calculate the band structure of the crystalline medium
properly reflects the space-group of the material, the simu-
lated HHG signals and in particular their sample-orientation
and pulse-polarization dependencies are guaranteed to
be correct.

We have shown that, in general, the entire Brillouin zone
contributes to the high-order harmonic signal. This is perhaps
not so surprising, but our simulation examples also demon-
strate that there are considerable cancellations, or destructive
interference between the contributions originating from the
quantum states in different sectors of the Brillouin zone. It
is therefore unrealistic to expect that, for a general sample
orientation and excitation-pulse polarization, one could use a
low-dimensional subset of the Brillouin zone to capture the
high-order harmonic generation very accurately. We have also

seen that the strength of the transition-dipoles is not a reliable
predictor of which part of the Brillouin zone may dominate
the HHG signal.

These observation may have an important impact on some
applications of solid-state HHG, such as Berry curvature mea-
surement [9]. For example, all-optical band-reconstruction
[4,5] and dipole-reconstruction [7] methods tend to utilize a
one-dimensional picture of the reciprocal space by selecting a
presumably dominant contribution to the process [6]. In con-
trast, here we have seen how the HHG-source can “light up”
the Brillouin zone in rather nonintuitive patterns. We there-
fore believe that the full-Brillouin-zone simulations similar to
those presented in our work can be a useful tool to identify
the dominant channels in the high-order harmonic generation
from crystalline materials.

Sampling the entire Brillouin zone with high resolution
and being able to do it many times for various parameter
scans, opens a door for a number of exciting investigations. Of
particular interest is looking at the role of distinct features in
the material band-structure, for example band-gaps between
adjacent conduction bands [28], or spectral caustics associated
with critical points in the energy bands [29]. These and other
features can be studied in detail by mapping the HHG source
around them (together with their symmetry-related partners)
and comparing the signal to that from the complement in
the Brillouin zone. This way one can determine the relative
strength of the feature and probe for possible interference
effects.

It is now feasible to simulate complex driving waveforms
and study the polarization properties [34,49] of the harmonic
signal [35]. Driving HHG with complex-polarization and mul-
ticolor pulses has been very fruitful in gases, and it will surely
be even richer in the solid state. We believe that simulations
and specifically those that can guarantee correct symmetry
properties will be vital.

The high numerical fidelity of the proposed method in-
vites a detailed investigation into the still-unresolved issue of
dephasing. It is a well-known fact among practitioners that nu-
merically simulated HHG spectra require unphysically short
dephasing times, otherwise they would not compare well with
experiments. While propagation effects [13,18] and spatial fil-
tering [50] were proposed as a partial explanation, alternative
dephasing mechanisms [51] were also considered, and one
could argue that many-body effects should be included in the
models. We suspect that the quality of the numerical data can
also play a role, and it will be important to rule out possible
artifacts.

Last but not least, we are approaching the stage when it
will be possible to determine the absolute scale of the simu-
lated HHG, and thus push the experiment-theory comparison
much more in the quantitative direction [32]. The beauty
of a HHG simulation with the full Brillouin zone is that it
encompasses the response in the low-harmonic region where
it can be quantitatively compared with measurements. For
example, nonlinear coefficients and multiphoton absorption
cross sections can be extracted from the HHG models and
serve as benchmarks for accuracy. In turn, such quantitatively
“anchored” simulations will motivate better, calibrated exper-
iments.
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APPENDIX: PRE-CALCULATING
MATERIAL-MODEL DATA

This Appendix is intended for readers who may want to
use DFT-generated material data, but for whatever reason do
not wish to postprocess the ab initio calculations into an ef-
fective tight-binding model (e.g., via the maximally localized
Wannier functions approach [31,46]). Is it possible to precal-
culate all that is necessary to avoid repeated, on-the-fly exact
diagonalization? The purpose of this Appendix is to sketch in
broad strokes how this could be done.

Let us assume that the material band-structure was solved
for each point on a suitably chosen grid which samples the
Brillouin zone. This means that eigenenergies and the eigen-
vectors are available at the grid points, but not for locations
in between. For simplicity of the following discussion, we
consider a linearly polarized electric field and a k grid in
which one dimension aligns with the field direction.

For the initial density matrix ρ(k, t = 0) for a fixed k,
at time t1 the algorithm has just calculated the state of the
system for the k vector k1 = k − A(t1), so the Hamiltonian
basis is now known at this point even if it does not belong
to the presampled grid. Let kg be the nearest grid point in the
direction of the driving field. The basis at kg was precalculated
and stored before the simulation so it can be retrieved, and we
can readily construct the unitary transformation matrix U 1→g

as in Eq. (7).
Now let us say that, during the next integration step, the

vector potential takes us from k1 to k2 = k − A(t2), and this
is where we need to calculate the Hamiltonian eigenbasis.
More precisely, what we require is the unitary transformation
matrix U 1→2 which takes the basis at k1 and produces the
basis at k2. However, we wish to avoid running an exact-
diagonalization routine anew, because it is expensive. Instead

we interpolate between the two unitary matrices, U 1→1 (which
is an identity) and U 1→g to obtain U 1→2. For this purpose, let
us consider the “fractional distance” f = (k2 − k1)/(kg − k1)
representing how far k2 is from k1 when moving toward kg.
The interpolated transformation matrix corresponding to this
fractional distance can be constructed as

U 1→2 = MatExp[ f MatLog[U 1→g]], (A1)

where MatExp and MatLog are matrix exponential and ma-
trix logarithm functions, respectively. MatLog is the natural
logarithm so it is the inverse function to MatExp. Both func-
tions can be defined through their series expansions which
only require matrix multiplication. Formula (A1) is called
geodesic interpolation of unitary matrices [52]. Viewed as an
f -parametrized family of matrices, this formula constructs the
shortest path (in the sense of the Frobenius norm) between an
identity matrix U 1→1 and the unitary matrix U 1→g. We just
need to select the value of f which brings us to the “location”
k2. Important for our application is that the interpolation ma-
trix is guaranteed to be unitary.

Formula (A1) may not look friendly, but it is in fact
easy to use. There is a number of good algorithms to ob-
tain logarithms of unitary matrices in general [53], and in
this particular case even the series-expansion method with
only a few terms will suffice. Moreover, because the norm
of MatLog[U 1→g] will be small (here we assume a fine-
resolution grid, of course), the evaluation of the matrix
exponential is also easy, for example with the scaling-and-
squaring method [54].

We have tested the unitary-matrix interpolation (A1) with
the tight-binding models for the zinc-blende structure, both
with and without spin-orbit coupling included. We have found
that the procedure can be implemented so that it is fast and
accurate even on coarsely sampled grids (e.g., with mere
16 points in each dimension). This approach is therefore a
good candidate for using precalculated material data, such
as from DFT, with the algorithm put forward in this work.
Precalculation with subsequent interpolation on the fly may be
suitable also for tight-binding models with larger dimensions;
say, beyond twenty.
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