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High-resolution attosecond imaging of an atomic electron wave function in momentum space
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An electron wave function is characterized by the phase and amplitude distributions over position or mo-
mentum space. Recent attosecond technologies allow us to obtain the phase information of photoelectrons
using interference between several optical transition pathways. We demonstrate that by employing a two-path
photoionization interference process, the complex wave function of the photoelectron is fully mapped in
two-dimensional momentum space. We ionize neon gas by an extreme ultraviolet (XUV) attosecond pulse
train consisting of both odd and even harmonics in the presence of an infrared (IR) laser field. By controlling
the generation process of the attosecond pulse train, we isolate two ionization pathways for interfering with
the photoelectrons: one is the two-photon ionization process due to the odd harmonic excitation with one IR
photon absorption, and the other is the one-photon ionization by an even harmonic. We record the photoelectron
momentum distributions via velocity map imaging as a function of the XUV and IR delay. Using three
different experimental conditions, we show that the detailed structure of the amplitude and phase distributions
of photoelectrons can be resolved in the two-dimensional momentum space within the bandwidth determined by
the attosecond XUV pulse. We separate the measured photoelectron wave function into those produced by each

ionization pathway. Our method will be applicable to more complex molecules.

DOI: 10.1103/PhysRevA.106.063513

I. INTRODUCTION

Quantum interference is based on the wave nature of par-
ticles [1-3]. The wave nature of electrons is characterized by
both phase and amplitude, described by a complex wave func-
tion. Recent attosecond experiments have provided methods
to measure the phase and dynamics of electrons in atoms,
molecules, and solids [4-20]. In the attosecond electron rec-
ollision approach, the phase and amplitude of a bound state
electron wave function or a molecular orbital can be retrieved
from the interference between the bound state and recolliding
electron wave packets [8—12]. In the multiphoton ionization
approach, a probe consisting of an extreme ultraviolet (XUV)
train of attosecond pulses in the presence of an infrared (IR)
laser field produces two or more photoelectron wave packets
interfering in the ionization continuum. From the interference
pattern, the phase information of the photoelectron is obtained
[13-20].

In this study, we introduce a two-path interference scheme
using an attosecond pulse train to obtain a phase and am-
plitude distribution of photoelectrons in a momentum space.
We generate a train of attosecond pulses by focusing an
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intense IR pulse and its second harmonic into a gas jet. The
spectrum of the attosecond pulse train consists of a series of
both odd (2n + 1, n is integer) and even (2n) harmonics of
the fundamental IR photon energy [19-21]. By controlling
the generation process of high harmonics, we isolate two ion-
ization pathways that cause photoelectron interference in the
ionization continuum. One pathway is the two-photon ioniza-
tion by the (2n — 1) harmonic excitation plus one IR photon
absorption, and the other is the direct ionization by the (2n)
harmonic. We ionize neon gas by the XUV and IR pulses, and
record the velocity map imaging (VMI) of photoelectrons as
a function of the delay between the XUV and the IR pulse. In
VMI, the photoelectron momentum distribution is projected
onto a two-dimensional plane (k;, k,). At every momentum,
we fit the modulation of the photoelectron signal intensity
as a function of the XUV-IR delay with cosine functions to
obtain the phases and amplitudes. From the fitted phase and
amplitude distributions, we generate a complex “mapping”
wave function, W(k,, k,), which is the product of the wave
functions generated by the two pathways. Using three dif-
ferent experimental conditions, we show that the mapping
wave function is sensitive to small changes of the phase and
amplitude. Furthermore, we disentangle the mapping function
into the wave function produced by each ionization pathway
using partial wave analysis.

Our approach has advantages over previous interference
experiments using an attosecond pulse train. The method
referred to as the reconstruction of attosecond beating by
interference of two-photon transitions (RABBIT) uses two-
path interference between the odd harmonics with one IR
photon absorption or emission, (2n 4 1) —IR and 2n — 1) +
IR [13,14]. In this case, since the photoelectron wave packet
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FIG. 1. (a) A schematic energy diagram of the two-path inter-
ference photoionization process. Harmonic 14 (H14) produces v,
which is a coherent sum of s and d waves. Likewise, harmonic 13
(H13) with one IR photon absorption produces the wave packet v,
which is a coherent sum of p and f waves. (b) The measured VMI
images at two delays separated by 7p/2 ~ 1.32 fs.

produced by one pathway has the same parity as that produced
by the other pathway, decomposition of the interfering elec-
tron wave packet into the individual wave packet produced by
either pathway is difficult. Recently, using three-path interfer-
ence of photoelectrons produced by the process (2n + 1)-IR,
2n, and (2n — 1) 4 IR, the photoelectron wave packet was
completely characterized to obtain the phases and amplitudes
of all photoelectron angular momentum components [19]. By
using two-dimensional attosecond delay measurements, the
atomic phase of each partial wave was disentangled from the
spectral phase [20]. However, since the global fitting used
for the determination of a number of parameters requires
sufficient photoelectron signal intensity, these analyses were
performed only at a certain averaged radial momentum k,. In
our present study, by limiting the interfering pathways into
two, we can directly map the phase difference between the
two wave packets produced by the (2n — 1) 4+ IR and (2n)
ionization pathways. In addition, since the partial wave anal-
ysis becomes simpler than the case of three-path interference,
the phases and amplitudes of the photoelectron angular mo-
mentum components are obtained in a range of &, to visualize
the complex wave function in the ionization continuum.

In general, the energy resolution of a photoelectron spec-
trum is mainly determined by the bandwidth of the light
source. For the attosecond pulse train, increasing the num-
ber of single attosecond pulses in the train decreases the
bandwidth [7]. In our method, coherent overlap between the
photoelectron wave packets with different parities can resolve
the detailed structure of the wave packets with a momentum
resolution less than 0.02 atomic unit (a.u.), or a kinetic energy
resolution of ~0.026 eV, which is much smaller than the band-
width of the attosecond pulse trains used in this experiment.

Figure 1(a) shows a schematic diagram of the ionization
pathways originating from the 2p state for a target gas of
neon. In the presence of the IR field, harmonic 13 (H13),
which is nearly resonant with the 3d Rydberg states, produces
the f (angular momentum quantum number ¢ = 3) and p
waves (£ = 1) in the ionization continuum. By adjusting the

photon energy of the XUV harmonics and the IR intensity,
the energy levels with magnetic quantum number m, = 0 are
preferentially selected [22]. One-photon ionization by har-
monic 14 (H14) produces ¥, which consists of the s (£ = 0)
and the d waves (£ = 2), while the two-photon process of
HI13+IR produces ¥, consisting of f and p waves. Changing
the delay between the XUV and IR pulses changes the inter-
ference between v, and v, and thus the photoelectron wave
packet. We choose three experimental conditions with slightly
different IR intensities and the photon energies of harmonics.
Theoretical study suggests that the momentum distribution of
Y produced from the field-modified 3d state is sensitive to
the small changes in these laser parameters [22]. We show
how the phase and amplitude of the f and p waves in v, vary
with the photon energy of high harmonics and the IR intensity.

II. EXPERIMENTAL SETUP

Figure 2 illustrates the experimental setup. A dual-stage,
multipass amplifier system (Komodo-Dragon, KMLabs) gen-
erates 1 kHz, 35 fs, ~790 nm infrared (w) laser pulses. The
beam is split vertically into two half beams that we call A and
B. Beam A is delayed by a 1 mm thick D-shaped fused silica
plate FS1. A BBO crystal generates the second harmonic (2w)
of both beams; a calcite plate “Ca” and a dual-wavelength
waveplate WP2 make the two colors coincident in time in
gas jet, “Jetl,” and with horizontal polarization. Rotation
of the calcite plate, Ca, controls the precise w — 2w delay.
Both beams are focused into a krypton gas emitted from a
pulsed gas jet, Jetl, in a vacuum chamber. High harmonics
are generated predominantly by beam A. Due to the presence
of the second harmonic, both odd and even harmonic orders
of 790 nm are produced. In order to make a sharp cutoff in
the high-harmonic spectra, a relatively intense 2w field was
used. Wavelength selectivity is achieved by reflection from
a set of mirrors, shown in the inset of Fig. 2. The IR field
in beam A is removed by Brewster-angle reflection from two
silicon mirrors, while the IR in beam B is reflected from the
aluminum coating on half of the silicon face. The XUV is
removed from beam B by a 1 mm thickness D-shaped fused
silica plate FS2, which also brings the IR field in beam B
into synchrony with the XUV in beam A (previously delayed
by FS1). The IR XUV delay is controlled by rotating FS2.
The second harmonic in beam A is also removed by nearly
Brewster-angle reflection from the two silicon mirrors, and
the second harmonic in beam B is temporally separated from
the IR field by FS2. Thus, only the IR field in beam B is tem-
porally overlapped with the XUV in beam A at the ionization
region in VMI. Both beams A and B are focused by a 270
mm focal-length toroidal mirror (ARW optical corporation)
into the ionization region. A neon gas is introduced by a
pulsed gas jet, “Jet2,” into the VMI. The XUV from beam
A ionizes the neon gas in the presence of the IR field from
beam B. The resulting photoelectrons are accelerated upwards
in the VMI and recorded by a microchannel plate detector.
The transmitted XUV pulse is dispersed by a flat-field grating
and the spectrum is imaged onto a microchannel plate. For
the fitting of the measured data (see next section), we utilize a
MATLAB (MathWorks, Inc.) least-squares fitting function.
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FIG. 2. Schematic diagram of the experimental arrangement. A detailed explanation is in the main text. WP1 = half-wave plate for 790 nm
to make the polarization vertical. FS1 = D-shaped fused silica plate to delay the top half, called beam A. BBO = beta barium borate crystal
that generates the second harmonic of the 790 nm pulse. Ca = birefringent calcite plate to compensate and control the w — 2w delay. WP2
rotates the vertical polarization of the w to horizontal while leaving the 2w horizontal. FM = focusing mirror (shown as a lens for clarity)
focuses the beams into krypton gas jet “Jet]l” in the vacuum chamber. A set of mirrors (inset) removes the IR from beam A and focuses both
beams into a velocity map imaging spectrometer (VMI) where neon gas is photoionized by the XUV. The neon gas is introduced by “Jet2” in
the VMI. The XUV spectrum is recorded by a flat-field grating and MCP detector.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. High-harmonic spectra for three different conditions

Figure 3 plots the high-harmonic spectra of the XUV pulse
as a function of the w — 2w delay. The measurements and
analysis were performed under three experimental conditions,
Figs. 3(a)-3(c). The photon energy of high harmonics was
tuned by changing the compressor grating position slightly
[22]. The intensity of the spectrum is modulated with a half
optical period of the 2w laser field. The 2w intensity is rela-
tively high compared to the previously performed experiments
[19,20], approximately 1% of the IR intensity. We have two
independently controllable attosecond delays, the XUV IR
delay and the w — 2w delay [20]. We fix the w — 2w delay and
record the VMI images as a function of the XUV IR delay, t
Figure 3(d) plots the high-harmonic spectra used for the XUV
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FIG. 3. (a—) The high-harmonic spectra for three different ex-
perimental conditions as a function of the w — 2w delay. The white
line indicates the w — 2w delay selected for the XUV IR delay de-
pendence measurements, and the spectra are plotted in (d). The blue,
green (dashed), red (dotted) curves in (d) correspond to the spectra
for (a—c). The zero delay is chosen arbitrarily. The black dotted line
in (d) indicates the field-free ionization potential (IP) for neon.

IR delay dependence measurements. In all three cases, the
intensity of H15 is much smaller than that of H13, ensuring
that the two-path interference between H13 and H14 is the
dominant process.

B. Mapping wave functions

Figure 1(b) shows the VMI images recorded at two differ-
ent XUV IR delays, separated by half of the fundamental laser
period, Tp/2 = ~1.32 fs, corresponding to the high-harmonic
spectrum shown as the blue curve in Fig. 3(d). The angular
distribution inverts when the delay changes by 7y/2. The po-
larization axis of the XUV and IR pulses is approximately
vertical in the figure and parallel to the y axis. The propagation
direction of the laser pulses is parallel to the x axis.

In the two-path interference model, the signal intensity of
photoelectrons with a certain momentum k is modulated as a
function of the delay t between the XUV and IR pulses, and
is given by

Wa + Y[, (1)

where w is the angular frequency of the fundamental IR pulse,
and ¥, and v, are the wave functions produced by H14 and
by H13+1IR, respectively, as shown in Fig. 1(a). Writing ¥, =
[¥ale'? and ¥, = |Yple’, S(7) is given by

S(t, k) = [Wal” + 1Yl + 2%l 1] cos [0 + (9a — ¢5)].
2)

The VMI image is the projection of the three-
dimensional photoelectron momentum distribution onto the
two-dimensional (2D) plane, I(t; k,, ky). In Appendix A, we
discuss the subtle difference between the three-dimensional
(3D) distribution I(t, k-, €) and the 2D projection I(t; k,, ky).
At every pixel representing (ky, k), we fit the modulation of
the signal intensity /(7; k,, k) by a sum of cosine functions,

S(z, k) =

I(t; ke, ky) = A+ 2B cos (wt + C) + 2DcosQwt + E),
3)
where A—E are the fitting parameters and all are a function of

k. and ky. The last term, modulated with a period of 2w, is
added to account for the minor contribution of multiphoton
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FIG. 4. Measured wave function images. The amplitude and phase distribution |W(k,, k)|, ¢(k, k,) and the real and imaginary part of
W(ky, ky) (columns) for three different experimental conditions [rows (a—c)]. The high-harmonic spectra corresponding to these results are

shown in Fig. 3(d). The estimated IR intensity in the VMI is (a) 4.2 x 102 W/cm

respectively. The value 0.1 a.u. (atomic units of momentum) corresponds

processes, as described in Appendix B. Comparison of the
terms in Eq. (2) with those of Eq. (3) gives

= [l + [¥l?
B = |yl
C = (¢a — ¥p). 4)

We define time zero as when the intensity of the lobe
located at 90 ° is maximized. We introduce a “mapping” com-
plex wave function,

W(ky, ky) = Blky, ky)e? "),

¢ (ky, ky) = Clky, ky) +a, (5)
where a is the arbitrary global phase.
Figure 4 shows the results of the fitting. |W(k,, k,)l,

¢(ky, k), and the real and imaginary parts of W are plotted
for three experimental conditions. From panels (a) to (c), the
corresponding high-harmonic spectra are shown as the blue,
green, and red curves in Fig. 3(d). For the phase distribution
¢(ky, ky), we select a = 7 /2 to clarify the phase difference

2, (b) 4.6 x 10" W/cm?, and (c) 4.5 x 102 W/cm?,
to a kinetic energy of ~0.13 eV and ~ 0.19 A~1.

between the upper (k, > 0) and lower (k, < 0) parts. For the
real and imaginary parts of the wave function W, we further
adjust the arbitrary phase a, so that the magnitude of the six-
fold structure in the real part of Fig. 3(a) maximizes. The other
fitted distributions, A, D, and E, are present in Appendix B.
In all three cases, a sixfold structure is observed due to
the f wave produced by the two-photon ionization [19,20].
In Fig. 4(a), the phase of the neighboring lobes separated
by ~60 ° is shifted by ~ 7. In addition, a ring structure is
observed at k, ~ 0.18 a.u. In the real part of W, the ampli-
tude of the sixfold structure has positive and negative values
every 60 °. In Fig. 4(b), the sixfold structure is split into two
parts in the radial direction and, in total, three features are
observed. The outer part of the sixfold structure (k, ~ 0.1
a.u.) has approximately the same phase distribution as the
sixfold structure shown in row (a), while the phase of the
inner part (k. < 0.07 a.u.) is shifted by ~ 7 /2 from the outer
part. In Re(W), it is seen that the amplitude oscillates as k,
increases. In Fig. 4(c), the sixfold structure is more enhanced
around k, ~ 0.07 a.u. compared with that in row (b). In con-
trast to the case in row (a), the phase distribution in row (c)
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TABLE 1. Fitted phase values. The fitted phases of partial waves
at the radial momentum &, = 0.07 and 0.11 a.u. for Figs. 6(a) and
6(b), or 0.13 a.u. for Fig. 6(c).

K, =0.07a.u. k, = 0.11 (or0.13a.u.)
P d S A(f-p p d o Af-p)
(a) 427 0.55 0.71 -3.56 4,07 028 043 -3.64
(b) 555 1.63 149 —4.06 411 0.58 0.61 -3.50
(c) 644 2.63 2.16 —4.28 556 1.53 1.86 -3.70

has approximately a twofold symmetry. The amplitude and
phase distributions are resolved with a momentum resolution
<0.02 a.u.

C. Decomposition into individual wave functions

We now discuss thedetailed structure of the mapping wave
function. To obtain Fig. 4, the fitting was performed at every
momentum (k,, ky). We convert from Cartesian to spherical
coordinates (k,, 6) in the two-dimensional plane, and fit the
signal with radius k, using spherical harmonics. We expand
the wave function W(k,, #) into the product of two individual

Yap

Phase (rad)
s

(a)

0.2 Phase (grad)

0.2

wave functions, ¥, (k., 6) and ¥, (k,, 0), as follows.
W(k,, 0) = [Ya(k., OIIVp(ky, 9)lei((ﬂa(krﬂ)—(pb(kh@))el‘a
= |¢a(kh 9)|€i%(k"0)|Wb|€_i%(k"0)ei“

= Yalks, ) (ky, ), (6)

where v, is the complex conjugate of v,. ¥, corresponds to
the photoelectron wave function produced by H14, and v,
corresponds to that produced by H13 + IR. Each individual
wave function is decomposed as

Valky, 0)=A (k) Yoo (0) + Ag(k,)Yag(0)e'®)
Yk, 0)=A (k) Y30(0)e %) + A, (k,)Y10(0)e P *), (7)

where A; is the amplitude, ¢; is the phase for each partial wave,
and Yy ,,,, are the spherical harmonics which depend only on 6
because of the polar symmetry with respect to the polarization
axis. The phase of the s wave is set to zero.

At each radial momentum k,, we fit the angular distribution
to obtain the phases and amplitudes of the partial waves by
using the following equation,

V(0 k) = Py (Yoo + PaYaoe™)(Yipe™ + PsYipe™),  (8)

¥p Va
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FIG. 5. Decomposed wave function images. Experimentally observed wave function images W (left column), fitted images ¥y, and
disentangled wave functions v and 1, for three experimental conditions (a—c). The HSV color space representation is used to display the
complex wave functions. The amplitude is given as a color intensity; the phase is given as a color hue. The amplitude is normalized in the
range of 0-1 in each figure, and is plotted using a logarithmic scale in the range of 107> — 10°. The color bar represents the phase distribution
at the maximum amplitude. The two-dimensional color map which represents both phase and amplitude distributions is given in Appendix D.
The arbitrary phase a is set to 0. As expected, the fitted images v,y closely resemble the experimentally derived images W.
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where P; are the real fitting parameters, each a function of k,.
Py is the product of Ay and Ay. P> and Ps are the amplitudes
relative to the s wave and f wave, P, = A; /A, and Ps =
A, /Ay In this fitting, one can determine the phase relationship
between the p, d, and f waves relative to the s wave, as well as
the relative amplitudes, P, and Ps. On the other hand, decom-
position of P; into A and A, is more difficult. Mathematically,
the ratio between Ay and A; may be determined by using the
measured angular distribution, while it increases the error of
the fitting because of low signal-to-noise ratio in the low-k,
region. Instead, in this study, we assume that the ratio between
Ay and A, is constant over the range of all k.. In Appendix C,
we compare the present analysis with a global fitting method
employed in the previous studies [19,20]. We confirm that the
phases and the relative amplitudes obtained by Eq. (8) are
consistent with the parameters obtained by the global fitting
method. Compared to the global fitting method, the present fit-
ting is much faster, allowing us to obtain the full image of the
wave function. Using the parameters determined by the fitting
with Eq. (8), we reconstruct ¥, and v;, and the product ¥, ;.

Figure 5 shows the results of the fitting. We use the HSV
(hue, saturation, value) color space to represent the complex
wave function, in which the amplitude is represented as the
color intensity and the phase is given as the color hue. We
set the saturation value to 0.5. We normalize the amplitude
in the range of 0-1 for each figure, and plot the logarithmic
value in the range of 10733 — 10° in order to enhance the
small amplitudes. As a reference, we also show the same wave
functions plotted using the linear scale for the amplitude in
Appendix E.

In the left column of Fig. 5, we plot the experimental W
to be fitted. This is the same function as shown in Fig. 4, but
with the phases and amplitudes plotted in one figure. Using
the HSV representation, it is clearly seen that the phases and
amplitudes depend on the angle and the radial momentum,
and vary with the experimental conditions. The second
column shows the reconstructed ¥, , which is mostly
consistent with W for all three conditions. This indicates that
Egs. (7) and (8) are appropriate for disentangling W into the
individual components.

The two columns in the right side of Fig. 5 show the
disentangled wave functions v, and ;. The value of phases
@i, P = A;Ay, and the ratio of the amplitudes between the
partial waves, A,/(A, +Ay) and A;/(A;s + Ay), are plotted
in Fig. 6. Table I shows the phase values at k£, = 0.07 and
0.11 a.u. for Figs. 6(a) and 6(b), and 0.13 a.u. for Fig. 6(c). For
all three cases, ¥, is responsible for the sixfold structure as is
expected. In Fig. 6(a), ¢, and ¢ show a small dependence on
k, in the range k, < 0.13 a.u., while in Fig. 6(b), both phases
oscillate as k, decreases. The values of ¢, and ¢y in Fig. 6(b)
change by ~1.4 and ~0.9 rad between k, = ~0.11 and ~0.07
a.u. This variation of the phases causes the phase jump which
appears in W of Fig. 5(b) at k, = ~0.07 a.u. In Fig. 6(c), the
three phases increase further from those shown in Fig. 6(b).
These phase relationships between the partial waves explain
the difference between the threefold and the twofold symme-
try in the wave function. At k, ~ 0.13 a.u. in Fig. 6(c), a local
minimum is seen in ¢,. At this k., since the contribution of
the p wave is small, the f wave will predominantly interfere
with the d and s waves, resulting in the tenfold structure in the
interference, as is seen in Y, ;.
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FIG. 6. Fitted phases and amplitudes. (Left) The phase of the f
(black), p (blue), d (green), and s waves (red) as a function of &, for
three experimental conditions. (Right) The relative amplitudes for the
p wave (blue) and the d wave (green). The definition of the relative
amplitude is written in the main text. The red dotted line in the right
panel is the normalized curve of P, = A,A;.

So far, we have demonstrated that the phase and amplitude
distributions of W can be controlled by changing the XUV
photon energy and the IR intensity. Two types of features are
observed in Figs. 4 and 5. One is predominantly seen in case
(a) in which the neighboring lobes separated by 60 ° have ~ 7
phase difference with approximately threefold symmetry. The
other is predominantly seen in case (c) in which the three
lobes located at the top and bottom have nearly the same
phase values with the twofold symmetry. What is the origin
of the variation of the phase distributions? In the presence of
the intense IR laser field, the 3d Rydberg states of neon are
split into two states due to the nearly one IR photon coupling
between the 3d and 3p Rydberg states [22]. The energy level
connected to the field-free 3d state is responsible for the
observed sixfold structure. As the IR intensity increases, the
energy of the 3d resonant state increases. In our observation,
the phase distribution with the twofold symmetry is observed
when the H13 photon energy is larger. Thus, the energy levels
which produce the twofold symmetry will become important
at higher photon energy.

IV. CONCLUSION

Using a two-path interference scheme in the attosecond
photoionization of neon atoms, we have recorded the detailed
structure of the photoelectron momentum distributions. We
have introduced a mapping wave function ¥ which is directly
obtained from the photoelectron interferograms by a sim-
ple fitting. In contrast to the three-path interference method
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[19,20], the phase difference between v, and v, is directly
mapped onto W. With this approach, we demonstrate that two
types of phase distributions can be switched between threefold
and twofold symmetry by changing the experimental condi-
tions. The differences of the phases and amplitudes can be
resolved with a momentum resolution of 0.02 a.u. —0.04 A~
in . Without assuming cylindrical symmetry, our approach
will allow us to measure dynamical changes in narrow mo-
mentum ranges of the wave function, for a wide application
including molecules.

Furthermore, we disentangle the mapping function W with
the partial wave components of the wave functions produced
by individual ionization pathways. The calculation of the
photoelectron phase at low kinetic energy is challenging,
and our results encourage the development of time-dependent
Schrodinger equation calculations or analytical models. In
order to separate the wave function W into the individual wave
functions v, and ,, we have used a linear combination of
spherical harmonics. We include s and d waves for ¥, and
f and d waves for . In case of other atoms or conditions
in which more angular momentum states could be involved,
we add the term(s) in Eq. (8) for fitting. In the case of a
molecule, instead of using the spherical harmonics, molecular
orbitals can be used as a basis set. Combined with a molecular
alignment technique [23], it could be possible to image the
photoelectron wave function in the ionization continuum in
the molecular frame by the method presented here. By com-
paring theoretical studies [24], the detailed structure of the
electron potential or dynamics of electron-electron correlation
in a molecule can be studied.
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APPENDIX A: COMPARISON BETWEEN CUT AND
PROJECTION IMAGES

The VMI image is a projection of the 3D photoelectron
angular distribution onto a 2D plane. Here we have implicitly
assumed that a projection of the 3D distribution onto a plane,
I(t;ky, ky), is the same as the radial distribution, /(7, k., 6).
The usual solution to this problem is to employ an Abel inver-
sion of the VMI data to produce the underlying 3D distribution
[25]. Unfortunately in the present case, where the important
information is located near the origin, the Abel inversion
produces a noisy image. In addition, most Abel inversion tech-
niques assume an up-down symmetry, and use only even order
Legendre polynomials. The data here have both even and
odd parity, and would require a more sophisticated inversion
technique than is usually employed in inverting photoelectron
distributions [26]. In Fig. 7, we compare images generated by
both approaches, and show that they are reasonably close.

(a) Cut (b) Projection

100
& 80
3 60
2 40
1 20

FIG. 7. (a) A cut through the k, = O plane of I(z, k,,0). (b) A
projection of I(z, k., ) onto a plane, equivalent to the VMI image.
The images are calculated at a particular delay t in which the upper
and lower lobes have different intensities.

Amplitude (arb. units)
Amplitude (arb. units)

APPENDIX B: FITTED DISTRIBUTIONS FOR
DC AND 20 COMPONENTS

Figure 8 shows A, D, and E defined in Eq. (3) for three
experimental conditions, corresponding to the results shown
in Figs. 3(a)-3(c) in the main text. We refer to A to as the dc
component. The intensity range for D, 2w component, is set
to the same as that of B, w component, in the main text for
comparison. The D component exhibits a sixfold structure in
which the radius of k, is slightly smaller than that of the w
component (see the main text).

The 2w component D represents the amplitude of the inten-
sity modulation with twice the frequency of the fundamental,
IR laser pulse. In the multiphoton ionization process with high
harmonics and IR pulses, the harmonic orders separated by 2
are responsible for the 2w component. In our case, since the
spectral intensity of harmonic 15 (H15) is much smaller than
H13, and it is less likely that the transition dipole moment of
H15 with one IR photon emission (H15- IR) is much larger
than that of H13 with one IR photon absorption (H13 4 IR),
the contribution of the interference between H15-IR and H13
+ IR must be negligible. Instead, the interference between
HI11 + 2 IR and H13 is likely to contribute to the 2w compo-
nent, as shown in Fig. 8(d). The photon energy of H11, 17.2
eV, is close to the 3s state with a field-free energy of 16.7 eV.
The energy of the 3p state, 18.7 eV, is also very close to the
photon energy of H11 plus one IR photon, H114IR, 18.8 eV.
From the 3p state, one IR photon absorption populates the
3d state [22]. Since all processes from the ground 2p state to
the 3d state include near-resonant transitions, the pathway of
HI11 + 2 IR must have a significant transition dipole moment.
The other pathway is the direct excitation to the 3d state by
H13. Since H11 and H13 is separated by 2 IR photons, the
interference occurring at the 3d level has a 2w frequency
component. An additional one IR photon absorption from
the 3d level produces the f and p waves in the ionization
continuum.

APPENDIX C: COMPARISON WITH THE GLOBAL
FITTING AND THE PRESENT FITTING METHOD

In previous experiments [19,20], the amplitude and phase
of each photoelectron angular momentum component were
determined by a global fitting using a particle-swarm-
optimization (PSO) method [27]. We compare the results of
the present fitting with the global fitting using an example
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FIG. 8. (a—) Dc component ( = A), the amplitude ( = D) and the phase distribution (E) of the 2w component for three experimental

conditions. (d) Energy diagram for neon and the multiphoton interference scheme.

in which the photoelectron momentum distribution is more
structured than that shown in Fig. 4. Figure 9 shows the
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FIG. 9. The measured photoelectron distribution of (a)

[W(ky, ky)l, (b) @(ky, ky), (c) the HSV representation of W(k,, k), and
(d) the real part of W(k,, k,). We add the arbitrary phase a = /2
for (b). The arbitrary phase for (d) is the same as that in Fig. 4.

measured distributions (a) |W(ky, ky)|, (b) ¢(k,, ky), and (c)
the HSV representation of W(k,, k,) and (d) the real part of
W(ky, ky) used for the comparison. Figure 10(a) shows the
measured angular distribution around the peak of the sixfold
structure as a function the XUV-IR delay. We define the XU V-
IR delay zero as when the intensity at 90 °, which is the lobe
located on the top in Fig. 9, maximizes.

As seen in the main text, the partial wave components are
a function of k,. The global fitting procedure averages over a
range of k,. For the purposes of this comparison, the global
fitting considers only &, in the range 0.06-0.135 a.u.

For the two-path interference model in which the variation
with k, is neglected, the angular distribution as a function of
the XUV IR delay t is given by

10, ©) = [Va + vpe |
2

= |AYoo+AaYa0e" + (A Y30e'? +A Y10 )e 7|,
(C)

where Y, ,,, are the spherical harmonics, A; is the amplitude,
and ¢; is the phase for each partial wave. We compare (6, 7)
with that obtained by experiments and determine all parame-
ters.

Figures 10(b) and 10(c) plot 1(6, t) reconstructed by using
the parameters obtained by the global fitting and the present
fitting. The fitted parameters are summarized in Table II. The
ratio of the amplitudes, A,/A; and A;/A,, and the phases
obtained by the global fitting model are consistent with those
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TABLE II. The amplitudes and phase of the partial wave components. Note that the amplitudes from the global fitting are normalized to 1,
while the amplitudes from the present analysis are not normalized because not all amplitude ratios are known.

14 d f Ap/Ay Aa/As ¢ — &y a — b5
Global fitting Amplitude 0.42 0.36 0.53 0.63 0.57 1.26 — —
Phase (rad) 0 3.44 0.17 0.21 — — -3.23 0.17
Present analysis Amplitude 1 0.46 1.23 1 0.46 1.23 — —
Phase (rad) 0 3.59 0.38 0.42 — — -3.17 0.38

obtained by the present method. The phase difference between
¢r — ¢p and ¢y — ¢ is also shown in the table.

APPENDIX D: COLOR MAP FOR THE PHASE AND
AMPLITUDE DISTRIBUTIONS

Figure 11 shows the two-dimensional color map for plot-
ting the amplitude and phase distributions in Figs. 5 and 12.

APPENDIX E: WAVE FUNCTION IMAGES USING A
LINEAR COLOR SCALE

Figure 12 plots the same wave functions as shown in Fig. 5
while using the linear color scale for the amplitude. The

Amplitude
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FIG. 10. (a) The experimentally measured photoelectron angular
distribution as a function of the XUV IR delay for the sixfold struc-
ture of photoelectrons. (b) The result of the global fitting. (c) The
result of the present analysis for the same range of k,. The red line
shows the zero delay.

amplitude is normalized in the range from O to 1 in each
figure.

APPENDIX F: THE SPECTRAL PHASE OF HARMONICS

The fitted photoionization phase ¢; consists of a sum of the
spectral phases of high harmonics, ¢y and the atomic phase
¢¢, and thus ¢; = ¢/ + ¢y [20]. Using the atomic and spectral
phases, the mapping wave function is given by

W = (ATood W00 4 A Yood #0) (A yige @)
+ ApYipe” Oty
= (AYoo + AgYaoe ™) (A Yspe % + A Yigei97) i @i=tre)
= AA¢[Yoo + (Aa/As)Yae' ]

% [Y3Oefi[¢}’*(¢14*¢13)] + (Ap/Af)Y1oe_i[¢;_(¢”_¢”)]],
(F1)

where ¢4 and ¢3 are the spectral phases of H14 and H13,
and the atomic phase of the s wave ¢ is set to zero. As shown
in the main text, we determine the photoionization phases and
the relative amplitudes by using the following equation:

W(0: k) = Pi(Yoo + PaYaoe™)(Ya0e™ + PsYi0e™).  (F2)
Hence,

P; = ¢y,

Py = =5 + (P14 — P13),

Ps = —¢, + (¢14 — ¢13). (F3)

Therefore, by subtracting ¢4 — ¢35 from the fitted phase
¢;, the atomic phase is determined. In contrast to previous ex-

(a) Logarithmic scale (b) Linear scale

Vs s
= /2 = /2
g g
T 0 % 0
3 a
&-1/2 &-1/2

3

-
0 025 05 075 1
Amplitude (arb.units)

10°

10° 102 10
Amplitude (arb.units)

FIG. 11. Two-dimensional color map for the phase and ampli-
tude distributions used in Figs. 5 and 12. The amplitude is plotted in
the range of 10735 — 10° for the logarithmic scale (a), and 0-1 for
the linear scale (b).
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FIG. 12. Same as Fig. 5, except that the color intensity scale is linear instead of logarithmic. The color scale for the phase is the same in

both figures.

larger than before. Exact determination of the spectral phase

periments [20], the determination of the spectral phase by the
will be the subject of future work.
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