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Chirality-assisted spin Hall effect of light in the vicinity of the quasi-antidual symmetry
mode of a chiral sphere
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The spin Hall shift (SHS) refers to a transverse shift in the scattering plane during the spin-orbit interaction
(SOI). SHS is considerably small when light is scattered by a sphere due to the absence of unidirectional
scattering. This work shows that the chiral property of a sphere can offer a platform to optimize the SOI
by achieving nearly zero forward scattering with significant backward scattering. As a result, a polarization
transformation takes place and the scattered field transfers its maximum spin angular momentum to orbital
angular momentum. Consequently, an enhanced transversal shift is observed due to the momentum conservation
of the scattered field. The results reveal that the shift strongly depends on the handedness of the chiral sphere
and the helicity of the incident beam. Thus, offering an alternative paradigm for the quantitative measurement of
chirality parameters of a single chiral nanoparticle. We hope that these results will potentially shed new light on
the SOI of various forms that can find potential applications such as optical sensing, chiral resolution of single
nanoparticles, precision measurements, and the manipulation of subwavelength nanoparticles.
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I. INTRODUCTION

Light can carry spin angular momentum (SAM) and orbital
angular momentum (OAM) due to its intrinsic polarization
and spatial (orbital) degrees of freedom [1], respectively.
The conversion between the SAM and OAM can be an-
ticipated during the light-matter interaction which emerges
from several fascinating phenomenon. For instance, when a
circularly polarized (CP) light scatters by a particle it does
not propagate in the original plane but it manifests a small
transversal spin-dependent shift out of the original plane due
to the spin-orbit interaction (SOI) [2–5]. This spin-dependent
displacement is a manifestation of the spin-Hall effect of light
(SHEL) [6–10], which received significant attention due to its
numerous potential applications. In fact, SHEL is actually a
photonic counterpart of the Hall effect in electronic systems
where the applied electric field and electron spin are replaced
with the gradient of the refractive index and polarization
of light [11,12]. During the course of SOI, a conversion of
SAM to OAM occurs, which is an inevitable and ubiquitous
phenomenon appearing when light is scattered by subwave-
length particles. Since, during the transformation of SAM to
OAM, the total angular momentum is conserved [13], the
scattered beam is transversely shifted out of the plane. This
spin-dependent shift is the origin of the spin Hall effect of
light [10,14–17].

SHS can be exploited for sensing of refractive index of the
medium [18], precision measurements like the thickness of
thin films [19], the measurement of graphene layers with their
conductivity [20,21], and the detection of the rate of chemical
reactions [22]. For the usual spherical optical systems, the
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scattering of light is nearly homogeneous around the particle
[23,24], therefore, the scattered field presents weak SOI and
results in a small SHS. On the contrary, for planner interfaces
such as air-glass and glass-metal interfaces, a large SHS is
experimentally demonstrated [19,25–27].

However, several works were presented to optimize the
SHS by engineering the optical properties of the sphere. For
instance, a large SHS is observed using the plasmonic core-
shell [14], topological insulator [17], and by exploiting the
duality of a hypothetical magnetic sphere [10]. In this work,
we optimize the SOI by achieving the quasi-anti-dual sym-
metric modes of a spherical particle by introducing the chiral
property of the sphere.

Chirality is a geometrical property of an object that shows
a lack of mirror symmetry [28] and distinguishable mirror
images. These images are commonly known as chiral enan-
tiomers and can further be designated as left- and right-handed
chiral enantiomers [28–30]. In this scenario, each enantiomer
interacts differently with CP light and performs selective
optical phenomena such as scattering, optical rotation, and
circular dichroism [31–33]. Recently, we showed that the SOI
can be significantly enhanced in the presence of chirality of
sphere [30,34,35] or chirality of the surrounding medium [36].
In this perspective, a strong coupling between the chirality
parameter κ and incident polarization may lead to a large
conversion between SAM to OAM.

Taking inspiration from these findings [30,34,36], one may
exploit the SOI between the circularly polarized incident light
and subwavelength chiral sphere. In this perspective, we are
investigating the chirality-dependent SHS of light by not only
the homogeneous chiral sphere, but also for the chiral core-
shell particle [28]. We show that an appropriate selection
of the chirality parameter and polarization of the incident
beam allows harnessing the quasi-anti-dual symmetry of
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FIG. 1. (a) Schematic illustration of spin Hall shift: a circularly
polarized light is impinging on a chiral sphere and corresponding
scattered field is observed by a detector. In the view of the de-
tector, the scattered light is emitted by the transversely displaced
sphere (indicated by lighter color) instead of the original sphere
(indicated by light blue sphere). This apparent transversal shift (indi-
cated by red arrow) in the scattering plane is responsible for SHEL.
(b) Transfer function of the particle versus chirality parameter, in-
set shows the dipolar Mie scattering coefficients. (c) Analytically
(solid line) and numerically (COMSOL mulityphysics v5.6) (dashed)
calculated forward scattering efficiency vs chirality parameter, in-
sets show numerically calculated 3D sketches: far-field scattering
radiation pattern for chirality parameter κ = −0.56 (I), κ = 0 (II),
and κ = +0.56 (III). Spin Hall shift (in the unit of wavelength)
as a function of (d) scattering angle for fixed κ = −0.56 and
(e) chirality parameter for fixed scattering angle at θ = 26◦. Inset
of (d,e) represent the diattenuation as a function of scattering angle
and chirality parameter, respectively. All of these calculations are
carried out by considering left circularly polarized incident light of
wavelength 1 μm, radius of the sphere 100 nm, refractive indices of
the sphere (medium) 1.58 + κ (nm = 1).

subwavelength chiral particles. As a result, the chiral particle
scatters more momentum in the backward direction and allows
us to observe a large spin-dependent SHS.

Since the SHS can be measured experimentally with great
success [19,37], it may open an opportunity to characterize
the chirality parameter of single plasmonic particles where the
traditional methods [30,34–36] cannot be applied.

II. THEORETICAL BACKGROUND

Let us consider a chiral sphere of radius a, refractive in-
dex nσ = √

εpμp + σκ , where κ is the chirality parameter,
σ = 1(−1) for left (right) CP light, εp(μp) is the relative
permittivity (permeability) of the sphere, illuminated by a
CP beam as shown in Fig. 1(a). In what follows, we adopt
the time-harmonic convention e−iωt and ignore the temporal
dependence. In this perspective, the light scattered by the

chiral sphere can be defined by using the well-established
Mie scattering theory [38,39]. Since the impinging field has
well-defined helicity, the scattered field by the sphere could
have both left- and right-handed CP wave contribution [39].
Thus, it is more convenient to express the scattered electric
field Es in terms of both-handed scattering modes as [40]

Es =
∞∑

n=|mz |
in(2n + 1)1/2

(
An + Bn

2
ALCP

n,mz
+ An − Bn

2
ARCP

n,mz

)
,

(1)

where An and Bn are the effective Mie coefficients for
the chiral sphere [34,35], index n denotes the nth-order of
spherical harmonics, mz is the angular momentum projection
on the incident laser axis, and ALCP

n,mz
and ARCP

n,mz
are the left CP

and right CP multipoles [40].
Equation (1) can provide complete information of the

polarization state of the scattered light. For instance, the
scattered light could have the same (opposite) polarization
as of the incident beam if the particle exhibits dual (an-
tidual) symmetric mode [40]. It is worth mentioning that a
sphere presents dual (antidual) symmetric mode when the
electric An and magnetic Bn scattering coefficients of the
sphere posses equal magnitude with same (opposite) phases,
e.g.. An = Bn (An = −Bn). The dual and antidual symmetry
modes in the dielectric sphere can be achieved in quasistatic
approximation by considering a particle with εp = μp and
εp = 4−μp

2μp+1 , respectively. Although in the visible frequency
range, the naturally occurring materials do not possess a mag-
netic permeability different than unity μp �= 1, thus making
realization of the dual and antidual modes difficult. However,
using a high refractive index sphere we can achieve a strong
magnetic response due to the rotation of the displacement
currents [24,41,42].

To circumvent these limitations, we are exploiting the chi-
rality parameter κ of the sphere as an additional degree of
freedom that allows us to achieve antidual symmetric mode.
To analyze the duality of the system, we may evaluate the
transfer function T which can be written as [40]

T =
∑

n(2n + 1)|An − Bn|2∑
n(2n + 1)|An + Bn|2 . (2)

It defines the ratio between the energy scattered in the back-
ward direction to the energy scattered in the forward direction.
It is trivial to note that, in the vicinity of dual mode where
the first Kerker’s condition is satisfied [23,24,43], the particle
should scatter zero energy in the backward direction and T →
0. In contrast, at the antidual mode, where the second Kerker’s
condition satisfies [24,43], the particle should be scattering
zero energy in the forward direction, and in this case, Eq. (2)
will lead to T → ∞. For a usual low refractive index sphere,
the interference between the electric and magnetic scattering
modes is negligibly small and the scattered momentum is
nearly homogeneous in all directions. Therefore, the transfer
function does not achieve its sharp extremum and hence yield
a weak SHS.

The spin Hall shift associated to system illustrated in
Fig. 1(a) can be expressed by utilizing the Poynting vector
[44] of the scattering field. The transverse spin-dependent
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shift normal to the scattering plane can be defined as �SH =
limr→∞r(Sφ/|Sr |), where Sφ and |Sr | are the azimuthal and
radial components of the scattered Poynting vector. Finally,
�SH can be expressed by using Mie scattering theory [17] as

�SH = σ sin θ

k

Re
[∑

n=1(2n + 1)(S∗
1 · Anπn + S2 · (Bnπn)∗)

]
|S1|2 + |S2|2 ,

(3)

where S1 and S2 are the scattering matrix amplitudes [38]

S1 =
∑

n

2n + 1

n(n + 1)
[Anπn(cos θ ) + Bnτn(cos θ )], (4)

S2 =
∑

n

2n + 1

n(n + 1)
[Anτn(cos θ ) + Bnπn(cos θ )]. (5)

Here, πn(cos θ ) and τn(cos θ ) are the angle-dependent
functions.

Analytical analysis of the enhanced SHS

For the long wavelength regime, where only dipolar modes
are excited, one can simplify the angle-dependent functions
as τ1(cos θ ) = cos θ and π1(cos θ ) = 1. Now Eqs. (4) and (5)
can be expressed as

S1 = 3/2(A1 + B1 cos θ ), S2 = 3/2(A1 cos θ + B1),

respectively. It is interesting to note that, in the vicinity of dual
(A1 ≈ B1) and antidual (A1 ≈ −B1) modes of the chiral parti-
cle, both S1 and S2 approach zero simultaneously at θ = 180◦
and θ = 0◦, respectively. Thus, Eq. (3) suggests that both dual
and antidual modes should lead to an enhanced SHS. It is
worth mentioning that dual and antidual symmetric modes can
appear for μp �= 1, which is rather difficult for the nonmag-
netic low refractive index sphere. In this perspective, this work
utilizes the sphere chirality parameter κ to achieve nearly
identical scattering amplitudes A1 ≈ −B1 and hereinafter we
will call them as the quasi-anti-dual symmetric modes. In the
vicinity of the quasi-anti-dual symmetric mode of the system.
The sphere will scatter light in the backward direction with
nearly zero forward scattering. Thus a large SHS is expected
to occur.

III. RESULTS AND DISCUSSION

In the following discussion we consider a circularly polar-
ized plane wave of vacuum wavelength λ0 = 1μm, scattering
by a chiral sphere of radius a = 100 nm, relative permittiv-
ity (permeability) εp = 2.5(μp = 1) immersed in an aqueous
solution of refractive index nm. Without going into the detail
and specification of chiral materials, for the sake of broader
readership we generalize our findings by taking chirality pa-
rameter κ ranging from −1 to +1. This range of chirality
parameter was already used by several well-reputed research
groups [45–50].

To elucidate the role of the chirality parameter on the dual-
ity symmetry of the system, we calculate the transfer function
T versus the chirality parameter in Fig. 1(b). It is shown that at
chirality parameter κ = −0.56, T attains its maximum value
T → 103, which means the particle is scattering more optical
momentum in the backward direction. Equation (2) suggests
that the sharp peak of T appears due to the occurrence of

the quasi-anti-dual symmetric mode (A1 ≈ −B1). For the con-
creteness of this fact, we estimate the absolute values of the
dipolar scattering amplitudes |A1| and |B1| in the inset of
Fig. 1(b) and they appear identical at κ = −0.56 as expected.

To see the directional scattering profile close to the an-
tidual symmetric mode, we calculate the forward-scattering
efficiency (Q f ) (an explicit expression of Q f is given in
Appendix A) in Fig. 1(c) as a function of κ . It is shown that Q f

is substantially suppressed at κ = −0.56 which appears due to
the destructive interference between the electric and magnetic
scattering amplitudes. To obtain more insight, we numer-
ically (COMSOL Multiphysics) calculate three-dimensional
(3D) sketches of far-field radiation pattern and shown in the
insets of the Fig. 1(c) for the different chirality parameter: (I)
κ = −0.56, (II) κ = 0, and (III) κ = 0.56. It is shown that
the sphere with quasi-anti-dual symmetric mode scatters zero
momentum in the forward direction (I) and the sphere with
κ = 0 behaves like a typical dipole scatterer (II). In contrast,
the left-handed chiral sphere scatters large momentum in the
forward direction (III). As a result, a large transfer function
is only achieved at quasi-anti-dual symmetric mode, e.g., at
κ = −0.56. It is important to mention that, close to the quasi-
anti-dual mode the denominator of Eq. (3) |S1|2 + |S2|2 should
be minimum and hence Eq. (3) predicts a large spin Hall shift.

In Fig. 1(d), we plot �SH (in units of λ) as a function of the
scattering angle for a fixed chirality parameter at κ = −0.56.
It is demonstrated that a large SHS appears at θ = 26◦ as
expected. In addition to this analytical approach, the enhanced
SHS can be understood by analyzing the conversion of SAM
to OAM. In fact, during this conversion the total angular
momentum of the scattered field is conserved, as a result, the
scattering plane has to be shifted out of the original plane by
�SH. For this particular configuration, a large shift appears
at θ = 26◦ [see Fig. 1(c)], which implies that the maximum
SAM converts to OAM at θ = 26◦ .

To elucidate the transformation of SAM to OAM, we can
analyze the differential attenuation of the orthogonal polariza-
tion state such as the diattenuation function d (θ ), which can
be defined as

d (θ ) = |S2|2 cos2 θ − |S1|2
|S2|2 cos2 θ + |S1|2

. (6)

During the course of the light-matter interaction when no
SAM to OAM transformation occurs, d (θ ) = 0 is mea-
sured. In contrast, a complete SAM-to-OAM conversion gives
d (θ ) = 1. To evaluate the role of SAM-to-OAM conversion
on SHS, we calculate d (θ ) versus θ in the inset of Fig. 1(d)
for fixed κ = −0.56. It is clearly shown that d (θ ) approaches
its maximum value d (26◦) ≈ 0.96 at θ = 26◦. Thus, the scat-
tered field has maximally transferred its SAM. This nearly
complete transformation of SAM to OAM is responsible for
the enhancement of �SH.

To demonstrate the role of other values of the chirality
parameter, in Fig. 1(e) we plot �SH as a function of κ for
fixed scattering angle θ = 26◦. The results indicate that a left
CP light strongly interacts with right-handed chiral particles
and due to the strong SOI, maximum SAM is converted to
OAM. Thus, a large SHS is found at κ = −0.56. On the same
footing, in the inset of Fig. 1(e) we calculate the d (θ ) as
a function of the chirality parameter for fixed θ = 26◦, the
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FIG. 2. (a) Color map of the normalized spin Hall shift �SH (in
units of wavelength) versus chirality parameter and the scattering
angle. The maximum enhancement at κ = −0.56 is clearly observed.
Distributions of (b) spin angular momentum and (c) orbital angu-
lar momentum per photon as a function of chirality parameter and
scattering angle. The colorscale illustrates the values of OAM per
photon that exceed the incident AM per photon which can be related
to the negative spin density values. Since the total momentum per
scattered photon is conserved, the corresponding colorscale in all
region satisfies the relation �s + sz = 1.

sharp decay of d (θ ) at κ = −0.56 is also evidence of the
polarization transformation.

The origin of SHS can also be understood by revisiting the
SAM and OAM per photon in the far-field scattering regime.
For the system sketched in Fig. 1(a), the contribution of SAM
and OAM per photon can be written as [51,52]

sz = −i

(
Escat∗

σ × Escat
σ

)
ẑ

Escat∗
σ Escat

σ

, (7)

and

�z = −i

[
Escat∗

σ × (LzEscat
σ )

]
ẑ

Escat∗
σ Escat

σ

, (8)

respectively, where Lz = −i(r × ∇ )z is the OAM operator.
Since the total angular momentum of the incident field is
preserved and the scattered plane wave which involves only
mz = σ , would be an eigenfunction of the z component of
the total angular momentum operator J with eigenvalue jz.
Thus, the total angular momentum density per photon of the
scattered field should also be conserved such that jz = �z + sz.

To gain further insight into the conditions required for the
large SHS, in Fig. 2(a) we demonstrate the apparent SHS
[associated with the scattering problem sketched in Fig. 1(a)]
versus chirality parameter and scattering angle. It can be seen
that for all the parameter space, �SH has only one maxima
appearing due to the antidual nature of the chiral sphere at

FIG. 3. Panel (a) illustrates a ratio between electric A1 and mag-
netic B1 chiral dipoles as a function of chiral parameter and refractive
index of the surrounding medium nm, where white dashed line
indicates the parameter space corresponding to A1/B1 = 1. (b) Nu-
merically calculated polar plot and 3D sketch of Far-field radiation
pattern, z axis shows the direction of incident beam. �SH in units of
wavelength is calculated as a function of (c) scattering angles and (d)
chirality parameter. Here, all other parameters are the same as taken
in Figs. 1 and 2.

κ = −0.56, as shown in Fig. 1(b). To establish the connection
between SHS with optical momentum conversion, next we
calculate sz and �z in Figs. 2(b) and 2(c), respectively. It
is important to emphasize that the sum of the total angular
momentum per photon should be conserved and equal to the
helicity of the incident beam. Equation (7) suggests that SAM
per photon varies −1 < sz < 1 and Fig. 2(b) shows that the
scattered photon carries negative spin density (sz ∼ −0.6)
when SHS is enhanced. Therefore, OAM per scattered photon
should have to acquire a large value �z = 1.6 than the inci-
dent angular momentum jz = 1 to conserve the total angular
momentum. This phenomenon was previously referred to as
supermomentum with an extreme value of �z = 2σ [53,54].
It is worth emphasizing that the scattered light can posses
�z = 2σ when particle scatters exactly zero forward scatter-
ing, where the asymmetry parameter (g) [38] has to reach at
g = −1/2 (see Sec. 1 B). Since for a passive sphere g > −1/2
due to the limitation imposed by the optical theorem [55],
�z < 2 and 0 > sz > −1. In the all scenarios, the total angular
momentum per photon after scattering is conserved �z + sz =
σ = 1 for all κ and θ, the enhanced SHS is only found when
maximum SAM is converted to OAM.

It is worth mentioning that the enhancement of SHS does
not require the large value of the chirality parameter that we
used in the previous discussion. However, it can be varied
along the chirality axis by changing the material parameters
and other length scales involved in the scattering problem.
With this perspective, we analyze the effect of the surround-
ing medium to tune the position of SHS toward the lower
value of the chirality parameter. To this end, in Fig. 3(a)
we calculate |A1/B1| as a function of chirality parameter and
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medium refractive index nm to estimate the required values of
κ and nm to achieve the quasi-anti-dual symmetric mode. The
white dashed line in Fig. 3(a) indicates where the condition
|A1/B1| = 1 satisfies and the particle exhibits quasi-anti-dual
mode with nearly zero forward scattering. To unveil the effect
of nm on SHS, we marked three different points as highlighted
by the circles and the corresponding parameters like κ and nm

are indicated by the dotted lines. To see the scattering profile
at the circles, we numerically calculate the polar sketches of
the far-field radiation pattern using COMSOL, and shown in
Fig. 3(b). It is confirmed that along the white dashed line the
second Kerker’s condition is satisfied. Further details can be
found in the Appendix.

Figure 3(c) represents SHS (in units of the wavelength)
versus scattering angle for different chirality parameters and
medium refractive as mentioned in the inset. The results show
that an enhancement of �SH is found close to the θ = 20◦,
where the maximum conversion of SAM to OAM occurs due
to the antidual symmetric mode. In Fig. 3(c) we present �SH

as a function of chirality parameter for fixed scattering angle
at θ = 20◦ for different nm as indicated in the inset. It is clearly
shown that with the increase in the medium’s refractive index
the peak of �SH is shifted to a lower chirality parameter,
whereas the SHS on the opposite-handed chiral sphere (in this
case, the left-handed chiral sphere κ > 0) does not show much
variation. Thus, altogether this platform provides a strategy
to sense the chirality of a single nanoparticle on the basis of
the enhanced spin Hall shift. To see the �SH on the opposite-
handed chiral sphere we may revert the incident polarization
which will lead to negative �SH on the chiral sphere.

For the concreteness of this chiral enantioselection based
on the SHS technique, let us extend this idea to measure
the chirality parameter of chiral core-shell particles. For the
sake of generality we consider the dielectric core and chiral
shell. The chiral core-shell particles may constitute a variety
of chiral structures such as an achiral (dielectric or metal-
lic) core coated with chiral materials [56–60] or an achiral
core decorated with achiral metallic nanoparticles forming a
plasmonic raspberry-like core-shell structure [28,31,61–63].
In the first case, the chiral response appears due to the chiral
shell, while in the second case (where metallic particles are
randomly oriented over the achiral core) the chiral response
may appear due to the random orientation of the metallic
particles. It is due to the fact that the random structures are
chiral and show large natural optical activity [64], thus they
ultimately govern the optical chiral response [64–66].

However, the handedness and geometrical chirality of
many of these artificial plasmonic structures are not a priori
known after the nanofabrication process. In addition, many
applications utilize single isolated plasmonic raspberry-like
structures with unknown handedness and unique optical prop-
erties. In these cases, traditional probes of chirality, such as
rotatory power and circular dichroism are expected to fail
to measure the chiroptical properties of the single particle
as they typically provide an average chiral response of these
structures in solution.

For this configuration, we consider a polystyrene core of
radius b, refractive index nc = √

εc coated with a chiral shell
of thickness t , refractive index ns = √

εs + σκ , where εc and
εs are the permittivity of the core and shell, respectively. For
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FIG. 4. (a) Plot of |A1/B1| as function of chirality parameter
for chiral core shell, where the horizontal dashed line indicates
|A1/B1| = 1. (b) Transfer function versus chirality parameter for left
(black) and right (dotted) circularly polarized incident beam. (c) SHS
for fixed κ = −0.44 (+0.44) as a function of scattering angle and
(d) SHS for fixed scattering angle at θ = 41◦ as a function chirality
parameter for σ = +1 (σ = −1) indicated by black (dotted).

the numerical calculation presented in Fig. 4, we consider the
relative permittivity of the core (shell) εc = 2.5 (ns = 2.89 +
0.05i), radius of the core b = 60 nm, and shell thickness t =
40 nm. Since the particle has an imaginary refractive index,
therefore, our previous enantioselective methods [30,34–36]
may not be applied to detect the chiral handedness of the
sphere.

To estimate the required chirality parameter to achieve the
quasi-anti-dual condition for this particular configuration, in
Fig. 4(a), we calculate |A1/B1| of the core-shell particle as a
function of κ for different polarization. The explicit expres-
sions of An and Bn for the core-shell particle can be found
in Ref. [30]. Note that the chiroptical response is symmetric
when we change the polarization as illustrated in Fig. 4(a). It
is clear that |A1| ≈ |B1| at κ = −0.44 (κ = 0.44) for the right
(left) CP incidence as marked by intersection points of the
horizontal dashed line. Thus, the quasi-anti-dual symmetric
mode is achieved and the core-shell nanoparticle scatters more
energy in the backward direction. Hence, the transfer function
should be maximum as shown in Fig. 4(b), where the transfer
function is plotted versus the chirality parameter.

In fact, the forward scattering by the chiral core-shell
particle is suppressed at κ = −0.44 and there must be a
polarization transition between the forward and backward
scattering, which ultimately leads to a strong SOI at par-
ticular scattering angle. In Fig. 4(c), we calculate the SHS
versus scattering angle and the results show that the large
shift appears between θ = 25◦ to 60◦. Finally, in Fig. 4(d) we
fix the scattering angle at θ = 40◦ to calculate the �SH as a
function of the chirality parameter. It is indicated that only the
right-handed chiral sphere with κ = −0.44 undergoes a large
SHS while the SHS for the left-handed particle is very small.
Thus, we can detect the nature of the chirality parameter of
a single nanoparticle. However, the spin Hall shift on the
left-handed chiral sphere can be achieved by reversing the
polarization of the incident light beam. For this case, we also
present a parallel calculation for the left CP (σ = −1) incident
field and the enhanced shift is found at κ = 0.44.
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IV. CONCLUSION

In summary, we investigated the SHEL for the chiral sphere
in the vicinity of quasi-anti-dual symmetry. It was shown that
an appropriate combination of chirality and other material
parameters involved in the scattering problem allows us to
equally excite the electric and magnetic chiral dipoles to per-
form destructive interference in the forward direction. As a
result, chiral particle scatters more energy in the backward
direction. This phenomenon reveals a polarization transfor-
mation of the scattered field and optimizes the spin-orbit
interaction. As a result, the all spin angular momentum of
the beam is converted to orbital angular momentum and the
scattered field only carries orbital angular momentum. To
this end, the incident light transfers its all SAM to OAM.
Consequently, this complete conversion of the optical mo-
mentum leads to an optimal shift in the scattered light by
the sphere. By considering two different examples such as a
homogeneous chiral sphere and chiral core-shell, we showed
that the chirality-dependent SHS can be exploited to detect the
chiral nature of a single plasmonic chiral nanosphere, where
traditional methods may not be applied. Hence, we expect
that the large SHEL should be detected in experiments and
plays significant roles in the analysis of optical chiral sensing
particularly to characterize the chirality of a single particle
and potential applications in precision metrology.
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APPENDIX A: MIE SCATTERING BY CHIRAL SPHERE

This Appendix contains an expanded theoretical descrip-
tion of light scattering by a chiral particle and orbital angular
momentum per photon of the scattered light, where explicit
expressions of the directional scattering (e.g., forward scatter-
ing and backward scattering), SOM and OAM are presented.
Furthermore, we also briefly described the COMSOL multi-
physics implementation for a chiral sphere.

Electromagnetic field in chiral media

Let us consider an electromagnetic incident field Einc

illuminating a chiral sphere of radius a immersed in a non-
magnetic dielectric host medium. By following the Bohren
decomposition method [38], we express the electromagnetic
field in terms of the linear combinations of the vector wave
function in spherical coordinates as

Ein = E0

∞∑
�=1

i�
2� + 1

�(� + 1)

(
M (1)

o1� − iN (1)
e1�

)
, (A1)

Hin = H0

∞∑
�=1

i�
2� + 1

�(� + 1)

(
M (1)

e1� + iN (1)
o1�

)
, (A2)

where Me1�, Mo1�, Ne1�, and No1� are the vector spherical
harmonics [39] and H0 = k

ωμ
E0. Since the electric E and

magnetic H fields inside the chiral sphere are coupled by a
phonological constant κ . Therefore, it can be described by the
following modified constitutive relations

D = ε0εpE + iκ
√

ε0μ0 H,

B = −iκ
√

ε0μ0 E + μpμ0H, (A3)

where D and B are the electric displacement and the magnetic
field, respectively. Furthermore, ε0 (μ0) is the vacuum per-
mittivity (permeability). By using these constitutive relations
in the Maxwell’s equations for chiral media in the frequency
domain, the coupling between the E and H can be removed
through the linear transformation [36,39]. Finally, a straight-
forward calculation allows us to define the scattered field by
the chiral sphere in the surrounding medium as [39]

Es = E0

∞∑
�

(i)�
2� + 1

�(� + 1)

× (
ia�N3

e1� − b�M3
o1� + c�M3

e1� − id�N3
o1�

)
,

Hs = H0

∞∑
�

(i)�
2� + 1

�(� + 1)

× (
a�M3

e1� + ib�N3
o1� − ic�N3

e1� − d�M3
o1�

)
, (A4)

where a�, b�, c�, and d� are commonly known as Mie coef-
ficients that can be calculated using a subsidiary boundary
condition at the sphere surface and defined as

a� = V�(−)A�(+) + V�(+)A�(−)

W�(+)V�(−) + V�(+)W�(−)
,

b� = W�(+)B�(−) + W�(−)B�(+)

W�(+)V�(−) + V�(+)W�(−)
,

c� = −d� = i
W�(−)A�(+) − W�(+)A�(−)

W�(+)V�(−) + V�(+)W�(−)
, (A5)

with

W�(σ ) = mψ�(yσ )ξ ′
�(x) − ξ�(x)ψ ′

�(yσ ),

V�(σ ) = ψ�(yσ )ξ ′
�(x) − mξ�(x)ψ ′

�(yσ ),
(A6)

A�(σ ) = mψ�(yσ )ψ ′
�(x) − ψ�(x)ψ ′

�(yσ ),

B�(σ ) = ψ�(yσ )ψ ′
�(x) − mψ�(x)ψ ′

�(yσ ),

where m = m+m−/2(m+ + m−). The Riccati-Bessel func-
tions ψ�, ξ� are evaluated either at the size parameter x =√

εwk0a defined with respect to the wavelength in the non-
magnetic achiral host medium (relative electric permittivity
εw) or at yσ = mσ x/

√
εw. For the sake of convenec we can

define the effective scattering coefficients A� = a� + iσc� and
B� = b� − iσd� for circularly polarized light of helicity σ

[30,34].
To explore the role of the chirality parameter on the transfer

function and directional scattering, let us consider further de-
tail of the scattering properties of a small chiral sphere a � λ,
where only the dipole scattered fields are excited. In this do-
main, the induced dipole moments become proportional to the
external fields, and is usually written in terms of the particle’s
electric, magnetic and chiral polarizabilities αee, αmm, and αem,
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FIG. 5. (a) Forward scattering efficiency Qf and (b) backward
scattering efficiency Qb as a function of chirality parameter for dif-
ferent medium refractive index. This scattering profile corresponds to
Fig. 3 of the main text. Numerically calculated radiation pattern at the
dots on blue line of (a). This figure shows that Qf strongly depends in
κ and one can achieve zero forward scattering by exploiting chirality
parameter.

respectively,

a1 = k3
0

i6πε0
α, b1 = k3

0μ0

i6π
αmm,

(A7)

c1 = k3
0
√

μ0

6π
√

ε0
αem, d1 = − k3

0
√

μ0

6π
√

ε0
αem.

The explicit expressions for the polarizabilities can be mani-
fested by a Taylor expansion with leading-order terms x3 and
we get the generalization of the Clausius-Mossotti relations
for a chiral particle as

αee = 4πa3 3εs − 3 − κ2

3εs + 6 − κ2
,

αmm = 4πa3 κ2

3εs + 6 − κ2
,

αem = 12πa3 κ

3εs + 6 − κ2
.

(A8)

By using the definition of the scattering dipoles, the
scattering of light in the forward direction and in the back-
ward direction can be written in terms of the polarizabilities
[24,38] as

Q f = 3

x2
(A1 + B1) ∝ 1

x2
(αee + αmm + 2iαem),

(A9)

Qb = 3

x2
(A1 − B1) ∝ 1

x2
(αee − αmm).

Equation (A8) shows that αee and αmm are even in κ and αem

is odd in κ . Thus, from Eq. (A9) it is clear that the forward
scattering strongly depends on the chiral parameter while
backward scattering does not. For numerical demonstration
of this fact, in Fig. 5 we demonstrate [Fig. 5(a)] forward
scattering and [Fig. 5(b)] backward scattering as a function

of the chirality parameter for the different refractive index of
the surrounding medium nm. It was shown that the forward
scattering by the right-handed chiral sphere immersed in a
medium with refractive index nm: 1.1 (blue), 1.2 (red), and 1.3
(black) is strongly reduced at κ = −0.42 (blue), κ = −0.31
(red), and κ = −0.2 (black), respectively. Whereas, the back-
ward scattering does not show a considerable variation along
the chirality axis.

Figuress 5(e) and 5(d) present the numerically calculated
far-field radiation polar plots and their 3D sketches for the
chiral sphere immersed in a medium with refractive index
nm = 1.1 for different chirality parameter [Fig. 5(c)] κ =
−0.42, [Fig. 5(d)] κ = 0, and [Fig. 5(e)] κ = 0.42. The results
show that it is possible to achieve the zero forward scatter-
ing by selecting an appropriate combination of the material
parameters and other lengthscales involved in the scattering
problem.

APPENDIX B: ORBITAL ANGULAR MOMENTUM

The system under consideration exhibits axial symmetry
around the beam axis, where the total angular momentum of
the incident beam is preserved and equal to the helicity of the
incident beam σ . Furthermore, the scattered field, which can
only involve m = σ , is an eigenfunction of the z component
of the total angular momentum operator J with eigenvalue jz,
such that

jz = Escat∗
σ (Lz + Sz )Escat

σ

Escat∗
σ Escat

σ

= �z + sz = σ, (B1)

where �z and sz are given as in Eqs. (8) and (7), respectively,
of the main text. In the case of long wavelength regime, where
only the chiral dipolar is excited, the conservation of momen-
tum leads us to the study of the exchange between the SAM
and OAM contributions per photon that can be expressed by
analyzing the following relation regime:

�z = σ sin2 θ (1 + 2gcos θ )

1 + cos2 θ + 4gcos θ
, (B2)

sz = 2σ cos θ (1 + cos2 θ )g + cos θ

1 + cos2 θ + 4gcos θ
, (B3)

g =
∫
�

dQs

d�
cos θd�∫

�

dQs

d�
d�

= Re(A1B∗
1 )

|A1|2 + |B1|2 , (B4)

where g is the asymmetric parameter that defines in terms of
the average cosine of all scattering angles.

Equation (B4) suggests that the OAM of the scattered
light can reach its extreme value �z = 2σ when the particle
presents exactly dual symmetric modes with A1 = −B1. At
this condition, the asymmetric parameter reaches g = −1/2
as predicted by Eq. (B4). Since the sphere is passive due to
the limitations imposed by the optical theorem g > −1/2 and
�z = 1.6 is measured as shown in Fig. 2.

APPENDIX C: COMSOL SIMULATION OF CHIRAL
SPHERE

Numerical simulation of the chiral Mie scattering is carried
out by using COMSOL Multiphysics software v5.6. Since for
chiral materials the electric displacement vector and magnetic
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induction vector are different that ordinary isotropic dielectric
materials are defined as in Eq. (A3). Therefore, constitutive
relations within COMSOL were modified to solves Maxwell’s

equations. Here we adopted the following modifications to
the wave optics module, electromagnetic waves frequency
domain that were implemented in several works [67,68].

The equation for D is modified as (here we use κ = kappa mu0_const. = μ0, ε0_const. = ε0),

emw.Dx → ε0_const. ∗ emw.Ex + emw.Px − i/c_const. ∗ κ ∗ emw.Hx,

emw.Dy → ε0_const. ∗ emw.Ey + emw.Py − i/c_const. ∗ κ ∗ emw.Hy, (C1)

emw.Dz → ε0_const. ∗ emw.Ez + emw.Pz − i/c_const. ∗ κ ∗ emw.Hz.

The equation for H components is modified as

emw.Hx → (emw.murinvxx ∗ emw.Bx + emw.murinvxy ∗ emw.By + emw.murinvxz ∗ emw.Bz − i/c_const ∗ kappa∗
× [emw.murinvxx ∗ emw.Ex + emw.murinvxy ∗ emw.Ey + emw.murinvxz ∗ emw.Ez)]/mu0_const

emw.Hy → (emw.murinvyx ∗ emw.Bx + emw.murinvyy ∗ emw.By + emw.murinvyz ∗ emw.Bz − i/c_const ∗ kappa∗
× [emw.murinvyx ∗ emw.Ex + emw.murinvyy ∗ emw.Ey + emw.murinvyz ∗ emw.Ez)]/mu0_const

emw.Hz → (emw.murinvzx ∗ emw.Bx + emw.murinvzy ∗ emw.By + emw.murinvzz ∗ emw.Bz − i/c_const ∗ kappa∗
× [emw.murinvzx ∗ emw.Ex + emw.murinvzy ∗ emw.Ey + emw.murinvzz ∗ emw.Ez)]/mu0_const (C2)

The equation for dH/dt components is modified as

emw.dHdtx → (emw.murinvxx ∗ emw.dBdtx + emw.murinvxy ∗ emw.dBdty + emw.murinvxz ∗ emw.dBdtz

+ emw.ω/c_const. ∗ κ ∗ [emw.murinvxx ∗ emw.Ex

+ emw.murinvxy ∗ emw.Ey + emw.murinvxz ∗ emw.Ez)]/mu0_const.,

emw.dHdty → (emw.murinvyx ∗ emw.dBdtx + emw.murinvyy ∗ emw.dBdty + emw.murinvyz ∗ emw.dBdtz+
× emw.ω/c_const. ∗ κ ∗ [emw.murinvyx ∗ emw.Ex + emw.murinvyy ∗ emw.Ey

+ emw.murinvyz ∗ emw.Ez)]/mu0_const.,

emw.dHdtz → (emw.murinvzx ∗ emw.dBdtx + emw.murinvzy ∗ emw.dBdty + emw.murinvzz ∗ emw.dBdtz

+ emw.ω/c_const. ∗ κ ∗ [emw.murinvzx ∗ emw.Ex

+ emw.murinvzy ∗ emw.Ey + emw.murinvzz ∗ emw.Ez)]/mu0_const. (C3)
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