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Gupta-Bleuler quantization of optical fibers in weak gravitational fields
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The theory of gauge-fixed Maxwell equations in linear isotropic dielectrics is developed using a generalization
of the standard Rξ gauge-fixing term. In static space times, the theory can be quantized using the Gupta-Bleuler
method, which is worked out explicitly for optical fibers either in flat space time or at a constant gravitational
potential. This yields a consistent first-principles description of gravitational fiber-optic interferometry at the
single-photon level within the framework of quantum field theory in curved space times.
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I. INTRODUCTION

Current experiments concerning gravitational effects on
quantum probes utilize massive test particles, exhibiting grav-
itational phase shifts of the kind first demonstrated by Colella,
Overhauser, and Werner [1]. Experiments of this kind con-
tinue to be refined and are now capable of measuring both
gravitational accelerations and gravity gradients, see Ref. [2]
for an extensive review. However, as these experiments probe
weak gravitational fields with slowly moving massive parti-
cles, they are fully explicable in terms of Newtonian gravity
[3]. Of course, they can be explained within the framework of
general relativity via a weak-field approximation reproducing
the predictions of Newtonian gravity, see, e.g., Ref. [4], but do
not require notions unique to Einstein’s theory of gravitation.

By contrast, the influence of gravity on light is beyond a
Newtonian description, as the standard Maxwell equations do
not couple to Newton’s gravitational field. Instead, the gener-
ally accepted coupling of this kind invokes a generalization of
Maxwell’s equations to curved space times, thereby requiring
the framework of general relativity. While it is possible to
express general relativistic corrections to Maxwell’s equa-
tions within a Newtonian language by assigning an effective
refractive index to the gravitational potential [5], or by ascrib-
ing an effective gravitational mass to the photon [3], it should
be noted that such descriptions are merely reformulations of
general relativistic predictions and do not constitute indepen-
dent theories.

Maxwell’s equations in curved space times are well tested
at the classical level, e.g., via the Pound-Rebka experiment
[6], Shapiro’s time delay experiment [7,8], as well as exper-
iments conducted using the Gravity Probe A satellite [9,10]
and eccentric Galileo satellites [11]. Future tests of these
equations at the quantum level, in particular using single
photons or entangled photon pairs, would constitute the first
experimental demonstration of gravitational phase shifts of
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quantum systems beyond a Newtonian description of gravity
[12–14].

Despite the numerous experimental schemes, which have
already been proposed to test gravitational effects on light at
the single-photon level [3,12,14–17], a comprehensive theo-
retical model of quantum optics in curved space time geared
towards first-principles descriptions of such experiments has
been lacking, thus making it necessary to insert the gravita-
tional phase shift ad hoc.

A first step in the direction of developing such a theory was
done by Anastopoulos and Hu [18], emphasizing that a consis-
tent first-principles description of quantum optics experiments
in gravitational fields necessitates the use of quantum field
theory in curved space times: a framework, which was, so far,
mainly applied to the regime of strong gravity (Hawking ra-
diation), strong accelerations (Unruh effect), and cosmology.
However, as their model is primarily aimed towards space
experiments, it is restricted to light propagation in vacuum,
while the aforementioned experimental proposals require the
use of optical fibers as a means to implement optical path
lengths of the order of hundred kilometers, which are nec-
essary to obtain a measurable gravitational phase shift for
laboratory-scale height differences.

The aim of this paper is to fill this gap by developing a
quantum theory of fiber optics in curved space times, capable
of providing a comprehensive theoretical model for the pro-
posed experiments, and assessing future designs. This theory
constitutes a generalization of standard quantum optics in
Minkowski space to curved space times, hence allowing the
space-time metric g to differ from the Minkowski metric η.

From a theoretical perspective, the confinement of photons
to a small region by means of optical fibers has the additional
advantage of requiring knowledge of the gravitational field in
the immediate vicinity of the light rays only. This makes per-
turbative treatments more transparent, avoiding issues arising
in calculations based on infinitely extended plane waves, for
which local expansions of the gravitational field are difficult to
justify. While this issue is commonly circumvented by using
geometric optics, no such approximations are necessary in the
setups considered here.
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This text is structured as follows. Section II develops the
general theory of gauge-fixed Maxwell equations in linear
isotropic dielectrics for a class of generalized Rξ gauge-
fixing terms. The analysis of matching conditions at material
interfaces shows that only one particular choice of such a
gauge-fixing term is compatible with a continuous electro-
magnetic potential at interfaces. The quantization of these
equations in a static space time is carried out using the Gupta-
Bleuler formalism [19,20]. After this review, Sec. III applies
these methods to step-index optical fibers (where matching
conditions at material interfaces are relevant) both in flat space
time, and in a homogeneous gravitational field. The results
are used to provide a consistent first-principles description
of fiber-optic interferometers measuring gravitational phase
shifts on single photons and entangled photon pairs, as pro-
posed in the aforementioned references.

Throughout, this document uses geometric units where
the gravitational constant G, the speed of light in vacuum c,
the vacuum permeability μ0, and the vacuum permittivity ε0

are set to unity. The reduced Planck constant h̄ (with
√

h̄ ≈
1.6163 × 10−35 m) is kept explicit. Lowercase Latin indices a,
b, . . . denote abstract indices while Greek letter indices μ, ν,
. . . refer to frame indices. The signature of the space-time met-
ric tensor gab is taken to be mostly positive, i.e., (−,+,+,+).
For two vectors va and wa, we write g(v,w) = gabv

awb,
while for covectors φa and ψb we write g(φ,ψ ) = gabφaψb,
where gab is the symmetric two-contravariant metric defined
by gacgcb = δa

b. Finally, a centered dot indicates contraction
of adjacent indices, e.g., ∇ · v = ∇av

a, d denotes the exterior
derivative and ∧ the exterior product of differential forms.

II. GENERAL THEORY

Already at the classical level, there are different ways of
formulating Maxwell’s equations, depending on whether the
potential A, or the field strength F (or excitation G) is taken
as the fundamental variable. Similarly, there are multiple ap-
proaches to the quantization of electrodynamics, with multiple
options available when working with the potential A, differing
in their treatment of the gauge redundancy.

The quantization of the free Maxwell equations in flat
space time in terms of F and G is described, e.g., in the text-
book by Białynicki-Birula [21], and a quantization of optical
fiber modes and multilayered waveguides in flat space time
was developed using this framework by Khrennikov et al.
[22,23]. However, Dappiaggi, and Lang have shown that the
quantization based on F and G can be generalized to curved
space times only under restrictive assumptions on the topol-
ogy of the space-time manifold [24]. Although such issues
are of little concern for the applications of this work, such
negative results suggest using different methods applicable to
a wider range of problems.

Accordingly, there is a wide class of quantization schemes
based on the potential A instead. Such approaches have the
further advantage of being particularly well suited for de-
scriptions of the Aharonov-Bohm effect, see, e.g., Ref. [25],
as well as for comparison with models of massive photons,
e.g., based on the Proca equation. Similar to the classical
theory, the quantization of Maxwell’s equations in terms of the

potential requires tools to deal with the gauge redundancy of
these equations, for which there are multiple options available.

The reduced-phase-space method commonly used in text-
books on quantum optics [26–28] proceeds by quantizing the
theory in Coulomb gauge, thereby removing all gauge degrees
of freedom before quantization. Although emphasizing the
two physical polarization degrees of photons from the outset,
this method has the disadvantages of making the gauge invari-
ance of the theory nonmanifest, being based on a preferred
reference frame, and rendering the fundamental commutation
relations nontrivial due to the presence of constraints, see, e.g.,
the textbook by Weinberg [29].

An alternative method was developed by Gupta and Bleuler
[19,20] (see also the textbook treatments by Itzykson and Zu-
ber [30] or Greiner [31]), which is based on an unconstrained
quantization of gauge-fixed equations, where superfluous de-
grees of freedom are removed only after the quantization.
This method has been extended rigorously to curved space
times: Furlani considered static space times with compact
Cauchy surfaces [32], and Finster and Strohmaier later al-
lowed for general globally hyperbolic space times [33]. While
this method requires the use of Krein spaces in intermediate
calculations, i.e., function spaces with indefinite pseudomet-
rics, such artifacts turn out to be essentially unavoidable if one
wishes to maintain covariant equations [34].

While there are further quantization methods available
(see, e.g., Folacci [35], Sanders–Dappiaggi-Hack [36], or
Pfennig [37]), this text uses the Gupta-Bleuler quantization
method, for the reason of its computational simplicity and
manifest covariance, as well as for the aforementioned ease
of comparison with the Proca model of massive photons.

A. Maxwell’s equations

Maxwell’s equations in Lorentz-Heaviside units are

dF = 0, ∇ · G + j = 0, (1)

where F is the electromagnetic field strength (Faraday two-
form), G is the electromagnetic excitation (Maxwell bivector),
and j is the current four-vector. Here, d denotes the exterior
derivative, and ∇ is the space-time covariant derivative.

In vacuum, F and G are related via the space-time
metric gab according to Gab = gacgbd F cd . Similarly, in a lin-
ear isotropic dielectric with four-velocity ua (normalized to
gabuaub = −1), permeability μ and permittivity ε, the excita-
tion G is related to the field strength F via

Gab = 1

μ
g̃acg̃bd F cd , (2)

where g̃ab is Gordon’s optical metric [38]

g̃ab = gab + (1 − n2)uaub, (3)

with n = √
με denoting the refractive index. The covariant

optical metric g̃ab, defined as the inverse to g̃ab, is given by

g̃ab = gab + (1 − n−2)uaub, (4)

where ua = gabub. Note that the covariant optical metric g̃ab is
not obtained from the covariant optical metric g̃ab by lower-
ing of indices via the space-time metric gab. While Gordon’s
optical metric has applications in analog gravity, see, e.g.,
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the review by Barceló, Liberati, and Visser [39], these works
typically consider the equations of electromagnetism at the
level of the field strength F ab and excitation Gab, but not at
the level of the potential Aa as done here.

B. Gauge fixed equations

This section formulates gauge-fixed Maxwell equations in
terms of the potential Aa for a family of gauge-fixing terms
generalizing the standard Rξ gauge fixing frequently used in
quantum electrodynamics. The field equations are formulated
both using space-time derivatives ∇a, i.e., covariant deriva-
tives associated to the space-time metric gab, and optical
derivatives ∇̃a induced by Gordon’s optical metric g̃ab. Fi-
nally, matching conditions for material interfaces are derived.

1. Gauge-fixed Lagrangian

Maxwell’s equations in a linear isotropic dielectric are
variational with the Lagrangian four-form

L0 =
{
− 1

4μ
g̃abg̃cd F acF bd + jaAa

}
ε, (5)

where ε denotes the space-time volume form. Gauge-fixed
equations can be derived from a modified Lagrangian L, ob-
tained from L0 by adding an Rξ gauge-fixing term

L =
{
− 1

4μ
g̃abg̃cd F acF bd − 1

2ξ
χ2

α + jaAa

}
ε, (6)

with the gauge function

χα = n1−α ∇a(nα−1g̃abAb), (7)

for some real parameters α and ξ (which will be chosen later
to simplify the equations). For constant n and covariantly
constant ua in flat space time, the gauge conditions χα = 0
reduce to the one used by Jauch and Watson in Refs. [40–42].
The gauge condition used by Bei and Liu for the quantization
of the electromagnetic field in media of time-dependent re-
fractive indices in flat space time [43] corresponds to α = 1.
The choice α = 3 is frequently used in conjunction with the
radiation gauge A0 = 0 to obtain a variant of the Coulomb
gauge [44–46], in which case Gauss’s law arises as a con-
straint on the space of states [47,48]. Here, no restriction to a
particular value of α is made.

In regions where g̃ab is sufficiently differentiable to admit
a covariant derivative1 (some later calculations require g̃ab to
be sufficiently differentiable to admit a well-defined curvature
tensor), one has

χα = n−α g̃ab∇̃a(nαAb). (8)

Thus, for constant n, or for general n but α = 0, the condition
χα = 0 corresponds to a Lorenz gauge formulated using the
optical metric (Gordon-Lorenz gauge). In vacuum, all χα = 0
conditions reduce to the standard Lorenz gauge ∇aAa = 0.

1This assumption fails at interfaces of materials with different
refractive indices, where g̃ab is discontinuous.

2. Optical formulation

One reason for the specific choice of the above gauge-
fixing term is that the field equations become particularly
simple when expressed using purely optical geometric ob-
jects, i.e., using the optical metric g̃ab and the optical covariant
derivative ∇̃a. Using F ab = ∇̃aAb − ∇̃bAa, ε = nε̃ (ε̃ denotes
the volume form associated to the optical metric g̃ab), and
Eq. (8), the variation of the Lagrangian form L with respect to
Aa is

δL = EaδAa + d (�aδAa). (9)

Here, the (vector-valued) Eulerian form Ea and the momen-
tum form �a are given by

Ea
bcde = {∇̃k (nGka) + n ja

+ ξ−1g̃aknα∇̃k (n1−αχα )
}
ε̃bcde, (10)

�a
bcd = (nGae − nξ−1χα g̃ae)ε̃ebcd . (11)

When expressed solely using optical derivatives, the field
equations are thus

∇̃a(nGab) + ξ−1g̃abnα∇̃a(n1−αχα ) + n jb = 0, (12)

where

χα = n−α g̃ab∇̃a(nαAb). (13)

In the case of a homogeneous material, where both ε and μ

and hence also n = √
εμ are constant, the equations of motion

reduce to

�̃Aa − R̃b
aAb − (1 − μ/ξ )∇̃aχ + μg̃ab jb = 0, (14)

where χ = χ0 ≡ g̃ab∇̃aAb, �̃ = g̃ab∇̃a∇̃b, and R̃ab is the opti-
cal Ricci tensor. In particular, in the Feynman-’t Hooft gauge
ξ = μ (which is used in all following calculations), the field
equations reduce to

�̃Aa − R̃b
aAb + μg̃ab jb = 0. (15)

3. Space-time formulation

The optical formulation is well suited for the description
of the electromagnetic field in homogeneous isotropic linear
media, see for example the derivation of the Frank-Tamm
formula for Cherenkov radiation by Jauch and Watson [41].
However, this formulation is inadequate at interfaces of such
media, as discontinuities of the optical metric render the opti-
cal derivative ∇̃a and the optical curvature R̃b

a ill defined there.
It thus behooves to analyze interface conditions without ap-
pealing to these objects. In terms of the space-time derivative
∇a, the variation of the Lagrangian with respect to Aa reads

δL = EaδAa + d (�aδAa), (16)

where

Ea
bcde = {∇kGka + ja

+ ξ−1g̃aknα−1∇k (n1−αχα )
}
εbcde, (17)

�a
bcd = (Gae − ξ−1χα g̃ae)εebcd . (18)
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Expressed purely using space-time derivatives, the field equa-
tions are thus

∇aGab + ξ−1g̃abnα−1∇a(n1−αχα ) + jb = 0, (19)

where

χα = n1−α ∇a(nα−1g̃abAb). (20)

These equations do not rely on the optical derivative ∇̃a and
are thus meaningful also at material interfaces where the opti-
cal metric g̃ab is discontinuous.

4. Evolution of the gauge function

Taking the divergence of Eq.(19), using ∇a∇bGab = 0 as
well as the continuity equation ∇a ja = 0, yields

∇a[nα−1g̃ab∇b(n1−αχα )] = 0, (21)

or when formulated in terms of the optical derivative:

∇̃a[nα g̃ab∇̃b(n1−αχα )] = 0. (22)

In regions of constant n, all gauge functions χα satisfy the
optical wave equation

�̃χα ≡ g̃ab∇̃a∇̃bχα = 0 (for constant n). (23)

For arbitrary n, one has the important special cases α = 0 and
α = 1 (cf. Sec. II B 1)

g̃ab∇̃a∇̃b(nχ0) = 0, ∇a(g̃ab∇bχ1) = 0. (24)

The equations (21) and (22) come from the variation of the
Lagrangian four-form

L′
α = − 1

2 nα−1g̃ab∇a(n1−αχα )∇b(n1−αχα )ε, (25)

with associated Eulerian four-form E′
α and momentum three-

form �′
α given by

E′
αcde f = n1−α∇a[nα−1g̃ab∇b(n1−αχα )]εcde f , (26)

�′
αcde = −g̃ab∇a(n1−αχα )εbcde. (27)

The special case α = 1 makes these expressions particularly
simple, while α = 3 ensures that the refractive index en-
ters the equations only with the powers n2 = εμ and n−2 =
1/(εμ), i.e., without square roots of either μ or ε.

C. Klein-Gordon product

For two solutions Aa and A′
a with associated momentum-

forms �a and �′a, define the three-form

�(A, A′) = A∗
a�

′a − A′
a�

∗a, (28)

where a star denotes complex conjugation. By definition of
�′, one has d (A · �′) = δAL(A′) − A · E(A′), where the sec-
ond term vanishes if A′ satisfies the equations of motion.
Consequently, one has the on-shell formula

d�(A, A′) = δAL(A′) − δA′L(A). (29)

In the absence of sources, the Lagrangian L is quadratic in A,
so δAL(A′) is symmetric under interchange of A and A′, hence
� is closed. It follows (under the assumption of global hyper-
bolicity and suitable decay of the fields at large distances) that
the integral of � over any Cauchy surface � is independent of

the choice of such surface. Hence, the Klein-Gordon product
〈〈A|A′〉〉, defined as

〈〈A|A′〉〉 = i
∫

�

�(A, A′), (30)

is independent of the choice of Cauchy surface � used to
evaluate the integral. Given any such surface, denote by N
its future-pointing unit conormal, i.e., the unit normal one-
form with the sign chosen such that N (X ) < 0 for every
future-pointing timelike vector field X , and by ς the induced
volume form. On �, the space-time volume form factorizes as
ε = −N ∧ ς, and the vector-valued three-form � factorizes as
� = � ⊗ ς, where � is the vector field

�a = −(Gab − ξ−1χα g̃ab)Nb, (31)

which generalizes the expression used by Jauch and Watson
for homogeneous dielectrics in flat space time (Eq. (19) in
Ref. [41]). With this notation, the Klein-Gordon product takes
the form

〈〈A|A′〉〉 = i
∫

�

(Aa
∗�′a − A′

a�
a∗)ς. (32)

By the same method, one can construct a Klein-Gordon
product for the gauge functions χα , which yields

〈〈χ |χ ′〉〉α = i
∫

�

[χ∗∇a(n1−αχ ′) − χ ′∇a(n1−αχ∗)]g̃abNaς.

(33)
In vacuum, Eq. (33) reduces to the standard Klein-Gordon
product for a free scalar field [49], and if, moreover, the gauge
condition is satisfied, χ = 0, the product given in Eq. (32)
reproduces the standard symplectic product of the free elec-
tromagnetic field [49,50].

D. Interface conditions

This section describes how solutions obtained in two re-
gions of space time must match at interfaces of materials
with different refractive indices to form one global solution
satisfying the field equations everywhere (in the distributional
sense).

1. Maxwell’s equations

At material interfaces, Maxwell’s equations imply conti-
nuity conditions for some components of the electromagnetic
field, and relate discontinuities of other components to surface
charges and surface currents. Specifically, denoting the jump
of a quantity x at the interface by �x�, Maxwell’s equations im-
ply �F ∧ ν� = 0 and �G · ν� = j , where ν is the unit conormal
to the interface, and j is the four-vector of surface charges and
surface currents.

To demonstrate these equations, it is advantageous to adopt
local coordinates (z, ζ μ), where μ ranges from zero to three,
such that the interface is given by z = 0, and the conormal is
ν = dz. In these coordinates, dF = 0 implies

∂zFμν + ∂μF νz + ∂νF zμ = 0. (34)

If the tangential derivatives are regular functions, i.e., con-
taining neither Dirac-δ terms located at z = 0 nor derivatives
thereof, then Fμν must be continuous (for otherwise the left-
hand side would contain an unbalanced Dirac-δ term). In
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TABLE I. Matching conditions for Maxwell’s equations at an
interface with unit conormal ν. Here, �x� denotes the jump of a
quantity x, and j is the tangential four-vector of surface charges and
surface currents.

Condition Jump condition

Regular field strength �A ∧ ν� = 0
Homogeneous field equation �F ∧ ν� = 0
Inhomogeneous field equation �G · ν� = j

coordinate-independent notation, continuity of the tangential
components Fμν is expressed as continuity of F ∧ ν.

The second condition follows from the equation ∇ · G +
j = 0. In the adapted coordinates described above, the surface
current j (which is assumed to be tangential) has the form
jμ = jμδ(z), where jμ is a regular vector field defined on the
interface. Assuming, as above, G and its transverse derivatives
to be regular, the inhomogeneous field equations yield

∂zG
zμ + (regular terms) + jμδ(z) = 0, (35)

and so Gμz must jump by jμ, i.e., G · ν jumps by j .
In case one works with a potential A, a further condition is

obtained from the requirement that F = dA is regular. Specif-
ically, one has

F zμ = ∂zAμ − ∂μAz, (36)

and if the transverse derivatives of Az are regular (they may
be discontinuous), then the condition that F zμ be regular re-
quires Aμ to be continuous, so A ∧ ν must be continuous. This
completes the derivation of the interface conditions listed in
Table I, based on Maxwell’s equations without gauge-fixing
terms.

2. Gauge-fixed equations

For the gauge-fixed field equations (19), the matching con-
dition differ from those of the standard Maxwell equations.
The z component of Eq. (19) yields

ξ−1g̃zznα−1∂z(n1−αχα ) + (regular terms) = 0. (37)

From this, one obtains two conditions. First, χα must be
regular, for otherwise its z-derivative would produce an unbal-
anced derivative of a Dirac-δ distribution (and, moreover, the
product n1−αχ would be ill defined except for α = 1). Since
χα = n1−α∂z(nα−1g̃zaAa), this entails that nα−1g̃zaAa must be
continuous, so �nα−1g̃(A, ν)� = 0. Second, Eq. (37) implies
that n1−αχα is continuous, for otherwise the z derivative would
produce a Dirac-δ term, which cannot be canceled by the
remaining regular terms.

Having established that the second term in Eq. (19) is
regular, the remaining analysis of interface conditions implied
by this equation proceeds exactly as for the original Maxwell
equations without the gauge-fixing term. The resulting inter-
face conditions are summarized in Table II.

3. Continuous potentials

Of special importance is the choice α = 1 in the gauge
function χ , defined in Eq. (7). In this case, g̃(A, ν) is con-
tinuous. If, moreover, ν is orthogonal to the four-velocity u of

TABLE II. Matching conditions for the gauge-fixed equations.
Notation as in Table I.

Condition Jump condition

Regular gauge function �nα−1g̃(A, ν )� = 0
Regular field strength �A ∧ ν� = 0
Homogeneous field equation �F ∧ ν� = 0
Transverse inhomogeneous field equation �G · ν� = j

Normal inhomogeneous field equation �n1−αχα� = 0

the medium, then g̃(·, ν) = g(·, ν), so g(A, ν) is continuous.
Combined with the continuity of the tangential components
Aμ, one thus finds that all components of A are continuous in
this case. Under the condition uaνa = 0, the choice α = 1 thus
leads to the matching conditions listed in Table III.

E. Gupta-Bleuler quantization

This section contains a general outline of the Gupta-
Bleuler quantization method, which is carried out in more
detail for concrete applications in Sec. III.

1. Classical picture

Before considering the quantized theory, it is useful to con-
sider the classical theory to develop some nomenclature. Due
to the presence of gauge symmetry, Maxwell’s equations (1)
do not provide a well-posed Cauchy problem for the potential
A: if A′ is any solution for Maxwell’s equations with pre-
scribed initial data (A|�, Ȧ|� ), then another solution is given
by A′′ = A′ + dλ, where λ is any smooth function supported
away from the initial Cauchy surface �. By contrast, the
gauge-fixed equations described in Sec. II B do provide a
well-posed Cauchy problem. Considering these equations at
face value, i.e., without imposing the condition χ = 0 from
the outset, the gauge-fixed equations are free of constraints,
so that initial data can be prescribed arbitrarily. However,
not every solution the gauge-fixed equations obtained in this
fashion will also solve the original Maxwell equations.

To describe this situation, it is useful to introduce the
following nomenclature for solutions to the gauge-fixed equa-
tions, adapted to standard terminology of the quantized
theory:

(1) A solution with χ �= 0 is referred to as a ghost solution
(sometimes called unphysical) as it does not satisfy Maxwell’s
equations.

(2) A solution with χ = 0 but with A being exact, i.e., the
gradient of a function, is said to be a gauge solution, as it

TABLE III. Matching conditions for α = 1 and uaνa = 0, where
ua is the four-velocity of the medium and νa is the unit conormal to
the interface. �x� denotes the jump of a quantity x at the interface.

Condition Jump condition

Continuous potential �A� = 0
Homogeneous field equation �F ∧ ν� = 0
Inhomogeneous field equation �G · ν� = j

Continuous gauge function �χ1� = 0
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FIG. 1. Solution scheme for Maxwell’s equations in terms of the
potential A.

satisfies Maxwell’s equations simply because F and G both
vanish (as do all holonomy integrals). Such solutions describe
trivial connections.

(3) Finally, solutions with χ = 0 and A being not exact
are referred to as physical solutions, as they are nontrivial
solutions to the original Maxwell equations.

Since all physical solutions within the same cohomology
class are physically indistinguishable (as the fields F , G, and
all holonomy integrals agree), the set of physically distin-
guishable solutions is given by the cohomology classes of
physical solutions, i.e., physical solutions up to gauge solu-
tions. This scheme is visualized in Fig. 1.

It is worth noting that if the gauge function χ satisfies a
hyperbolic equation (cf. Sec. II B 4, where difficulties may
arise from interfaces where the optical metric is discontinu-
ous), then the distinction between χ = 0 and χ �= 0 can be
made at the level of initial data prescribed on any Cauchy
surface, as χ vanishes globally if and only if its initial data
is trivial.

2. Quantum picture

Similar to the fact that the gauge-fixed Maxwell equations,
without the gauge condition χ = 0 enforced, are free of con-
straints and thus allow for arbitrary initial data, the first step
of the Gupta-Bleuler quantization method is an unconstrained
quantization of the gauge-fixed equations. In a static space
time, this yields quantum field operators Â and �̂ satisfying
the Heisenberg commutation relation

[Âa(t, x), �̂b(t, y)] = ih̄δb
aδ(x − y), (38)

acting on a space of quantum states K. This space K contains a
vacuum state |0〉, which is annihilated by all lowering opera-
tors â(ψ ) corresponding to classical solutions ψ of positive
frequency. However, K is not a Hilbert space but a Krein
space, carrying an indefinite inner product, related to the in-
definiteness of the Klein-Gordon product of solutions to the
gauge-fixed equations, defined in Eq. (32).

The indefiniteness of the inner product on K is deeply tied
to the presence of ghost and gauge solutions. For example,
classical gauge solutions have χα = 0 and G = 0, hence � =
0, and thus a vanishing Klein-Gordon norm. This gives rise to
gauge states of vanishing pseudonorm in K.

The distinction of physical and unphysical classical modes
by means of the gauge function χ is carried over to the
quantum theory by regarding as physical only those states |�〉,
which satisfy the Gupta-Bleuler condition

χ̂ (+) |�〉 = 0. (39)

Here, χ̂ (+) is the quantum operator associated to the positive-
frequency part of the gauge-function χ , i.e., the part whose
temporal Fourier transform contains contributions of the form
e−iωt with ω > 0 only.

Similar to the categorization of classical solutions intro-
duced above, one uses the following classification of quantum
states in K:

(1) Ghost states |�〉 are those violating the Gupta-Bleuler
condition.

(2) Gauge states |�〉 satisfy the Gupta-Bleuler condition
but have vanishing pseudonorm.

(3) Physical states |�〉 are those satisfying the Gupta-
Bleuler condition and having positive pseudonorm.

The Gupta-Bleuler quantization scheme requires that there
are no states other than these three categories, i.e., no states
satisfying the Gupta-Bleuler condition but having negative
norm. Numerical tests indicate that no such states arise in the
applications considered here.

Similar to the classical picture, the space of physically dis-
tinguishable states is then obtained by taking the quotient of
physical states up to gauge states, which yields a Hilbert space
H carrying a positive-definite inner product. This procedure is
visualized in Fig. 2.

One may inquire the necessity of introducing the seem-
ingly superfluous gauge and ghost modes in the theory, if they
are to be discarded later in the quantization process. However,
one finds that such modes are necessary to obtain covariant
gauge formulations of the quantized electromagnetic field
even in vacuous Minkowski space time [34].

III. OPTICAL FIBERS

In this section, the Gupta-Bleuler quantization scheme is
carried out for step-index optical fibers. The problem is con-
sidered first in flat space time, and the solution is generalized
later to optical fibers held at a constant potential in a weak
gravitational field.

Contrary to infinitely extended homogeneous media or vac-
uum in flat space time, the gauge and ghost modes turn out to
have dispersion relations different from the physical modes.

A. Optical fibers in flat space time

Consider a cylindrical step-index optical fiber, which has
constant refractive index n1 in its core (r < ρ) and constant re-
fractive index n2 in its cladding (r > ρ) with n1 > n2. In what
follows, cylindrical coordinates r, θ, z will be used, where z
measures distance along the symmetry axis of the optical fiber
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FIG. 2. Schematic overview of the Gupta-Bleuler quantization
method.

at rest, which thus has four-velocity ∂ t . It is convenient to use
the complex frame eμ and coframe eμ defined as

et = ∂t , e‖ = ∂z, e± = 1√
2

(
∂r ± i

r ∂θ

)
, (40)

et = dt, e‖ = dz, e± = 1√
2
(dr ∓ irdθ ). (41)

In the following, all calculation will be carried out in the
Feynman-’t Hooft gauge2 for the Rξ,1 gauge fixing function:

ξ = μ, α = 1, (42)

see Sec. II B 1 for definitions.

1. Gauge potential

Separating Fourier modes of different frequency ω, propa-
gation constant β, and azimuthal mode index m, one is led to
the ansatz

A = (ate
t + a+e+ + a−e− + a‖e‖)ei(βz+mθ−ωt ), (43)

where the functions at , a‖, a± depend on the radial coordi-
nate r only. The gauge-fixed equations (15) without external
sources, valid in the core and cladding separately, are

Bmat = 0, Bm+1a+ = 0, (44a)

Bma‖ = 0, Bm−1a− = 0, (44b)

where Bν is the Bessel operator

Bν = r2∂2
r + r∂r + r2(n2ω2 − β2) − ν2. (45)

2As the gauge-fixing parameter ξ was assumed to be constant, the
use of the Feynman-’t Hooft gauge requires the considered material
to have a constant permeability μ. This is satisfied by typical optical
fibers, as they are nonmagnetic and thus have μ = 1.

Requiring the field to be regular on the symmetry axis and
to decay at large radii, the solutions, valid in the core and
cladding separately, are found to be

at (r) = fm
(
q(1)

t , q(2)
t , r

)
, (46a)

a‖(r) = fm(q(1)
‖ , q(2)

‖ , r), (46b)

a+(r) = fm+1(q(1)
+ , q(2)

+ , r), (46c)

a−(r) = fm−1(q(1)
− , q(2)

− , r), (46d)

where the coefficients q(1)
μ and q(2)

μ are constants, and the
functions fν (q, q′, r) are given in terms of Bessel functions of
the first kind, Jν , and modified Bessel functions of the second
kind, Kν , as

fν (q, q′, r) =
{

q Jν (Ur/ρ) r < ρ,

q′Kν (W r/ρ) r > ρ.
(47)

Here, U and W are defined as

U =
√

+ρ2
(
n2

1ω
2 − β2

)
, (48a)

W =
√

−ρ2
(
n2

2ω
2 − β2

)
, (48b)

where it is assumed that n2
1ω

2 < β2 < n2
2ω

2, for otherwise
there would be no guided modes. The gauge function χ =
g̃ab∇̃aAb takes the form

χ = fm(qχ , q′
χ , r)ei(βz+mθ−ωt ), (49)

where

qχ = i
(
n2

1ωq(1)
t + βq(1)

‖
) + U√

2ρ
(q(1)

+ − q(1)
− ), (50)

q′
χ = i

(
n2

2ωq(2)
t + βq(2)

‖
) − W√

2ρ
(q(1)

+ + q(2)
− ). (51)

2. Canonical momentum

The general formula for the momentum density in Eq. (31)
yields

�a = Ga0 − χ g̃a0. (52)

Contrary to the components of the potential A, �+ contains
Bessel functions of order m − 1, while �− contains those of
order m + 1. This is because the metric-equivalent one-form
to the vector e± is e∓. For this reason it is convenient to work
with the complex-conjugate field

�∗ = (π̄ tet + π̄‖e‖ + π̄+e+ + π̄−e−)e−i(βz+mθ−ωt ). (53)

Here, the functions π̄μ take the form

π̄ t (r) = fm
(
p(1)

t , p(2)
t , r

)
, π̄+(r) = fm+1(p(1)

+ , p(2)
+ , r), (54a)

π̄‖(r) = fm(p(1)
‖ , p(2)

‖ , r), π̄−(r) = fm−1(p(1)
− , p(2)

− , r), (54b)

where the coefficients p(1)
μ , p(2)

μ are expressible in terms of the
coefficients q(1)

μ , q(2)
μ as

p(1)
t = −in2

1

[
n2

1ωq̄(1)
t + βq̄(1)

‖
] + n2

1U√
2ρ

[q̄(1)
+ − q̄(1)

− ], (55a)

p(1)
‖ = +in2

1

[
βq̄(1)

t + ωq̄(1)
‖

]
, (55b)
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p(1)
+ = +n2

1

[
U√
2ρ

q̄(1)
t + iωq̄(1)

+

]
, (55c)

p(1)
− = −n2

1

[
U√
2ρ

q̄(1)
t − iωq̄(1)

−

]
, (55d)

p(2)
t = −in2

2

[
n2

2ωq̄(2)
t + βq̄(2)

‖
] − n2

2W√
2ρ

[q̄(2)
+ + q̄(2)

− ], (55e)

p(2)
‖ = +in2

2

[
βq̄(2)

t + ωq̄(2)
‖

]
, (55f)

p(2)
+ = +n2

2

[
W√
2ρ

q̄(2)
t + iωq̄(2)

+

]
, (55g)

p(2)
− = +n2

2

[
W√
2ρ

q̄(2)
t + iωq̄(2)

−

]
. (55h)

3. Interface conditions

The interface conditions listed in Table III yield a set of
linear equations,

MNq = 0, (56)

where q is the column vector

q = (
q(1)

t , q(1)
‖ , q(1)

+ , q(1)
− , q(2)

t , q(2)
‖ , q(2)

+ , q(2)
−

)T
, (57)

and the matrices M and N are given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 −UJ+ 0 0 0 W K+ 0
0 0 0 +UJ− 0 0 0 W K−

−n2
1U 2J 0 +in2

1ρω√
2

UJ+
−in2

1ρω√
2

UJ− n2
2W 2K 0 −in2

2ρω√
2

W K+
−in2

2ρω√
2

W K−
0 0 −iU/

√
2 −iU/

√
2 0 0 −iW/

√
2 +iW/

√
2

0 U 2J +iρβ√
2

UJ+ −iρβ√
2

UJ− 0 −W 2K −iρβ√
2

W K+ −iρβ√
2

W K−
in2

1ρω iβρ U/
√

2 −U/
√

2 −in2
2ρω −iβρ W/

√
2 W/

√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (58)

N = diag(Jm(U ), · · · , Jm(U )︸ ︷︷ ︸
four times

, Km(W ), · · · , Km(W )︸ ︷︷ ︸
four times

). (59)

Here, the following abbreviations were used:

J = J ′
m(U )

UJm(U )
, K = K ′

m(W )

W Km(W )
, (60)

J± = J ∓ m/U 2, K± = K ∓ m/W 2. (61)

The condition that Eq. (56) admits a nontrivial solution is that
the determinant of the matrix MN vanishes. One finds

det(MN) = iD1D
2
2 , (62)

where

D1 = Jm(U )2Km(W )2

× [
(J + K )

(
n2

1J + n2
2K

) − m̃2
]
, (63)

D2 = UW Jm(U )Km(W )[U 2J − W 2K ], (64)

m̃ = m(β/ω)(U −2 + W −2). (65)

D1 = 0 corresponds to the dispersion relation of Maxwell
modes [51], while the modes satisfying D2 = 0 correspond
to gauge and ghost modes (as shown below). For given values
of the propagation constant β and azimuthal mode index m,
the equations D1 = 0 and D2 = 0 admit a finite number of
solutions for the frequency ω, which are indexed by a radial
mode index κ . In the following, the corresponding solutions
will be denoted by

A(physical)β,m,κ , A(gauge)β,m,κ , A(ghost)β,m,κ ,

where, A(physical)β,m,κ denotes the physical mode whose fre-
quency ω is the κ-th solution ω = ωκ to the dispersion relation
D1 = 0 for given values of the propagation constant β and
azimuthal mode index m. The nomenclature of gauge modes
A(gauge)β,m,κ (satisfying the gauge condition but having vanish-
ing field strength) and ghost modes A(ghost)β,m,κ (violating the
gauge condition) is similar: the radial mode index κ iterates
over the set of solutions to D2 = 0 for given values of β and
m (see below for details).

To analyze the dispersion relations, it is customary to
define the normalized guide index b and the normalized fre-
quency V as

b = n̄2 − n2
2

n2
1 − n2

2

, V = ρω

√
n2

1 − n2
2, (66)

where n̄ = |β/ω| is the effective refractive index. Note that
b acts as an interpolation parameter expressing the squared
effective refractive index as a convex combination of n2

1 and
n2

2: n̄2 = bn2
1 + (1 − b)n2

2, and V is expressible in terms of
U and W defined in Eq. (48) as V 2 = U 2 + W 2. Figure 3
shows the dependence of the normalized guide index b on the
normalized frequency V for the physical modes, as well as
the gauge and ghost modes. Here, the refractive indices were
chosen to be n1 = 1.4712 and n2 = 1.4659, corresponding
to typical commercially available single-mode fibers with a
core radius of ρ = 4.1μm operated at vacuum wavelengths
of λ = 1 550 nm. For normalized frequencies V below the
threshold V∗ ≈ 2.4 the fiber supports only a single physical
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FIG. 3. Mode diagrams of the physical modes (left figure) and unphysical modes (right figure), showing the dependence of the normalized
mode index b = (β2/ω2 − n2

2 )/(n2
1 − n2

2 ) on the normalized frequency V = ρω
√

n2
1 − n2

2. Lines of constant β are almost vertical. For
illustration, the refractive indices in the core and cladding are set to n1 = 1.4712 and n2 = 1.4659, respectively.

mode (with m = 1) and single pair of gauge and ghost modes
(with m = 0). For larger values of V , the fiber supports multi-
ple modes.

4. Physical modes

Physical modes satisfy the dispersion relation

(J + K )
(
n2

1J + n2
2K

) = m̃2, (67)

with m̃ as defined in Eq. (65). Arranging the coefficients q(1)
i ,

q(2)
i , p(1)

i , and p(2)
i in the form

q =
⎡
⎣ q(1)

t
Jm (U )

q(1)
‖

Jm (U )
q(1)

+
Jm (U )

q(1)
−

Jm (U )
q(2)

t
Km (W )

q(2)
‖

Km (W )
q(2)

+
Km (W )

q(2)
−

Km (W )

⎤
⎦, (68a)

p =
⎡
⎣ p(1)

t
Jm (U )

p(1)
‖

Jm (U )
p(1)

+
Jm (U )

p(1)
−

Jm (U )
p(2)

t
Km (W )

p(2)
‖

Km (W )
p(2)

+
Km (W )

p(2)
−

Km (W )

⎤
⎦, (68b)

the coefficients of the physical modes are

q(physical) = N−1
β,m,κ

×
[

1 0 −iρω√
2U

[
n2

1 + m̃β/ω

J +K

] +iρω√
2U

[
n2

1 − m̃β/ω

J +K

]
1 0 +iρω√

2W

[
n2

2 + m̃β/ω

J +K

] +iρω√
2W

[
n2

2 − m̃β/ω

J +K

]
]
,(69a)

p(physical) = N−1
β,m,κ

×
⎡
⎣0 in2

1β
−n2

1ρβ2
√

2U

[
1 + m̃ω/β

J +K

] +n2
1ρβ2

√
2U

[
1 − m̃ω/β

J +K

]
0 in2

2β
+n2

2ρβ2
√

2W

[
1 + m̃ω/β

J +K

] +n2
2ρβ2

√
2W

[
1 − m̃ω/β

J +K

]
⎤
⎦,

(69b)

where Nβ,m,κ is a normalization factor. Using Eq. (49), one
then verifies that the gauge condition is met,

χ(physical) = 0, (70)

so that Maxwell’s equations are satisfied.
The physical modes with m = 0 are either transverse-

electric (TE) or transverse-magnetic (TM), while the modes
with m �= 0 are hybrid modes commonly classified as either
HE or EH [51]. For the purposes of the present considerations,
however, it suffices to index the physical modes with identical

propagation constant β and azimuthal mode index m by a
radial mode index κ .

5. Gauge modes

Gauge modes satisfy the dispersion relation

U 2J = W 2K , (71)

and their coefficients, arranged in the form (68), are

q(gauge) = 1

N ′
β,m,κ

[−iω +iβ −U√
2ρ

+U√
2ρ

−iω +iβ −W√
2ρ

−W√
2ρ

]
, (72a)

p(gauge) = 0, (72b)

where N ′
β,m,κ is a normalization factor. The corresponding

field A(gauge) is a gradient

A(gauge)β,m,κ = dλβ,m,κ , (73)

where

λβ,m,κ = f0(r)ei(βz+mθ−ωt ), (74)

f0(r) =
{

Jm(Ur/ρ)/Jm(U ) r < ρ,

Km(W r/ρ)/Km(W ) r > ρ.
(75)

Using Eq. (71) one verifies that dλβ,m,κ is continuous, and
using Eq. (49) one verifies that the gauge condition is satisfied:

χ(gauge) = 0. (76)

The momentum density �(gauge), defined in Eq. (52), vanishes
because the first term in �a = Ga0 − χ g̃a0, is zero as A is
exact and hence closed, and the second term is zero because
the gauge condition is satisfied. As a consequence, the gauge
modes have vanishing Klein-Gordon norm.

6. Ghost modes

The ghost modes satisfy the same dispersion relation as the
gauge modes:

U 2J = W 2K , (77)

and their coefficients, arranged in the form (68), are

q(ghost) = 1

N ′
β,m,κ

[+iω +iβ +U√
2ρ

−U√
2ρ

+iω +iβ +W√
2ρ

+W√
2ρ

]
, (78a)
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p(ghost) = 1

N ′
β,m,κ

[
−2n2

1β
2 +2n2

1βω 0 0

−2n2
2β

2 +2n2
2βω 0 0

]
, (78b)

where, for later convenience, the normalization factor N ′
β,m,κ

was chosen to be the same as for the gauge modes. Using
Eq. (49), one finds the gauge violation to be

χ(ghost) = (2iβ2/ω)A(ghost)t . (79)

One readily verifies that the Klein-Gordon norm of these
modes vanishes, as was the case for the gauge modes.

7. Klein-Gordon product

The general formula for the Klein-Gordon product, given
in Eq. (32), yields

〈〈A,�|A′,�′〉〉 = i
∫ +∞

−∞
dz

∫ 2π

0
dθ

∫ ∞

0
dr r {A∗

μ�′μ

− A′
μ�∗μ}. (80)

As the mode solutions of the form given in Eq. (43) are not
square integrable, their Klein-Gordon products do not con-
verge. However, as explained in Appendix A, their products
are meaningful as integral kernels for the Klein-Gordon prod-
uct of wave packets. Factoring the fields A and � of the modes
as {

AI,β,m,κ

�I,β,m,κ

}
=

{
aI,β,m,κ (r)
πI,β,m,κ (r)

}
ei(βz+mθ−ωt ), (81)

see Eqs. (43) and (53), with I ranging over the labels
physical, gauge, and ghost, ω = ω(I, β, m, κ ) and ω′ =
ω′(I ′, β ′, m′, κ ′), one obtains

〈〈AI,β,m,κ |AI ′,β ′,m′,κ ′ 〉〉 = i(2π )2δm,m′δ(β − β ′)

× ei(ω−ω′ )t
∫ ∞

0
dr r{a∗

μπ ′μ − a′
μπ∗μ},

(82)

where the indices (I, β, m, κ ) of a and π , as well as the indices
(I ′, β ′, m′, κ ′) of a′ and π ′ have been suppressed for brevity.

As shown in Appendix B, modes of different frequencies
are orthogonal. This implies that (i) the product given in
Eq. (82) is time independent, (ii) modes satisfying different
dispersion relations are orthogonal, and (iii) modes satisfying
identical dispersion relations but having different radial mode
indices κ are orthogonal. Upon normalization of the modes
(see Appendix C for details), the only nontrivial Klein-Gordon
products of the mode functions are found to be

〈〈A(physical)β,m,κ |A(physical)β ′,m′,κ ′ 〉〉 = δm,m′δκ,κ ′δ(β − β ′),

(83a)

〈〈A(gauge)β,m,κ |A(ghost)β ′,m′,κ ′ 〉〉 = δm,m′δκ,κ ′δ(β − β ′).

(83b)

As we are concerned only with mode solutions of the field
equations, which have the form considered so far (we ignore,
for example, electromagnetic fields propagating mainly out-
side the optical fibers), we restrict all further discussion to
the closure of the space of functions spanned by the modes

solutions obtained above. Accordingly, we consider fields of
the form

A =
∫

R
dβ

∑
I

∑
m∈Z

∑
κ∈K

× {
a(+)

I,β,m,κAI,β,m,κ, + a(−)
I,β,m,κA∗

I,β,m,κ

}
, (84)

where I ranges over the labels physical, gauge, and ghost, and
for each value of (I, β, m) the index range K ≡ KI,β,m of the
radial index κ is a finite set.

The first part in Eq. (84), all of whose terms have a time
dependence of the form e−iωt with ω > 0, is referred to as the
positive frequency part of A, while the second part is called the
negative frequency part. A positive-frequency wave packet,
i.e., a solution of the form given in Eq. (84) with a(−)

I,β,m,κ ≡ 0
then has Klein-Gordon norm

〈〈A|A〉〉 =
∫

R
dβ

∑
m∈Z

∑
κ∈K

{|a(+)
(physical)β,m,κ

|2

+ (a(+)∗
(ghost)β,m,κ

a(+)
(gauge)β,m,κ

+ c.c.)}, (85)

where c.c. denotes the complex conjugate of the preceding
term.

8. Quantization

The quantized theory is now obtained by passing to quan-
tum field operators Â and �̂, satisfying the equations of
motion as well as the Heisenberg equal-time commutation
relation

[Âa(t, x), �̂b(t, y)] = ih̄ δb
aδ(x − y). (86)

For any positive-frequency solution ψ of the field equations,
i.e., a solution of the form (84) with a(−)

I,β,m,κ ≡ 0, define the
ladder operators

â(ψ ) = + 1√
h̄

〈〈ψ |Â〉〉 , â†(ψ ) = − 1√
h̄

〈〈ψ∗|Â〉〉 , (87)

then Eq. (86) implies

[â(ϕ), â†(ψ )] = 〈〈ϕ|ψ〉〉 . (88)

Defining

âβ,m,κ = â(A(physical)β,m,κ ), (89a)

b̂β,m,κ = â(A(gauge)β,m,κ ), (89b)

ĉβ,m,κ = â(A(ghost)β,m,κ ), (89c)

it follows from Eqs. (82) and (88) that the only nonvanishing
commutators of these ladder operators are

[âβ,m,κ , â†
β ′,m′,κ ′ ] = [b̂β,m,κ , ĉ†

β ′,m′,κ ]

= δm,m′δκ,κ ′δ(β − β ′). (90)

As in (84), the field operator can be decomposed as

Â =
√

h̄
∑
m,κ

∫
dβ{âβ,m,κA(physical)β,m,κ

+ ĉβ,m,κA(gauge)β,m,κ

+ b̂β,m,κA(ghost)β,m,κ} + H.c., (91)
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(H.c. denotes Hermitian conjugation) where the ladder oper-
ators of gauge excitations multiply the ghost-mode functions
(and vice versa). This is because both gauge and ghost modes
have vanishing Klein-Gordon norm, but have a nonzero mu-
tual Klein-Gordon product.

From Eqs. (89) and (90) one deduces the relations

[Â, â†
β,m,κ ] = A(physical)β,m,κ , (92a)

[Â, b̂†
β,m,κ ] = A(gauge)β,m,κ , (92b)

[Â, ĉ†
β,m,κ ] = A(ghost)β,m,κ , (92c)

expressing the fact that the operators â†
β,m,κ , b̂†

β,m,κ and ĉ†
β,m,κ

generate physical, gauge, and ghost excitations, respectively.
The operator corresponding to the gauge function χ is

χ̂ =
√

h̄
∑
m,κ

∫
dβ

{
b̂β,m,κχ(ghost)β,m,κ + H.c.

}
, (93)

where χ(ghost)β,m,κ is the gauge violation of the ghost modes
given in Eq. (79). So far, the unphysical ghost excitations have
not yet been eliminated from the theory. This is accomplished
using the Gupta-Bleuler condition, which requires all physical
states |�〉 to satisfy

χ̂ (+) |�〉 = 0, (94)

where χ̂ (+) denotes the positive-frequency part of χ̂ , which is
given by the part written explicitly in Eq. (93), i.e., without
the H.c. term. Equation (94) is equivalent to the condition

b̂β,m,κ |�〉 = 0, (95)

for all β and m and κ . This condition requires all physical
states to be free of ghost excitations generated by ĉ†

β,m,κ , but

allows for arbitrary gauge excitations generated by b̂†
β,m,κ , cf.

Eq. (90).
A direct consequence of Eq. (94) is that the gauge condi-

tion is satisfied in the sense of matrix elements of physical
states |�〉 and |�〉 in the sense that 〈�|χ̂ |�〉 = 0, since

〈�|χ̂ |�〉 = 〈�|χ̂ (+)|�〉 + 〈�|χ̂ (−)|�〉 = 0, (96)

as χ (+) |�〉 = 0 and 〈�| χ̂ (−) = [χ (+) |�〉]† = 0.

9. Gauge invariance

To analyze the action of the operators b̂†
β,m,κ , generating

gauge excitations, let |� ′〉 and |� ′′〉 be two physical states
(satisfying the Gupta-Bleuler condition), and consider the lin-
ear combination

|�〉 = |� ′〉 + b̂†
β,m,κ |� ′′〉 . (97)

If |�〉 is any other physical state, then

〈�|�〉 = 〈�|� ′〉 + 〈�|b̂†
β,m,κ |� ′′〉 = 〈�|� ′〉 , (98)

since 〈�| b̂†
β,m,κ = [b̂β,m,κ |�〉]† = 0. Therefore, gauge exci-

tations do not contribute to inner products of physical states.
Moreover, for the matrix element 〈�|Â|�〉 one has the gauge-
transformation formula

〈�|Â|�〉 = 〈�|Â|� ′〉 + 〈�|� ′′〉
√

h̄ dλβ,m,κ , (99)

with λβ,m,κ as defined in Eq. (74). This follows from
[Â, b̂†

β,m,κ ] = √
h̄A(gauge)β,m,κ = √

h̄dλβ,m,κ , see Eq. (92b). As

a consequence, all operators Ô commuting with b̂β,m,κ and
b̂†

β,m,κ are gauge invariant in the sense that their matrix ele-

ments 〈�|Ô|�〉 are independent of gauge excitations of the
states |�〉 and |�〉. In particular, the operators

F̂ , Ĝ,

∮
γ

Â,

∫
M

Âa jaε,

where γ is any loop in space time, and ja is any divergence-
free vector field decaying at infinity, are gauge-invariant
operators (commuting with the b̂β,m,κ operators) and are thus
physical observables.

10. Wave packets

The physical modes considered so far have infinite norm,
see Eq. (83a). This is remedied by considering wave packets
instead. For example, the wave packet

Aψ =
∫

dβ
∑
m,κ

ψ (β, m, κ )A(physical)β,m,κ (100)

is normalized whenever∫
dβ

∑
m,κ

|ψ (β, m, κ )|2 = 1. (101)

The associated ladder operator â†
ψ is then given by

â†
ψ = â†(Aψ ) =

∫
dβ

∑
m,κ

ψ (β, m, κ )â†
β,m,κ , (102)

and satisfies

[âψ, â†
ψ ] = 1, (103)

so the corresponding singe-photon state â†
ψ |0〉 is properly

normalized. At this stage, the standard quantum optics notions
of multiphoton states, coherent states, etc. can be used.

B. Optical fibers in weak gravitational fields

In this section, the previous calculations on optical fibers in
flat space time are generalized to describe optical fibers placed
horizontally in a homogeneous gravitational field. The result-
ing model is then applied to Mach-Zehnder interferometers in
Earth’s gravitational field.

1. Linearized parametrized post-Newtonian metrics

The linearized Einstein field equations for static mass dis-
tributions lead to the post-Newtonian metric

gPN = −(1 + 2ϕ)dt2 + (1 − 2ϕ)δi jdxidx j, (104)

see, e.g., Ref. [52]. For experimental tests of general relativity,
it is customary to consider a wider class of weak-field metrics:
the parametrized post-Newtonian (PPN) metrics [53]. In the
linearized scheme, the PPN metrics take the form

gPPN = −(1 + 2αLPIϕ)dt2 + (1 − 2γ ϕ)δi jdxidx j, (105)

where deviations of the LPI parameter αLPI from 1 describe
violations of local position invariance (LPI) [53], and the

063511-11



THOMAS B. MIELING PHYSICAL REVIEW A 106, 063511 (2022)

PPN-parameter γ quantifies the “strength of spatial curvature
per unit rest mass” [53]. In general relativity, both parameters
are equal to 1, while Nordström’s theory, for example, corre-
sponds to αLPI = 1 and γ = −1.

For experiments such as the one proposed in Ref. [14],
where optical fibers are placed horizontally in Earth’s grav-
itational field to form an interferometer, the gravitational
potential ϕ is constant along each fiber to good precision.
While the above calculations of Sec. III A can be generalized
to the PN or PPN metrics, (for PN metrics, this was done at
the level of the classical electromagnetic field strength F and
excitation G in Ref. [16]), a more direct route is used here.

Assuming a homogeneous field with potential

ϕ = ϕ0 + gz, (106)

one can use the coordinate transformation and rescaling of ϕ

described in Appendix D to reduce the metric to the Newto-
nian form

gN = −(1 + 2ϕ)dt2 + δi jdxidx j . (107)

The linear term in Eq. (106) gives only small corrections to
the mode profiles [16,54] and can thus be neglected in a first
approximation (for typical optical fibers, the core radius is of
the order of micrometers and hence gρ ≈ 1 × 10−22 while at
Earth’s surface ϕ0 ≈ 7 × 10−10). The main influence of the
gravitational field on a horizontal optical fiber is thus con-
tained in the constant term ϕ0, which encodes the gravitational
red shift between fibers at different altitudes (for which the
numerical values of ϕ0 differ). As shown in the next section,
within this approximation, the gravitationally perturbed fiber
modes are obtained from the unperturbed ones by simple
substitutions.

It is worth noting that the transformation from Eq. (105) to
Eq. (107) shows that experiments insensitive to gravity gradi-
ents, i.e., insensitive to space-time curvature, are necessarily
insensitive to the PPN parameter γ [54].

2. Perturbation of fiber modes

For a linear homogeneous dielectric at rest in the coordi-
nate system considered, the covariant optical metric reads

g̃ = −n−2(1 + 2ϕ)dt2 + δi jdxidx j . (108)

Since the field equations for a constant refractive index n
are formulated entirely in terms of the optical metric g̃, the
rescaling n → (1 − ϕ)n transforms solutions Aa of the field
equations in Minkowski space to solutions for a uniform
potential. Moreover, since the interface conditions listed in
Table II are independent of the gravitational potential ϕ, all
continuity conditions remain satisfied. However, the modes
obtained in this manner are not correctly normalized. The
gravitational field produces a rescaling in the space-time vol-
ume form according to ε → (1 + ϕ)ε, but leaves the spatial
volume-form ς invariant. According to Eq. (18) and the
factorization � = � ⊗ ς, the canonical momentum is thus
rescaled by � → (1 + ϕ)�, and so are the Klein-Gordon
products. To maintain the normalization of the modes, one
thus has to rescale the normalization factors Nβ,m,κ and N ′

β,m,κ

of Eqs. (60a), (69b), (72a), (78a), and (78b) according to

Nβ,m,κ → (1 + ϕ)Nβ,m,κ , N ′
β,m,κ → (1 + ϕ)N ′

β,m,κ . (109)

Finally, since the spatial volume form ς is unchanged, so are
the Heisenberg equal-time commutation relations (86). This
completes the transition from fiber modes in flat space to those
in a homogeneous gravitational potential.

C. Gravitational phase shift

The relation between the propagation constant β and the
frequency ω is encoded in the effective refractive index, n̄,
via β2 = n̄2ω2, where n̄2 can be expressed as a convex com-
bination of the squared refractive index of the core, n2

1, and
that of the cladding, n2

2, as n̄2 = bn2
1 + (1 − b)n2

2. Here, b is
the normalized guide index defined in Eq. (66), which is a

function of the normalized frequency V = ρω

√
n2

1 − n2
2. To

first order in the gravitational potential ϕ, the substitution n →
(1 − ϕ)n, mapping solutions in flat space time to solutions in
a homogeneous gravitational field, yields

n̄2 → (1 − ϕ)2n̄2 − ∂b

∂V

(
n2

1 − n2
2

)
ϕ. (110)

For weakly guiding fibers, where (n2
1 − n2

2) � n̄2, the second
term is negligible compared to the first. With this approxima-
tion, one obtains the dispersion relation

β2 = (1 − ϕ)2n̄2ω2, (111)

in which n̄ is the effective refractive index as calculated in flat
space time.

The frequency ω arising here is a coordinate frequency,
related to the physical frequency (as measured in the rest
frame of the dielectric) by ωph. = (1 − ϕ)ω, while βph. ≡ β

directly corresponds to the spatial norm of phase one-form
βdz. The relationship between βph. and ωph. then takes the
standard form

β2
ph. = n̄2ω2

ph., (112)

showing that (in the weakly guiding limit) the physical
effective refractive index is unperturbed by the uniform gravi-
tational field. As a consequence, the gravitational phase shifts
in optical fibers are explicable purely in terms of gravitational
red shifts.

For a Mach-Zehnder interferometer consisting of optical
fibers of length L, separated in height by �z with �z much
smaller than the local radius of space-time curvature, this
directly gives rise to the gravitational phase shift formula
[14,16]

�ψ = −n̄ωgL�z, (113)

where g is the local gravitational acceleration. In Eq. (113) the
distinction between ω and ωph. is irrelevant to leading order.

D. Gravitational red shift

For identical optical fibers placed at different gravitational
potentials ϕ′ and ϕ′′, the above quantization scheme yields
mode operators α̂′(β ′) and α̂′′(β ′′) (where further indices
pertaining to the azimuthal and radial mode indices are sup-
pressed for brevity), which are parametrized by their proper
propagation constants β ′ = n̄ω′ and β ′′ = n̄ω′′ as measured
by local observers in the gravitational potentials ϕ′ and ϕ′′,
respectively. Here, n̄ is the effective refractive index as in flat
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space time, see Eq. (112). The relation between the two proper
frequencies ω′ and ω′′ is expressible in terms of the Killing
frequency ω as

ω = (1 + ϕ′)ω′ = (1 + ϕ′′)ω′′. (114)

It is advantageous to define a Killing propagation constant
β = n̄ω such that an analogous equation holds for the prop-
agation constants:

β = (1 + ϕ′)β ′ = (1 + ϕ′′)β ′′. (115)

To describe the gravitational red shift of quantum states, one
must relate the ladder operators α̂′(β ′) and α̂′′(β ′′). As was
shown in Ref. [55], this relationship is given by

α̂′(β ′) =
√

1 + ϕ′ − ϕ′′α̂′′(β ′′), (116)

where the square-root factor is necessary for compatibility
with the commutation relations

[α̂′(β ′
1), α̂′(β ′

2)†] = δ(β ′
1 − β ′

2), (117a)

[α̂′′(β ′′
1 ), α̂′′(β ′′

2 )†] = δ(β ′′
1 − β ′′

2 ). (117b)

A more symmetric description is obtained, however, by in-
troducing new ladder operators parametrized by the Killing
propagation constant β:

â′(β ) =
√

1 − ϕ′ α̂′(β ′), (118a)

â′′(β ) =
√

1 − ϕ′′ α̂′′(β ′′), (118b)

satisfying the commutation relations

[â′(β1), â′(β2)†] = [â′′(β1), â′′(β2)†] = δ(β1 − β2). (119)

In terms of these operators, Eq. (116) takes the simple form

â′(β ) = â′′(β ). (120)

As an application of this formalism, consider a single-
photon wave packet sent from a region of gravitational
potential ϕ′ to a region with gravitational potential ϕ′′. In the
Heisenberg picture the state vector remains constant. When
the wave packet is decomposed in terms of the α̂′(β ′) and
α̂′′(β ′′) bases, the associated wave functions ψ ′ and ψ ′′, de-
fined by

|ψ〉 =
∫

dβ ′ ψ ′(β ′)α̂′(β ′)† |0〉

=
∫

dβ ′′ ψ ′′(β ′′)α̂′′(β ′)† |0〉 , (121)

are related by the nontrivial transformation

ψ ′′(β ′′) =
√

1 − ϕ′ + ϕ′′ψ ′(β ′). (122)

However, when the mode operators â′(β ) and â′′(β ) are used,
no such transformation rule is necessary:

|ψ〉 =
∫

dβ ψ (β )α̂′(β )† |0〉

=
∫

dβ ψ (β )α̂′′(β )† |0〉 . (123)

FIG. 4. Schematic drawing of a Mach-Zehnder interferometer in
a gravitational field, with the two horizontal arms placed at constant
gravitational potentials ϕ′ and ϕ′′, each.

E. Gravitational photon interferometry I

The quantization procedure described here provides a con-
sistent framework for the description of single-photon and
multiphoton interferometry in Earth’s gravitational field, as
conceived in Refs. [14,56] and illustrated in Fig. 4. These
references consider Mach-Zehnder interferometers formed
by optical fibers placed horizontally in a gravitational field,
which are separated in altitude by a height difference h.
These two horizontal arms are joined by vertical fibers (or
free space), which produce identical phase shifts and are thus
irrelevant for the interferometric phase.

For sufficiently large separations h, the electromagnetic
fields in the two fibers can be considered as decoupled, so that
the total Hilbert space of states is given by the tensor products
of the spaces associated to the individual fibers.

The mode nomenclature of Fig. 4 is as follows: âin, b̂in

denote the ladder operators of the input modes, âout, b̂out

pertain to the output modes, while the ladder operators
associated to the horizontal interferometer arms at constant
potentials ϕ′ and ϕ′′ are denoted by â, b̂, respectively. All
of them are taken to be parametrized by invariant Killing
propagation constants β, as described in Sec. III D. Moreover,
the phases of the all modes at the first beam splitter, and the
output modes at the second beam splitter, are set to −ωt ,
where ω is the Killing frequency, and t is Killing time.
Finally, the phases of the modes â and b̂ at the second beam
splitter are denoted by ψ ′ and ψ ′′ (they depend on the local
gravitational potentials ϕ′ and ϕ′′, respectively). If both beam
splitters are symmetric and lossless, the mode coupling at the
beam splitters takes the form[

âβ

b̂β

]
= 1√

2

[
1 i
i 1

][
âin

b̂in

]
, (124)[

âout

b̂out

]
= 1√

2

[
1 i
i 1

][
eiψ ′

0
0 eiψ ′′

][
âβ

b̂β

]
. (125)

Conversely, for the creation operators, one has[
â†

in

b̂†
in

]
= 1√

2

[
1 i
i 1

][
â†

β

b̂†
β

]
, (126)
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[
â†

β

b̂†
β

]
= 1√

2

[
eiψ ′

0
0 eiψ ′′

][
1 i
i 1

][
â†

out

b̂†
out

]
. (127)

All in all, the input operators are related to the output
operators by[

â†
in

b̂†
in

]
=

[
1
2 (eiψ ′ − eiψ ′′

) + i
2 (eiψ ′ + eiψ ′′

)
i
2 (eiψ ′ + eiψ ′′

) − 1
2 (eiψ ′ − eiψ ′′

)

][
â†

out

b̂†
out

]
, (128)

where the β dependence of all quantities has been suppressed
for brevity.

These relations allow the determination of the interfer-
ometer output for arbitrary inputs. For example, consider a
coherent input state

|coh(α1, α2)〉in = e−(|α1|2+|α2|2 )/2

× exp(α1â†
in + α2b̂†

in) |0〉 , (129)

for any complex numbers α1 and α2. Using Eq. (128) one finds
the output (which equals the input in the Heisenberg picture)
to be coherent also when expressed in the out basis:

|coh(α′
1, α

′
2)〉out = e−(|α′

1|2+|α′
2|2 )/2

× exp(α′
1â†

out + α′
2b̂†

out) |0〉 , (130)

where the parameters α′
1 and α′

2 are related to α1 and α2 by the
linear transformation[

α′
1

α′
2

]
=

[
1
2 (eiψ ′ − eiψ ′′

) + i
2 (eiψ ′ + eiψ ′′

)
i
2 (eiψ ′ + eiψ ′′

) − 1
2 (eiψ ′ − eiψ ′′

)

][
α1

α2

]
. (131)

Further, if a single photon is sent into the âin mode, one
obtains

|1, 0〉in = 1

2
(eiψ ′ − eiψ ′′

) |1, 0〉out

+ i

2
(eiψ ′ + eiψ ′′

) |0, 1〉out , (132)

so that the probability of finding one photon in the âout mode
is

p1 = 1
2 [1 − cos(�ψ )], (133)

with the phase shift �ψ = ψ ′ − ψ ′′. Alternatively, for a two-
photon state, where one photon is sent into each of the inputs,
one has

|1, 1〉in = i

2
√

2
(e2iψ ′ − e2iψ ′′

)(|2, 0〉out − |0, 2〉out)

− 1

2
(e2iψ ′ + e2iψ ′′

) |1, 1〉out . (134)

In this case, the probability of finding both photons in the
same output mode is thus

p2 = 1
2 [1 − cos(2�ψ )], (135)

so that for this particular two-photon input, the fringe
frequency is doubled compared to the single-photon prob-
ability given in Eq. (133). More detailed calculations with
wave packets of finite bandwidth show that, compared to
single-photon interferometry, such two-photon interference
experiments allow for a reduction of the height differences

FIG. 5. Schematic drawing of a time-bin encoding interferome-
ter with the unbalanced Mach-Zehnder subinterferometers placed at
different gravitational potentials ϕ′ and ϕ′′.

necessary to resolve gravity gradients by more than a factor of
two [56].

Note that the description provided here does not require
the linear approximation (106) to hold across the entire in-
terferometer, but only requires the gravitational field to be
approximately homogeneous over the region occupied by
each interferometer arm separately. Accordingly, the con-
stants ϕ0 and g may differ for the two fibers considered, so that
the current model also applies to experiments probing gravity
gradients.

F. Gravitational photon interferometry II

An alternative interferometer layout to be used for grav-
itational quantum optics experiments is sketched in Fig. 5
[12,17].

Denoting by β ′ and β ′′ the local propagation constants in
the lower and upper parts of the interferometer, respectively,
and similarly for the delay arm lengths l ′ and l ′′, one finds

â†
in = i

2
(eiβ ′l ′ + eiβ ′′l ′′ )â†

out − 1

2
(eiβ ′l ′ − eiβ ′′l ′′ )â†

out. (136)

If both delay lines are taken to be equally long, l ′ = l ′′, the
final result up to a physically irrelevant overall phase is

â†
in ∝ i

2
(1 + e−i(β ′−β ′′ )l ′ )â†

out − 1

2
(1 − e−i(β ′−β ′′ )l ′ )â†

out.

(137)
Equation (115) relates the difference in propagation constant,
β ′ − β ′′, to the difference in gravitational potential, �ϕ =
ϕ′ − ϕ′′, according to β ′ − β ′′ = β ′�ϕ, which leads to

â†
in ∝ i

2
(1 + e−iβ ′l ′�ϕ )â†

out − 1

2
(1 − e−iβ ′l ′�ϕ )â†

out. (138)

Accordingly, the output probabilities of finding a photon in
mode â or b̂ are given by

pa = cos2(β ′l ′�ϕ/2), pb = sin2(β ′l ′�ϕ/2), (139)
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see also Ref. [17] for a similar analysis of entangled photon
pairs (with finite photon bandwidths).

Compared to the setup discussed in the previous section,
this interferometer has the advantage that both photons take
the same path when traveling between the two unbalanced
Mach-Zehnder interferometers, i.e., the two interferometers
with unequal arm lengths labeled by â′, b̂′ and â′′, b̂′′ in Fig. 5.
Thus, the vertical contributions of the photon trajectories auto-
matically contribute equal phases to both parts of intermediate
superposition states, while the layout sketched in Fig. 4 re-
quires special precautions to ensure that the two vertical parts
of the photon trajectories produce equal phase shifts.

IV. DISCUSSION

In this paper we have developed a general formalism for
the Gupta-Bleuler quantization of the electromagnetic field
in linear dielectrics, in terms of the gauge potential, valid
also in (static) curved space times. The methods developed
were applied to optical fibers placed horizontally in weak
gravitational fields, yielding a consistent first-principles de-
scription of gravitational quantum optics experiments aiming
at measuring gravitationally induced phase shifts on either
single photons or entangled multiphoton states [12,14,17,56].

The description of gravitational influences on light using
the gauge potential given here could be useful for future
comparison of similar effects in models with massive photons,
such as the Proca equation.

Using the methods described here, it is also possible to
describe optical fibers aligned arbitrarily in a uniform grav-
itational field, as well as allowing for fibers of arbitrary shape
(though the equations become more intricate). While the focus
of this paper was on the perturbation of light by weak gravita-
tional fields, the formalism developed here is not limited to the
weak-field regime and could thus serve as a basis for studies
of strong-field effects as well.
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APPENDIX A: KLEIN-GORDON PRODUCTS OF WAVE
PACKETS

This section elaborates on the meaning of Eq. (82) by
considering normalizable wave packets constructed from the
non-normalizable modes computed in Sec. III A.

A positive-frequency wave packet is defined to be an ex-
pression of the form

A =
∫

R
dβ

∑
I

∑
m∈Z

∑
κ

αI,β,m,κAI,β,m,κ (A1)

where AI,β,m,κ are the fiber modes computed in Sec. III A (see
Sec. III A 7 for details on the notation), and where∫

R
dβ

∑
I

∑
m∈Z

∑
κ

|αI,β,m,κ |2 < ∞. (A2)

Using the factorization (81), one finds the Klein-Gordon prod-
uct (80) of two such positive-frequency wave packets A and A′
to be given by

〈〈A|A′〉〉 = i
∫

R
dz

∫
[0,2π]

dθ

∫
R+
dr r

∫
R
dβ

∫
R
dβ ′ ∑

I,I ′

∑
m,m′

∑
κ,κ ′

× ei(β ′−β )zei(m′−m)θ ei(ω−ω′ )t

×ᾱI,β,m,κα
′
I ′,β ′,m′,κ ′

×{āI,β,m,κ (r) · πI ′,β ′,m′,κ ′ (r)

− aI ′,β ′,m′,κ ′ (r) · π̄I,β,m,κ (r)}. (A3)

Using Plancherel’s theorem for the Fourier transform and
Parseval’s theorem for the Fourier series, one obtains

〈〈A|A′〉〉 = i(2π )2
∫

R
dβ

∑
m∈Z

∫
R+
dr r

∑
I,I ′

∑
κ,κ ′

× ei(ω−ω′ )t ᾱI,β,m,κα
′
I ′,β,m,κ ′

× {āI,β,m,κ (r) · πI ′,β,m,κ ′ (r)

− aI ′,β,m,κ ′ (r) · π̄I,β,m,κ (r)}. (A4)

One thus arrives at the formula

〈〈A|A′〉〉 =
∫

R
dβ

∫
R
dβ ′ ∑

I,I ′

∑
m,m′

∑
κ,κ ′

× ᾱI,β,m,κα
′
I ′,β ′,m′,κ ′ 〈〈AI,β,m,κ |AI ′,β ′,m′,κ ′ 〉〉 ,

(A5)

where

〈〈AI,β,m,κ |AI ′,β ′,m′,κ ′ 〉〉 = i(2π )2δm,m′δ(β − β ′)

× ei(ω−ω′ )t
∫ ∞

0
dr r{a∗

μπ ′μ − a′
μπ∗μ}.

(A6)

Here, the indices (I, β, m, κ ) of a and π , as well as the indices
(I ′, β ′, m′, κ ′) of a′ and π ′ have been suppressed for brevity.

The extension to wave packets, which also have negative-
frequency components is straightforward: for wave packets of
the form

A =
∫

R
dβ

∑
I

∑
m∈Z

∑
κ

×{α(+)
I,β,m,κAI,β,m,κ + α

(−)
I,β,m,κA∗

I,β,m,κ}, (A7)

which contain both positive and negative frequency contribu-
tions, one obtains

〈〈A|A′〉〉 =
∫

R
dβ

∫
R
dβ ′ ∑

I,I ′

∑
m,m′

∑
κ,κ ′

× {
ᾱ

(+)
I,β,m,κα

′(+)
I ′,β ′,m′,κ ′ 〈〈AI,β,m,κ |AI ′,β ′,m′,κ ′ 〉〉

− ᾱ
(−)
I,β,m,κα

′(−)
I ′,β ′,m′,κ ′ 〈〈AI,β,m,κ |AI ′,β ′,m′,κ ′ 〉〉∗ }

,

(A8)
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which is in accordance with the general relations

〈〈A|A∗〉〉 = 0, 〈〈A∗|A′∗〉〉 = − 〈〈A|A′〉〉∗ . (A9)

APPENDIX B: MODE ORTHOGONALITY

In this section, it is shown that any two fiber-optic modes
(as constructed in Sec. III) are orthogonal in the sense of
the Klein-Gordon product (defined in Sec. II C) whenever
their azimuthal indices, propagation constants, or frequencies
differ.

For a linear isotropic dielectric of constant permeability μ,
which is inertial in flat space time, the Klein-Gordon product
(32) in the Feynman-’t Hooft gauge ξ = μ, with the gauge
parameter set to α = 1, takes the form

〈〈A|A′〉〉 = i

μ

∫ {
n2g̃ab(A∗

a∂0A′
b − A′

a∂0A∗
b )

+ n2∇ i(A∗
0A′

i − A′
0A∗

i )
}
dV. (B1)

For modes of the form given in Eq. (43), one obtains

〈〈A|A′〉〉 = (2π )2μ−1δm,m′δ(β − β ′)ei(ω−ω′ )t 〈〈a|a′〉〉red. , (B2)

where the reduced Klein-Gordon product splits into bulk and
interface contributions as

〈〈a|a′〉〉red. = 〈〈a|a′〉〉blk + 〈〈a|a′〉〉int , (B3)

wherein

〈〈a|a′〉〉blk = (ω + ω′)
∫ ∞

0
dr r n2g̃aba∗

aa′
b, (B4)

〈〈a|a′〉〉int = iρ�n2(a∗
0a′

r − a′
0a∗

r )�. (B5)

As the product given in Eq. (B2) vanishes if the propagation
constants β and β ′, or the azimuthal indices m and m′ differ,
all following calculations will be carried out for β = β ′ and
m = m′ only. Setting bν to be the Bessel operator

bν = ∂2
r + r−1∂r − r−2ν2, (B6)

and defining

B(at a‖ a+ a−)

= n−2(bmat bma‖ bm+1a+ bm−1a−), (B7)

the radial field equations (44) can be written in the form

[B + ω2 − β2/n2](at a‖ a+ a−) = 0. (B8)

For the considered solutions a and a′, set

Δ = (ω2 − ω′2) 〈〈a|a′〉〉red. . (B9)

Decomposing the reduced product into bulk and interface
contributions according to Eq. (B3), and using Eq. (B8) in the
bulk term, one obtains

Δ = 〈〈a|Ba′〉〉blk − 〈〈Ba|a′〉〉blk

+ (ω2 − ω′2) 〈〈a|a′〉〉int . (B10)

Integrating the bulk terms by parts and using the definition of
〈〈a|a′〉〉int given in Eq. (B5), one arrives at

Δ = ρ(ω + ω′)�−n2W(a∗
0, a′

0) + W(a∗
‖, a′

‖)�

+ ρ(ω + ω′)�W(a∗
+, a′

+) + W(a∗
−, a′

−)�

+ iρ(ω2 − ω′2)�n2(a∗
0a′

r − a′
0a∗

r )�, (B11)

where W denotes the Wronskian

W( f , g) = f ∂rg − g∂r f , (B12)

and � f � denotes the jump of a function f at the core-cladding
interface:

� f � = (
lim
r↗ρ

f (r)
) − (

lim
r↘ρ

f (r)
)
. (B13)

So far, no interface conditions on the fields a and a′ were
used. Assuming the field to satisfy the matching conditions
listed in Table III, one finds

�a′
t� = 0, �n2∂ra′

t� = −iω′�n2�a′
r, (B14a)

�a′
r� = 0, �∂ra′

r� = −iω′�n2�a′
0, (B14b)

�a′
θ� = 0, �∂ra′

θ� = 0, (B14c)

�a′
z� = 0, �∂ra′

z� = 0, (B14d)

and analogous equations for a∗:

�a∗
t � = 0, �n2∂ra∗

t � = +iω�n2�a∗
r , (B14e)

�a∗
r � = 0, �∂ra∗

θ � = 0, (B14f)

�a∗
θ� = 0, �∂ra∗

r � = +iω�n2�a∗
0, (B14g)

�a∗
z � = 0, �∂ra∗

z � = 0. (B14h)

Since the z components of the fields and their first radial
derivatives are continuous, one has

�W(a∗
‖, a′

‖)� = 0. (B15)

Next, decomposing �W(a∗
+, a′

+) + W(a∗
−, a′

−)� into r and θ

components by means of Eq. (40), using the continuity of
the θ components and their first derivatives, as well as the
continuity of the r components, and also using the formulas
for the jumps of the radial derivatives of the r components,
one finds

�W(a∗
+, a′

+) + W(a∗
−, a′

−)�

= �W(a∗
r , a′

r )� = −i�n2�(ωa∗
0a′

r + ω′a′
0a∗

r )
∣∣
ρ
. (B16)

Finally, using the continuity of the t components and the
formula for the jump of its radial derivative, one obtains

�n2W(a∗
0, a′

0)� = −i�n2�(ω′a∗
0a′

r + ωa′
0a∗

r )
∣∣
ρ
. (B17)

Inserting Eqs. (B15) to (B17) into Eq. (B11), one finds Δ = 0,
so that Eq. (B9) yields

(ω2 − ω′2) 〈〈a|a′〉〉red. = 0. (B18)

This shows that modes of different frequencies are orthogonal
in the sense of the Klein-Gordon product. Equation (B2) then
entails that the Klein-Gordon product of two modes is always
time independent.

APPENDIX C: NORMALIZATION FACTORS

This section contains explicit calculations of the normal-
ization factors Nβ,m,κ and N ′

β,m,κ of the fiber modes given in
Eqs. (68a), (72a), and (78a).
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1. Physical modes

For the physical modes described in Sec. III A 4, Eq. (80)
yields

〈〈A(physical)β,m,κ |A(physical)β ′,m′,κ ′ 〉〉

= (2π )2δ(β − β ′)δm,m′δκ,κ ′
2ρ2β2ω

|Nβ,m,κ |2 I1, (C1)

where

I1 = I1(m, β, ω, n1, n2, ρ)

= n2
1

2U 2

(
1 + m̃ω/β

J + K

)(
n2

1 + m̃β/ω

J + K

)

×
∫ ρ

0

Jm+1(Ur/ρ)2

Jm(ρ)2
r dr

+ n2
1

2U 2

(
1 − m̃ω/β

J + K

)(
n2

1 − m̃β/ω

J + K

)

×
∫ ρ

0

Jm−1(Ur/ρ)2

Jm(ρ)2
r dr

+ n2
2

2W 2

(
1 + m̃ω/β

J + K

)(
n2

2 + m̃β/ω

J + K

)

×
∫ ∞

ρ

Km+1(W r/ρ)2

Km(W )2
r dr

+ n2
2

2W 2

(
1 − m̃ω/β

J + K

)(
n2

2 − m̃β/ω

J + K

)

×
∫ ∞

ρ

Km−1(W r/ρ)2

Km(W )2
r dr. (C2)

These integrals can be calculated analytically using the for-
mulas ∫ ρ

0
dr r Jν (Ur/ρ)2

= +1

2
ρ2(Jν (U )2 − Jν+1(U )Jν−1(U )), (C3)∫ ∞

ρ

dr r Kν (W r/ρ)2

= −1

2
ρ2(Kν (W )2 − Kν+1(W )Kν−1(W )). (C4)

Numerically, I1 is found to be positive (this was checked for
all physical modes depicted in the mode diagram of Fig. 3),
so that the normalization of Eq. (83a) is achieved by setting

Nβ,m,κ = 2πρβ
√

2ωI1. (C5)

2. Gauge modes and ghost modes

In Secs. III A 5 and III A 6, it was shown that the gauge and
ghost modes have vanishing Klein-Gordon norm. For their
mutual product, Eq. (80) yields

〈〈A(ghost)β,m,κ |A(gauge)β ′,m′,κ ′ 〉〉

= (2π )2δ(β − β ′)δm,m′δκ,κ ′
2ρ2β2ω

|N ′
β,m,κ |2

I2, (C6)

where

I2 = 2n2
1

ρ2

∫ ρ

0

Jm(Ur/ρ)2

Jm(U )2
r dr

+ 2n2
2

ρ2

∫ ∞

ρ

Km(W r/ρ)2

Km(W )2
r dr

= n2
1U 2J 2 + n2

2W 2K 2

+ (
n2

1 − n2
2

)(
1 − m2ρ2β2

U 2W 2

)
. (C7)

The first line shows that I2 is positive, so that the normalization
of Eq. (83b) is attained by

N ′
β,m,κ = 2πρβ

√
2ωI2. (C8)

APPENDIX D: REDUCTION OF THE METRIC TO
NEWTONIAN FORM

In this section it is shown, for linear gravitational poten-
tials, that all linearized parametrized-post-Newtonian (PPN)
metrics of the form given in Eq. (105) can be reduced to the
Newtonian form (107) by a spatial coordinate transformation
and rescaling of the gravitational potential by a constant.

Consider the PPN metric

g = −(1 + 2αLPIϕ)dt2 + (1 − 2γ ϕ)(dx2 + dy2 + dz2),
(D1)

where the gravitational potential ϕ is an affine function of z:

ϕ = ϕ0 + gz. (D2)

To formulate the transformation to new coordinates x′, define
the vector field

ξ i(x, y, z) = [
xy yz 1

2 (z2 − x2 − y2)
]
, (D3)

which satisfies

∂ iξ j + ∂ jξ i = 2zδi j . (D4)

Now, the coordinate transformation

xi = x′i + γ g ξ i(x′) (D5)

brings the metric to the form

g′
00 = −(1 + 2αLPIϕ), (D6a)

g′
0i = 0, (D6b)

g′
i j = (1 − 2γ ϕ0 + O(γ 2ϕ0ϕ))δi j

+ (1 − 2γ ϕ)O(γ 2g2|x′|2), (D6c)

or, if error terms are neglected (which is admissible for suffi-
ciently weak gravitational fields with ϕ � 1 and sufficiently
small spatial regions g|x′| � 1):

g = −(1 + 2αLPIϕ)dt2 + (1 − 2γ ϕ0)(dx′2 + dy′2 + dz′2).
(D7)

Further, rescaling the coordinates according to

x′′i =
√

1 − 2γ ϕ0 x′i, (D8)

one obtains

g = −(1 + 2αLPIϕ)dt2 + dx′′2 + dy′′2 + dz′′2. (D9)
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This is of the same form as the Newtonian metric

gN = −(1 + 2ϕ)dt2 + dx′′2 + dy′′2 + dz′′2, (D10)

with ϕ rescaled by the LPI parameter αLPI. This calculation
shows that the PPN parameter γ is irrelevant for experiments
for which the approximation of linearized and uniform gravi-
tational fields suffices.
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