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Fundamental constraints on the observability of non-Hermitian effects in passive systems
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Utilizing scattering theory, we quantify the consequences of physical constraints that limit the visibility of
non-Hermitian effects in passive devices. The constraints arise from the fundamental requirement that the system
obeys causality, and can be captured concisely in terms of an internal time-delay operator, which furthermore
provides a direct quantitative measure of the visibility of specific non-Hermitian phenomena in the density of
states. We illustrate the implications by contrasting two prominent non-Hermitian effects, exceptional points, and
the non-Hermitian skin effect, whose underlying extreme mode nonorthogonality turns out to be undetectable in
the density of states.
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I. INTRODUCTION

Hermitian systems support orthogonal stationary modes
with identical, infinite lifetimes. If the Hermiticity is of a
fundamental nature, as in quantum mechanics, this plays an
important role in guaranteeing the dynamical stability of the
system. The situation is more complex in effectively non-
Hermitian systems [1,2], for instance, photonic systems with
gain or loss [3–7], where nonorthogonal modes of different
lifetimes appear. These systems attract considerable atten-
tion because they can display a wide range of phenomena
that can be exploited for unique applications, such as power
oscillations [8–10], unidirectional transport [11] and invisibil-
ity [12], coherent absorption [13,14], mode selection [15], and
lasing [16–21]. Many of these applications purposefully uti-
lize the lifetime differences to enhance desired modes relative
to undesired modes, hence achieving a clear visibility of spe-
cific modes incorporating a particular functionality by their
long lifetime. Furthermore, many of these applications make
explicit use of the mode nonorthogonality. Prominent exam-
ples are enhanced sensors [22–24] operating near exceptional
points [25–27], which are non-Hermitian degeneracies where
eigenmodes align, and directed amplifiers and sensors [28–32]
facilitated by the non-Hermitian skin effect [33–37], a pe-
culiar feature of nonreciprocal systems where bulk modes
become systematically distorted towards one side.

The design of such systems has received further impe-
tus by the realization that in non-Hermitian systems, modes
with predetermined frequencies, lifetimes, and mode pro-
files can be protected by generalized symmetries [38–42].
This leads to rich scenarios that transcend Hermitian topo-
logical physics [43–45], both practically [46] as well as in
their mathematical complexity [47–49]. However, many of
these symmetries can only be realized in active systems,
which incorporate components with gain that require a sus-
tained supply of energy and introduce noise. For instance,
parity-time (PT) symmetric systems with balanced gain and
loss [4,5] can provide a spectrum of infinite-lifetime modes,

but these are intrinsically destabilized by the quantum noise
in the active regions [50–52]. Furthermore, present experi-
mental realizations of the non-Hermitian skin effect [53–57]
all invoke active elements. Analogously, noise limits the pre-
cision of exceptional-point sensors [58], and nonadiabatic
transients from lifetime differences limit the observability of
the half-integer Berry phase of these points [59,60]. Even in
the passive setting, many of the most coveted non-Hermitian
effects can be made visible only with specially tailored ex-
citations. In view of these challenges, it is highly desirable
to base non-Hermitian functionality on the generic scattering
response of passive stationary devices, which is encoded in
the density of states.

In this work, we establish and evaluate a stringent fun-
damental constraint on this objective, which arises from the
requirement that the underlying microscopic physics obeys
causality [61]. This requirement is stronger than just insist-
ing on the dynamical stability of the modes in the system
(hence, on nonnegative lifetimes), and takes care of the fact
that the system is not isolated, but couples to the components
supplying the loss. However, the constraints can be readily
formulated in general terms and evaluated quantitatively in
given systems. From this we can determine general limits of
the visibility of specific non-Hermitian effects.

To establish these links systematically, we first formulate
the constraints compactly by phrasing them in terms of the
language of scattering theory (Sec. II). Causality is then en-
coded into the internal time-delay operator, a central object
from scattering theory that can be obtained from the micro-
scopic model. From this, one can obtain the critical threshold
value of overall losses that a model necessarily needs to in-
clude to be realizable in a passive device. These conditions
can be classified by symmetries inherited from the effective
Hamiltonian, which establishes a systematic link between
non-Hermitian and Hermitian symmetry classes (Sec. III).
To evaluate the consequences in practical settings (Sec. IV),
we exploit that the time-delay operator directly determines
the experimentally observed density of states, which serves
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as a quantitative measure of the visibility of specific non-
Hermitian effects. We apply this to scenarios of particular
theoretical and experimental interest, comprising systems dis-
playing exceptional points, the non-Hermitian skin effect,
and edge states. Remarkably, in the passive setting, the ex-
treme mode nonorthogonality underlying exceptional points
and the skin effect cannot be detected from the density of
states. As we describe in the conclusions (Sec. V), the re-
sults presented here invite attention to revisit the physical
interpretation of mathematical features and classifications of
non-Hermitian systems. Appendices provide further back-
ground on the scattering formalism, symmetry classification,
and numerical results backing up these conclusions.

II. GENERAL FORMULATION OF CAUSALITY
CONSTRAINTS

For concreteness, we base the considerations on coupled-
mode theory, which enjoys a wide range of applications from
photonic to mechanical systems and mimics the language
of quantum mechanics. In this theory, one employs a basis
corresponding to a suitable set of bare modes, often identified
with individual components such as resonators or waveguides,
and collects their intrinsic properties and couplings in a matrix
H that serves as an effective Hamiltonian. We assume that
the elements of H are frequency independent, but note that
effects of additional frequency dispersion can be accounted
for by including auxiliary components [62]. This effective
Hamiltonian serves as the input to model and design exper-
iments, and also is the ubiquitous starting point for theoretical
considerations, such as about the role of symmetries in these
systems, as specified further below. For the moment, the key
feature of the effective Hamiltonian is that it can be non-
Hermitian, H �= H†. On the basis of the microscopic model,
we capture this quantitatively by writing the Hamiltonian in
the form

H = H0 + iF − iγ , (1)

which separates out the Hermitian parts H0 = H†
0 , nontrivial

anti-Hermitian parts with iF = −(iF )†, as well as an overall
level of uniform scalar background losses γ , which is deter-
mined by requiring tr F = 0. As we describe further below,
the operator F governs the desired non-Hermitian symmetries
and effects, which then become realizable in a passive device
when γ exceeds a certain threshold value γc.

To identify this threshold and establish the ensuing limits
on the visibility of non-Hermitian effects on physical grounds,
we adopt a common measurement protocol of the density of
states and probe the system from the outside to detect its
resonant response. Let us assume that the system is uniformly
coupled to the outside at a coupling strength �. In the wide-
band limit, where all spectral features in the scattered signal
are due to the system, the scattering matrix is given by [63–66]

S(ω) = [1 − i�G(ω)][1 + i�G(ω)]−1, (2)

where G(ω) = (ω − H0 − iF + iγ )−1 is the Greens function
of the system (see Appendix A for background of this formal-
ism). From the scattering perspective, the system is passively
realizable if it does not amplify any incoming signal a, i.e.,
if ||Sa|| � ||a||, irrespective of whether the incoming signal

is designed to couple into a specific mode or not. This means
that the operator combination S†S has no eigenvalues exceed-
ing 1, or equivalently, that the expression 1 − S†S is positive
semidefinite. With Eq. (2), this condition can be reformulated
instructively by writing

1 − S†S = 2�Q�, (3)

where

Q� = 2[G(ω + i�)]†(γ − F )G(ω + i�) (4)

is the celebrated time-delay operator [66–69], recovering it in
a form that remains valid in a non-Hermitian system [70]. Via
Eq. (3), its elements can be directly determined in experiments
from the scattering strength. For a passively realizable system
we then have to demand that Q� is positive semidefinite.

This formulation is useful because it provides a unifying
perspective on different aspects of the system.

Firstly, it confirms that on the simplest level, a microscopic
model can be physically realized in a passive system when
the combination γ − F itself is positive semidefinite [71],
hence if γ is larger than the largest eigenvalue of F . We
denote the eigenvalues of F as fk , so that γc = max fk . This
constraint is both simpler and stronger than requiring positive
lifetimes τk of all modes, which are encoded in the eigenvalues
�k = ωk − i/2τk of the effective Hamiltonian H itself, and
related mathematical constraints such as the Lee-Wolfenstein
and Bell-Steinberger relations [71–73].

Secondly, the positive semidefiniteness of the delay times
guarantees causality of the system, which clarifies the funda-
mental physical nature of the constraint, and justifies to call γc

the causality threshold.
Thirdly, the time-delay operator delivers a direct measure

of the generic visibility of physical effects, the density of
states ρ(ω) = (2π )−1 tr Q� (ω), which accounts for the mode
broadening by the intrinsic and radiative losses, and via
Eq. (3) is directly accessible from the experimental scattering
signal [65,69]. We read off that for fixed H0 and F , the passive
visibility of individual modes in this measure is maximized
for � = 0 and γ = γc, hence at the causality threshold of
a weakly probed system. Below, we will use this measure
to quantify the properties of specific systems from different
symmetry classes, whose general features we describe next.

III. EVALUATION IN SPECIFIC SYMMETRY CLASSES

Effectively non-Hermitian Hamiltonians appear in many
guises, and the physical symmetries of a system translate
into different mathematical forms that reflect the context.
For example, the effective Hamiltonian may generate the
time evolution of a wave function in a slowly varying en-
velope coupled-mode description, which is analogous to the
Schrödinger equation, it may feature in the propagation of
a density matrix, or it may appear in a stability analy-
sis or Bogoliubov theory that includes complex-conjugated
fields [39,40,42]. In the identification of the causality con-
straints above, we adopted the language of scattering theory,
and we therefore apply the corresponding notions when iden-
tifying the symmetries of the system [45,74,75]. Specifically,
conventional time-reversal (T) symmetry then entails H =
H∗, and in a reciprocal system we have H = HT (we will refer
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to this as the T ′ symmetry). Furthermore, PT symmetry dic-
tates XHX = H∗, and a non-Hermitian charge-conjugation
(C) symmetry entails XHX = −H∗, involving in each case
a suitable unitary operator fulfilling X 2 = 1. We will also
consider variants of these systems with XHX = H† (PT T ′)
and XHX = −H† (CT ′), which constitute separate symme-
try classes when the system is nonreciprocal.

It should be noted that several of these symmetries can
only be realized for γ = 0. To extend them to the passive
setting, we hence assume that they hold for H = H0 + iF , and
then consider the same model at finite γ , following the estab-
lished example of passive PT symmetry [9]. The symmetry
can then be realized passively for γ � γc. These symmetries
can be combined in different ways, leading to an extensive
classification [39,40], where the cases above are of particular
theoretical and experimental interest. For instance, nonrecip-
rocal systems with H = H∗ �= HT are the simplest setting in
which the non-Hermitian skin effect appears.

Before we address the visibility of such effects, let us
examine the general structure of the causality constraints in
these symmetry classes. We express this compactly in terms
of the symmetries inherited by the operator F capturing the
nontrivial non-Hermitian content of the model, and refer to
Appendix B for a detailed description in terms of the block
structure of this operator.

We start with the case of a PT-symmetric system. From the
definition of the symmetry in terms of the effective Hamil-
tonian, we see that the operator F then obeys a Hermitian
charge-conjugation symmetry, XFX = −F ∗, as encountered
in a superconductor [45]. This enforces a symmetry of its
spectrum, with eigenvalues appearing in pairs ±| fk|. For a
PT T ′ symmetry, the operator F displays a chiral symmetry,
XFX = −F , again leading to a spectral symmetry of its
eigenvalues. Both variants coincide if the system is reciprocal,
H = HT , where F is real and obeys time-reversal symmetry.

For systems with a C symmetry, F = XF ∗X displays a
generalized time-reversal symmetry, while CT ′ entails that
F = XFX obeys a unitary symmetry, and hence can be
block-diagonalized into the symmetry sectors of X . Finally, in
a nonreciprocal system with passive T symmetry, F = −F T ,
as is typical for a topologically nontrivial superconductor in
the so-called Majorana basis [45]. In all cases, we see that
there is a systematic link from a non-Hermitian symmetry
class to a Hermitian symmetry class.

This concludes our first main objective of formulating a
convenient general framework for the causality constraints.
We now apply it to quantify the visibility of non-Hermitian
effects in concrete settings.

IV. OBSERVABILITY OF SPECIFIC NON-HERMITIAN
EFFECTS

As mentioned in the introduction, exceptional points (from
here on EPs), where eigenvalues collide in the complex plane
and eigenmodes align, are one of the most prominent fea-
tures of non-Hermitian systems. Their effects are most easily
seen for modes of long lifetimes, such as in active photonic
systems near the laser threshold [16–19], which then are
highly sensitive to perturbations [22–24]. The enhanced sen-
sitivity also applies to the noise from spontaneous emission
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FIG. 1. Complex eigenvalue spectrum �k (top) and density of
states ρ(ω) (bottom) for the effective Hamiltonian (5). The couplings
are fixed to b = c∗ = 0.4 − 0.3i, while (a) a = √−bc − 0.2i (PT
symmetric case), (b) a = √−bc (EP), (c) a = √−bc + 0.1i (dynam-
ically broken phase), and (d) a = √−bc + 0.2 (symmetry explicitly
broken). The thick lines are for the limit of weak couplings � = 0,
where the lifetimes are maximized. At the exceptional point, ρ(ω) is
then a simple Lorentzian, which does not reveal the extreme mode
nonorthogonality of the system. The thin lines are for finite � = 0.1,
where a squared-Lorentzian background of limited contrast appears
at the EP.

and response to external driving, which at the EP results in
an unconventional squared-Lorentzian line shape [51,76–79].
This celebrated result has been originally derived in the input-
output scattering formalisms of active systems [80,81], which
analyzes S†S − 1, and shows that the modified line shape is
linked to the drastic violation of mode orthogonality at the
EP.

To assess the observability of these features in the density
of states of passive systems, we adopt the standard reduced
2 × 2 Hamiltonian

H =
(

a − iγ b
c −a − iγ

)
, (5)

where we initially allow for the most general case with com-
plex parameters a, b, and c. The causality constraint then
follows from the matrix

F = (−i/2)

(
a − a∗ b − c∗
c − b∗ −a + a∗

)
, (6)

giving the threshold value γc =
√

(Im a)2 + |b − c∗|2/4.
In Fig. 1 we show the threshold density of states ρ(ω)

for different scenarios at and away from the EP, which
occurs for a2 + bc = 0. In the figure, the EP signals a spon-
taneous symmetry-breaking transition, where the eigenvalue
pair moves away from the spectral symmetry line Im ω = −γ .
At the EP, this density of states is given by

ρ (EP)(ω) = 1

π

|b| + |c|
ω2 + (|b| + |c|)2/4

. (7)

This is a simple Lorentzian normalized to 2, and hence
accounts for both states in the same way as in a Hermi-
tian system with orthogonal states, irrespective of the actual
extreme mode nonorthogonality at the degeneracy. A squared-
Lorentzian background of limited contrast only appears at
finite coupling � (dashed lines). However, this background
comes with a negative spectral weight that never exceeds 1/4
of the Lorentz contribution (see Appendix C), with the opti-
mal contrast attained at � ∼ γc where the density of states is
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FIG. 2. Absent signatures of the non-Hermitian skin effect in the local and global density of states ρn(ω) and ρ(ω), illustrated for systems
of 20 sites with open (top) and periodic (bottom) boundary conditions at weak coupling � → 0 (left subpanels/solid curves) and moderate
coupling � = 0.1 (right subpanels/dashed curves). The system is modeled by Eq. (8) with v1 = −0.8i, v2 = −0.2i, u±

1 = ū ∓ 0.4, u±
2 = 1,

w = 0, and (a) ū = 0.8, (b) ū = 2. The physical density of states is compared to the mathematical summed eigenvector profile In displaying
the skin effect, and the complex eigenvalues � of H .

already strongly suppressed due to the much reduced lifetime
to the states.

In other symmetry classes, functionality can arise col-
lectively from the bulk, or individually from particular
states. To determine their visibility we consider a flexi-
ble one-dimensional model encompassing a wide range of
paradigms [34,38,82–89], based on an effective Hamiltonian

Hnm = δn,mvn + δn,m−1u−
n + δn,m+1u+

m

+ δn,m−2wn + δn−2,mwm. (8)

The imaginary parts of the complex on-site potentials vn in-
duce distributed losses, while the real parts allow to define
a corrugated potential. The couplings u±

n can be arranged to
induce zero modes, and when they are nonreciprocal they
induce the non-Hermitian skin effect. For the moment, we also
include reciprocal real next-nearest-neighbor couplings wn as
they allow to obtain the skin effect from scalar losses and real
magnetic fields [84] and feature in some experiments [53].

All these effects appear in a periodic dimer arrangement
with a two-site unit cell, which induces a nontrivial band
structure governed by the Bloch Hamiltonian

H (k) =
(

v1 + 2w1 cos k u−
1 + u+

2 e−ik

u+
1 + u−

2 eik v2 + 2w2 cos k

)
. (9)

With conventional periodic boundary conditions, k is real,
but to fulfill the open boundary conditions of a finite sys-
tem one generically needs to combine spectrally degenerate
nonreciprocal modes with complex k [90–92]. Hence, the
modes display an exponential spatial profile distorted toward
the edge, which is the essence of the non-Hermitian skin ef-
fect. In the Hermitian limit, these modes become conventional
extended Bloch states, with the possible exception of a finite
number of edge states that maintain an exponentially decaying
profile. This complex interplay of effects explains why the
non-Hermitian skin effect has received considerable attention.

In contrast, the causality constraints on the bulk and edge
modes are governed much more simply by the Bloch version

of the operator F ,

F (k) =
(


v 
u∗
1 + 
u2e−ik


u1 + 
u∗
2eik −
v

)
, (10)

where 
v = Im (v1 − v2)/2 and 
un = −i(u+
n − u−

n
∗)/2.

This is a standard Hermitian dimer chain with two symmetric
bands, encompassing the Su-Schrieffer Heeger [93] and Rice-
Mele [94] models as special cases. These models can support
edge states, but they occur in the middle of the spectrum,
while we are interested in the upper edge of the spectrum.
Furthermore, being Hermitian, F does not suffer from any
complications of the skin effect, so that this upper edge can
be found from the Bloch version. Therefore, in large systems
the causality threshold

γc =
√

(
v)2 + (|
u1| + |
u2|)2 (11)

coincides for both types of boundary conditions, and hence is
also insensitive to the skin effect.

To assess how visible these effects are in the passive set-
ting, we use the spatially resolved density of states ρn =
Qnn/2π , again evaluated to the causality threshold. Figure 2 il-
lustrates this in different scenarios (see Appendix D for further
numerical results). The top row shows results for a finite sys-
tem with open boundary conditions, where each panel further
contrasts weak and strong coupling �. In panel (a), the system
supports an edge state, which for � = 0 is clearly visible in
the local and total density of states, while no such edge state
exists in panel (b). In both panels, the eigenstates display
the non-Hermitian skin effect, as quantified by the summed
profile In ≡ (UU †)nn of normalized eigenvectors, collected in
the diagonalizing matrix U . However, this effect is completely
absent in the density of states, to the extent that it does not
even appear as a background effect at finite �. Indeed, the
spatial profile of the bulk density of states is similar to that
in a system with periodic boundary conditions (bottom row),
even though the eigenfunctions and eigenvalue spectra of both
cases dramatically differ.
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V. CONCLUSIONS

In summary, we have established general constraints on
the observability of non-Hermitian effects in passive devices,
and evaluated the implications for prominent paradigms, in-
cluding exceptional points, the non-Hermitian skin effect, and
symmetry-protected edge states. Some of the most widely
sought-after features, in particular the signatures of drastic
mode nonorthogonality, cannot be detected in the density of
states. These findings highlight the essential role of active
elements in devices that aim to exploit these signatures, which
generally suffer from other complications such as unavoidable
material dispersion.

Being formulated in a unifying scattering approach, the
general results apply to various platforms, such as photonic,
mechanical, and acoustic systems, electronic circuits, or mi-
crowave networks, and can be readily used to quantify the
visibility of effects in a wide range of models. This also pro-
vides guidance for the design of passive devices in which the
visibility is maximized, and allows to discard designs relying
on effects whose observability is severely limited.

More broadly, the results presented here imply that the
physics of passive non-Hermitian systems is not governed
just by the mathematical symmetry class of their effective
Hamiltonian [39,40,42], but is also systematically linked to an
operator from a specific Hermitian symmetry class, which can
display its own distinct phases and transitions—features that
are not included in the existing classifications. For instance,
there is a clear physical distinction between settings where
a non-Hermitian spectral symmetry applies with respect to
the real axis or the imaginary axis of the complex frequency
plane. This realization introduces additional richness into the
physical properties of these systems, whose role can also be
explored in active and nonlinear settings, in particular when
considering their quantum-limited sensitivity to noise.
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APPENDIX A: DETAILS OF THE DERIVATION
OF GENERAL EXPRESSIONS

The scattering matrix given in Eq. (2) can be derived in
several standard formalisms, see Refs. [63–66], which also
cover a range of applications and extensions. Here, we present
an explicit derivation in the instructive physical setting where
each internal site is coupled with a strength � to a dedi-
cated single-channel waveguide (from the formal steps, this
physical derivation corresponds closely to the mathematical
one given in the introduction of Ref. [66]). We denote the
real-space components inside the system by ψint, and the
incoming and outgoing traveling-wave components in the
waveguides by ain, aout. This scenario then translates into the
wave-matching equations

(ω − H )ψint = �(aout + ain ) (A1)

(matching the wave functions) and

ψint = iaout − iain (A2)

(matching their derivatives in a manifestly flux-conserving
form). We multiply the second of these two equations by ±i�
and add the result to the first equation, so that

(ω − H + i�)ψint = 2�ain, (A3)

(ω − H − i�)ψint = 2�aout. (A4)

Therefore,

aout = (ω − H − i�)(ω − H + i�)−1ain ≡ Sain. (A5)

From this we directly read off S, which in Eq. (2) is con-
veniently written in terms of the internal Green’s function,
G(ω) = (ω − H )−1.

In experiments, the density of states can be inferred from
this setup by analyzing the losses into the system [65]. This
is formalized by the left-hand side of Eq. (3), while the-
oretically the link is established using the relation to the
underlying Greens function [69]. The right-hand side then
follows directly by inserting the scattering matrix into this
expression,

1 − (ω − H† − i�)−1(ω − H† + i�)(ω − H − i�)

×(ω − H + i�)−1 (A6)

= (ω − H† − i�)−1[(ω − H† − i�)(ω − H + i�)

−(ω− H†+ i�)(ω− H − i�)](ω− H + i�)−1 (A7)

= 2�(ω − H† − i�)−1[i(H − H†)](ω − H + i�)−1

≡ 2�Q�, (A8)

where we then identify (ω − H + i�)−1 = G(ω + i�) and
i(H − H†) = 2(γ − F ).
The resulting combination Q� of Greens functions is pre-
cisely the time-delay operator [66,69], written in a form
that remains valid in non-Hermitian systems [70]. We note
that in Hermitian systems, where the scattering matrix S is
unitary, the time-delay operator can also be written as Q =
−iS†dS/dω, as it was indeed introduced originally by Wigner
and Smith [67,68].

APPENDIX B: CONCRETE FORMS OF THE SYMMETRIES
OF THE NONTRIVIAL NON-HERMITIAN CONTENT F

In Sec. III, we identified the symmetries inherited by the
operator F in general terms. Here, we express these symme-
tries concretely in terms of the block structure of this operator.
We again start with the case of a PT-symmetric system. Taking
X of the form of a Pauli-x block matrix, as commonly done
to reflect the physical design with symmetrically placed bal-
anced gain and loss components, the effective Hamiltonian is
of the form

H =
(

A − iγ B
B∗ A∗ − iγ

)
(B1)

with general subblocks A and B. The nontrivial non-Hermitian
content is captured by the operator

F = −i

2

(
A − A† B − BT

B∗ − B† A∗ − AT

)
. (B2)
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This displays the symmetries of a superconductor with a
Hermitian charge-conjugation symmetry, XFX = −F ∗, and
enforces the symmetry of its spectrum, with eigenvalues
paired as ±| fk|.

For a PT T ′ symmetry,

H =
(

A − iγ B
C A† − iγ

)
, (B3)

where B = B† and C = C†. Therefore,

F = −i

2

(
A − A† B − C
C − B A† − A

)
(B4)

now displays a chiral symmetry, XFX = −F , again leading
to a spectral symmetry of its eigenvalues. The block structures
of the PT and PT ′ variants coincide if the system is reciprocal,
H = HT , where F is real and obeys time-reversal symmetry.

For systems with a C symmetry, one conventionally
chooses X of the form of a Pauli-z block matrix, as this allows
for cases with a nontrivial topological index ν = tr X . The
effective Hamiltonian then has the structure

H =
(

iA − iγ B
C iD − iγ

)
, (B5)

with real matrices A, B, C, D, and γ chosen such that tr(A +
D) = 0. This entails that

F = −i

2

(
i(A + AT ) B − CT

C − BT i(D + DT )

)
= XF ∗X (B6)

displays a generalized time-reversal symmetry.
Analogously, for a system with CT ′ symmetry,

H =
(

iA − iγ B
B† iD − iγ

)
, (B7)

with general B and Hermitian A and D, once more obeying
tr(A + D) = 0. This entails that

F =
(

A 0
0 D

)
= XFX (B8)

is indeed block-diagonalized into the symmetry sectors of X .
Finally, in a nonreciprocal system with passive T symme-

try,

H =
(

A − iγ B
C D − iγ

)
, (B9)

with real blocks A, B, C, D, and

F = (−i/2)

(
A − AT B − CT

C − BT D − DT

)
= −F T , (B10)

which indeed coincides with the block structure of the Hamil-
tonian for a topologically nontrivial superconductor in the
Majorana basis.

APPENDIX C: ANALYTICAL DISCUSSION OF THE
VISIBILITY OF EXCEPTIONAL POINTS

Here, we provide further analytical details for the signa-
tures of mode nonorthogonality in the density of states near

an exceptional point, as obtained from the model Hamiltonian
Eq. (5). From the definitions, this density of states can be
written analytically as

ρ(ω) = 2Re [(a2 + bc)(γ + � + iω)]

π |a2 + bc + (γ + � + iω)2|2

+ 2γ |γ + � + iω|2
π |a2 + bc + (γ + � + iω)2|2

− �(2|a|2 + |b|2 + |c|2)

π |a2 + bc + (γ + � + iω)2|2 . (C1)

At the exceptional point a2 + bc = 0, this reduces to

ρ (EP)(ω) = ρ (1)(ω) + ρ (2)(ω), (C2)

ρ (1)(ω) = 2γ

π |γ + � + iω|2 , (C3)

ρ (2)(ω) = − �(|b| + |c|)2

π |γ + � + iω|4 , (C4)

hence, the sum of a simple Lorentzian and a squared
Lorentzian, where the latter one only appears for finite �.
Equation (6) is obtained for � = 0, γ = γc = (|b| + |c|)/2,
where the width γ + � of the simple Lorentzian is minimized
in a passive system, and its weight

S1(�) =
∫ ∞

−∞
ρ (1)(ω)dω = 2γ

γ + �
(C5)

is maximized.
The squared Lorentzian carries a negative weight

S2(�) =
∫ ∞

−∞
ρ (2)(ω)dω = −�(|b| + |c|)2

2(γ + �)3
. (C6)

Therefore, using again γ � γc = (|b| + |c|)/2, in a passive
system the relative weight

|S2(�)|
S1(�)

= �(|b| + |c|)2

4γ (γ + �)2
� �γ

(γ + �)2
� 1

4
, (C7)

where the maximum is attained at γ = � = γc.
Following the same steps, we can also compare the relative

peak heights of these two contributions,

|ρ (2)(0)|
ρ (1)(0)

= �(|b| + |c|)2

2γ (γ + �)2
� 1

2
, (C8)

which again is maximized at γ = � = γc. We note that the
density of states formally turns negative for γ < γc/

√
2,

which is less stringent than the causality constraint.

APPENDIX D: ADDITIONAL NUMERICAL RESULTS

In Sec. IV we showed numerical results for particularly
interesting scenarios in which the underlying non-Hermitian
effects are realized cleanly. To illustrate the general nature
of our findings, we show in Fig. 3 additional results for the
EP model (5), evaluated at parameters where PT and PT T ′
symmetries are manifestly broken also by the couplings. Anal-
ogously, we show additional results for the non-Hermitian
skin effect, covering the case where some bulk states in the
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FIG. 3. Analogous to Fig. 1, but with complex nonreciprocal coupling parameters b = 0.3 − 0.4i, c = 0.4 + 0.3i (top) b = 0.6, c = 0.4 −
0.2i, while again (a) a = √−bc − 0.2i, (b) a = √−bc (EP), (c) a = √−bc + 0.1i, and (d) a = √−bc + 0.2. At the exceptional point, ρ(ω)
is again a simple Lorentzian.
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open system have moved away from the symmetry line in the
complex plane (Fig. 4), as well as parameter configurations in

which all spectral symmetries are explicitly broken (Fig. 5),
including by next-nearest-neighbor couplings (Fig. 6).
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