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Fractional saturable impurity
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We examine analytically and numerically the effect of fractionality on a saturable bulk and surface impurity
embedded in a one-dimensional lattice. We use a fractional Laplacian introduced previously by us, and by the use
of lattice Green functions we are able to obtain the bound state energies and amplitude profiles, as a function of
the fractional exponent s and saturable impurity strength χ for both surface and bulk impurity. The transmission
is obtained in closed form as a function of s and χ , showing strong deviations from the standard case, at small
fractional exponent values. The self-trapping of an initially localized excitation is qualitatively similar for the
bulk and surface mode, but in all cases complete confinement is obtained at s → 0, as shown theoretically and
observed numerically.
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I. INTRODUCTION

When a defect is inserted in a discrete, periodic system
such as a chain of atoms or an optical waveguide array, the
original translational symmetry is broken and causes that one
of the states detaches from the band and form a localized
mode centered at the impurity position. It has been proven
that, for one-dimensional (1D) and 2D lattices there is al-
ways a localized bound state centered at the defect [1,2],
regardless of the strength of the impurity. The rest of the
modes remain extended but they are no longer sinusoidal. The
single-defect system is the starting point for the study of the
more complex system with a finite fraction of disorder, where
the main phenomenon of study is Anderson localization [3,4].
Some examples of linear impurities include junction defects
between two optical or network arrays [5], coupling defects,
discrete networks for routing and switching of discrete optical
solitons [6], and also in simple models for magnetic meta-
materials, modeled as periodic arrays of split-ring resonators,
where magnetic energy can be trapped at impurity positions
[7,8].

When nonlinearity is added to a periodic system, mode
localization and self-trapping of energy can occur. This lo-
calized mode which exists in this nonlinear but otherwise
completely periodic system is known as a discrete soliton.
In most cases this concentration of energy on a small region
increases with the nonlinearity strength and, as a consequence,
the nonlinear mode becomes effectively decoupled from the
rest of the lattice. In the high nonlinearity limit, the effec-
tive nonlinearity is concentrated in a small region around the
soliton, and thus, we can consider the rest of the lattice as
approximately linear. We are then left with a linear lattice
containing a single nonlinear impurity. This simplified system
is easier to treat theoretically and closed-form solutions are
sometimes possible. In condensed matter, nonlinear impurities
appear when one dopes a material with atoms or molecules
that have strong local couplings. In optics, the system of inter-
est is a dielectric waveguide array, where one of the guides is

judiciously doped with an element with strong polarizability.
A more recent example is magnetic metamaterials, where the
system is an array of inductively coupled split-ring resonators,
where a linear (nonlinear) impurity ring is obtained by, for
instance, inserting a linear (nonlinear) dielectric inside its slit
to change its resonance frequency. In the absence of the impu-
rity, the modes are extended magnetoinductive plane waves,
and when a capacitive impurity is introduced, a localized
mode is created. The nonlinear impurity concept has also been
explored in studies of embedded solitons [9].

A common approach when dealing with generic impurities
is to make an educated guess about the shape of the mode
(usually exponential) which then leads to the mode energy
and exact spatial profile. However, this procedure might work
only partially. For one thing, in the presence of nonlinearity,
the number of modes depends on the available energy content,
and there is possible bifurcation separating different modes
with different stabilities. Also, when boundaries are involved,
like impurities close to a surface, the need for a more formal
treatment is apparent. An elegant method for dealing with
impurity problems is the technique of lattice Green functions
[11–13]. Originally devised for linear problems, it has been
shown that it can also be extended to nonlinear cases [14–17].
This is the method we will follow in this work, with the added
feature of fractionality.

The concept of fractionality has gained considerable in-
terest in recent years. Roughly speaking, it consists of a
generalization of the standard derivative of integer order by
one of fractional order. It all started with the correspondence
between Leibnitz and L’Hopital about possible generaliza-
tions of the concept of an integer derivate. The starting point
was the calculation of dsxk/dxs, for s a real number. This
means

dnxk

dxn
= �(k + 1)

�(k − n + 1)
xk−n → dsxk

dxs
= �(k + 1)

�(k − s + 1)
xk−s,

(1)
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where �(x) is the Gamma function. From Eq. (1) the frac-
tional derivative of an analytic function f (x) = ∑

k akxk can
be computed by deriving the series term by term. However,
this simple procedure is not exempt from ambiguities. These
early studies were followed later by rigorous work by several
mathematicians including Euler, Laplace, Riemann, and Ca-
puto to name some, and converted fractional calculus from a
mathematical curiosity into a research field of its own [18–21].
Several possible definitions for the fractional derivative are
known, each one with its own advantages and disadvantages.
One of the most common definitions is the Riemann-Liouville
form (

ds

dxs

)
f (x) = 1

�(1 − s)

d

dx

∫ x

0

f (s)

(x − s)s
ds. (2)

Another common form, is the Caputo formula(
ds

dxs

)
f (x) = 1

�(1 − s)

∫ x

0

f ′(s)

(x − s)s
ds, (3)

where, 0 < s < 1 is the fractional exponent. This formalism
that extends the usual integer calculus to a fractional one, with
its definitions of a fractional integral and fractional derivative,
has found application in several fields: fractional kinetics and
anomalous diffusion [22–24], fluid mechanics [25], strange
kinetics [26], Levy processes in quantum mechanics [27],
fractional quantum mechanics [28,29], plasmas [30], electri-
cal propagation in cardiac tissue [31], epidemics [32], and
biological invasions [33].

In this work we will study the effect of fractionality on
the bound state and plane-wave transmission properties of a
saturable impurity, seeking to characterize these properties as
a function of the fractional exponent s.

II. THE MODEL

.
Let us consider a generic excitation propagating along a 1D

chain periodic chain that contains a single saturable impurity
at site d:

i
dCn

dt
+ V (Cn+1 + Cn−1) + δn,d χ

Cn

1 + |Cn|2 = 0, (4)

where Cn(t ) is the probability amplitude for finding the exci-
tation at site n at time t , V is the hopping parameter, and χ

is the nonlinear parameter. In an optical context [34], Eq. (4)
describes an array of semiconductor (GaAs/AlGaAs) optical
waveguides where one of the guides is doped with a pho-
torefractive element such as lithium niobate doped with a
metal: Fe: LiNbO3. The term V (Cn+1 + Cn−1) is basically the
discrete Laplacian �nCn = Cn+1 − 2Cn + Cn−1. Then, Eq. (4)
can be cast as

i
dCn

dt
+ 2VCn + V �nCn + δn,d χ

Cn

1 + |Cn|2 = 0. (5)

The next step is to replace the discrete Laplacian �n by its
fractional form (�n)s in Eq. (5). The form of this fractional
discrete Laplacian has been found in closed form, and is given
by [35]:

(−�n)sCn =
∑
m �=n

Ks(n − m)(Cn − Cm), 0 < s < 1, (6)

FIG. 1. Decrease of kernel K(m) with distance for several frac-
tional exponents. The numbers labeling each curve denote the
fractional exponent.

where

Ks(m) = 4s�(s + (1/2))√
π |�(−s)|

�(|m| − s)

�(|m| + 1 + s)
, (7)

where �(n) is the Gamma function and s is the fractional
exponent. Figure 1 shows Ks(m) as a function of distance
m, for several fractional exponents. In all cases we observe
a monotonically decreasing behavior. In addition, for each
exponent, the maximum value of Ks(m) occurs at m = 1 and
decreases with s as

Ks(1) = 4ss �(s + (1/2))√
π �(2 + s)

. (8)

The kernel Ks(m) gives the effective coupling between
two sites separated by |m| [10]. By using limn→∞ �(n +
s) = �(n)ns, one arrives to the asymptotic form K (m) →
1/|m|1+2s, i.e., a power-law decrease of the coupling with
distance. For s approaching unity, we have lims→1− Ks(m) =
δm,1, while for s near zero, we have lims→0+ Ks(m) = s/|m|.
This means that for s near 1 the coupling is mainly between
nearest neighbors, and at s = 1 the system reduces to the
standard one with an integer Laplacian. For s near zero the
system becomes long-ranged. We look for stationary modes
Cn(t ) = φn exp(iλt ), obtaining a system of nonlinear differ-
ence equations for φn:

(−λ + 2V ) φn + V
∑
m �=n

Ks(n − m)(φm − φn)

+ δn,d χ
φn

1 + |φn|2 = 0, (9)

where, without loss of generality, the φn can be chosen as real.
Also the 2V term in Eq. (9) must be replaced by V when n
corresponds to any of the two edge sites, for a finite chain.

In the absence of the saturable impurity, we have solutions
of the type Cn = φn exp(ikn). After inserting this ansatz into
Eq. (9), we obtain the dispersion relation

λ(k) = 2V − 4V
∞∑

m=1

Ks(m) sin((1/2)mk)2 (10)
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or, in closed form

λ(k) = 2V − 16V �(s + (1/2))√
π �(1 + s)

(1 − exp(−ik) s �(1 + s)

× [ R(1, 1 − s, 2 + s; exp(−ik)) + exp(2ik)

× R(1, 1 − s, 2 + s; exp(ik))]), (11)

where R(a, b, c; z) = 2F1(a, b, c; z)/�(c) is the regularized
hypergeometric function.

Bulk impurity. In the presence of the impurity (χ �= 0), it
becomes easier to compute its properties by using the formal-
ism of the lattice Green function rather than working directly
from Eq. (9). In our case the Hamiltonian can be cast as

H = H0 + H1, (12)

H0 =
∑

n

εn|n〉〈n| +
∑
n,m

|m〉Vn,m 〈n|, (13)

H1 = χ

1 + |φd |2 |d〉〈d| (14)

with

εn = 2V − V
∑
m �=n

Ks(n − m), (15)

and

Vnm = Ks(n − m) = Vmn, (16)

where the Dirac notation has been used. Hamiltonian H0 is
the unperturbed Hamiltonian, that is, the Hamiltonian in the
absence of the impurity, while H1 is the perturbation due to
the presence of the saturable impurity at n = d , where for the
bulk impurity d is far away from the boundaries of the lattice,
while for the surface impurity d = 0. The equations of motion
for the amplitudes Cn are given by i dCn/dt = ∂H/∂C∗

n . The
Green function is defined as the operator

G(z) = 1

z − H
, (17)

while we define the unperturbed Green function as

G(0)(z) = 1

z − H0
. (18)

Typically, one has a complete knowledge of H0 which trans-
lates into knowledge of the properties of G(0). This knowledge
is used to build G which contains all the information about our
system. We formally expand Eq. (17) as a perturbation series
in H1. We start from

G = 1

z − H0 − H1
= ((z − H0) − H1)−1

= [(z − H0)(1 − (z − H0)−1H1)]−1

= (1 − (z − H0)−1H1)−1 (z − H0)−1

= (1 − G(0)H1)−1G(0), (19)

which is nothing else than Dyson’s equation [11]. We expand
it as

G = (1 + G(0)H1 + G(0)H1G(0)H1 + · · · ) G(0), (20)

that is,

G(z) = G(0) + G(0) H1 G(0) + G(0) H1 G(0) H1 G(0) · · · .

(21)
By defining matrix elements G(0)

mn = 〈m|G(0)|n〉, we can write
the unperturbed Green function as

G(0)
nm(z) = 1

2π

∫ π

−π

eik(n−m)dk

z − λ(k)
, (22)

where n and m are lattice positions and λ(k) is given by
Eq. (11). The interesting point here is that due to the par-
ticularly simple form of perturbation H1, we can resum the
perturbative series to all orders, in closed form:

G(z) = G(0) + ε

1 − ε G(0)
dd

G(0)|d〉 〈d|G(0), (23)

where

ε ≡ χ

(1 + |φd |2)
. (24)

According to the general theory [11], the energy zb of the
bound state is given by the poles of Gdd (z)

1 = ε G(0)
dd (zb) = χ

G(0)
dd (zb)

1 + ∣∣φ(b)
d

∣∣2 , (25)

while the square of the mode amplitude at site n is given by
the residue of Gnm(z) at the pole

∣∣φ(b)
n

∣∣2 = −G(0)
nd

2
(zb)

G′(0)
dd (zb)

. (26)

Also, from general Eqs. (26) and (22), it can be easily proven
that the bound state mode is always normalized:

∑
n |φ(b)

n |2 =
1. The bound state energy equation becomes

1

χ
= G(0)

dd (zb)G′(0)
dd (zb)

G′(0)
dd (zb) − G(0)2

dd (zb)
. (27)

This formalism is also useful to compute the transmission
of plane waves across the impurity, The transmission ampli-
tude is given by T ∼ 1/|1 − εG+

dd (z)|2, while the reflection
amplitude is given by R ∼ ε2|G+

d,d (z)|2/|1 − εG+
dd (z)|2, with

G+(z) = limη→0 G(z + iη) and ε given by Eq. (24). After
normalizing these amplitudes by N = T + R the transmission
coefficient t and reflection coefficient r can be expressed as

t (z) = 1

1 + ε2
∣∣G+

dd (z)
∣∣2 , (28)

r(z) = ε2
∣∣G+

dd (z)
∣∣2

1 + ε2
∣∣G+

dd (z)
∣∣2 , (29)

and z is inside the band λ(k). Since the transmission coef-
ficient is also equal to the probability at the impurity site,
ε = χ/(1 + t ), Eq. (28) becomes a cubic equation for t :

(1 + t )2 − t (b + (1 + t )2) = 0 with b ≡ χ2
∣∣G+

dd (z)
∣∣2

(30)
063504-3
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FIG. 2. Bound state condition [Eq. (27)] for the bulk impurity
(a) s = 0.8 and (b) s = 0.2, and the surface impurity (c)s = 0.8 and
(d)s = 0.2. For the surface impurity, the dots denotes the value of the
RHS at the band edges. The intersection of the horizontal line with
the RHS gives the bound state energy.

with real solution

t = 1

3

(
− 1 − 21/3(−4 + 3b)

(16 + 9b + √
27b (32 + b(−13 + 4b)))1/3

+ 2−1/3
(
16 + 9b +

√
27b (32 + b(−13 + 4b))

)1/3
)

.

(31)

Fractionality is implicit in Eq. (31) through b which depends
on G+ which, in turn, depends on λ(k) through Eq. (11).

Surface impurity. In the case of the surface impurity, lo-
cated at n = 0, we have to take into account the presence
of the boundary. That is, since there is no lattice to the left
of n = 0, G(0)

mn should vanish identically at n = −1. Thus,
G(0)

mn = G∞
mn − G∞

m,−n−2 where G∞
mn is the unperturbed Green

function for the infinite lattice. Using the representation (22),
we have

G(0)
mn = 1

2π

∫ π

−π

eik(m−n)

z − λ(k)
− 1

2π

∫ π

−π

eik(m+n+2)

z − λ(k)
. (32)

The computation of the bound state energy and bound state
amplitude proceed as before, using this new G(0)

mn (32), ex-
tracted from the method of images.

III. RESULTS

.
We begin by taking a look at the bound state energy equa-

tion (27). Figure 2 shows the RHS of Eq. (27) as a function
of the frequency z. The horizontal dashed line represents the
value of some 1/χ , whose intersection with the RHS curve
give us the bound state energy. For the bulk case, the RHS
curve diverges at the edges of the band and there is a sin-

FIG. 3. Bound state energy versus impurity strength for the bulk
and surface impurity cases, and for a couple of different fractional
impurities s.

gle bound state solution for any χ . Also, as the fractional
exponent is decreased, the lower band edge shrinks causing
the negative energy eigenvalue to shift towards less negative
values. For the surface impurity case, the situation is similar
to the bulk case, except that now the RHS of Eq. (27) does
not diverge at the band edges, which means that a minimum χ

value must be reached in order for an intersection with 1/χ to
occur. The behavior with a change in fractional exponent s is
similar to the bulk case. Figure 3 shows the bulk and surface
bound state energies as a function of the impurity strength
for several fractional exponents. In all cases there is a single
bound state mode that lives outside the bands, whose width
decreases with a decrease en s. The bandwidth is given by
λ(0) − λ(π ), where λ(k) is given by Eq. (11). In the limit of
large impurity strength, it is possible to obtain the asymptotic
value for zb: Since zb is monotonic with χ , we have that
G(0)

00 (zb) → 1/zb, G′(0)
00 (zb) → 1/z2

b. After replacing this into
the bound state energy equation (27), we obtain zb → χ/2
and |φn|2 → δn,d , i.e., complete localization at the impurity
site. We notice that the phenomenology is, in general, similar
to the case of a linear impurity [36]. This could be explained
by the nature of the saturable nonlinearity where one could
express the nonlinearity as χeff = χ/(1 + |φd |2) < χ . Thus,
the saturable impurity is always “weaker” than the linear one.

Figure 4 shows some bulk and surface bound state profiles
for several values of the impurity strengths and fractional
exponents. They look similar to the localized modes of cu-
bic impurities. However, while for the standard case (s ≈
1) the change χ → −χ produces an staggered version of
the mode, φn → (−1)nφn, here for s < 1 this symmetry is
debilitated, specially at low s values where the staggered
mode is lost completely. Same happens for the surface bound
state.

Figure 5 shows the transmission of plane waves across the
saturable impurity, as a function of energy. We use the exact
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BULKχ = 4 χ = 4
s = 0.8

s = 0.8

s = 0.2

s = 0.2
χ = −4 χ = −4

SURFACE

χ = 4
s = 0.8

χ = 4
s = 0.2

χ = −4
s = 0.8

χ = −4
s = 0.2

FIG. 4. Bulk and surface bound state profiles for some impurity
strengths and fractional exponents.

expression Eq. (31). For each fractional exponent s, we plot
curves corresponding to different impurity strengths χ . The
first thing we notice is that, as s decreases, the energy range
for transmission shrinks. This is due to the reduction of the
bandwidth with s and was already observed in Fig. 3. On the
other hand, for each fixed s, the transmission decreases with
increasing χ , as expected. It can also be proved that there are
no resonances (t = 1): If we set t = 1 in Eq. (30), we obtain
the condition b = 0. However, b = χ2 |G+

00|2 > 0, so there is
no resonance except in the limit of no impurity. Finally, let us

FIG. 5. Transmission of plane waves across the saturable im-
purity, for different fractional exponents s and different impurity
strengths χ labeling each curve.

FIG. 6. Time-averaged trapped fraction at impurity site versus
nonlinearity strength for several fractional exponents s, for the bulk
and surface impurity. The numbers labeling each curve represent the
fractional exponents (N = 233, V tmax = 60, time step was allocated
by an adaptive time step method).

consider the issue of self-trapping. We put an initial excitation
on the impurity site and observe its dynamical evolution at
long times. When there is a finite portion remaining on the im-
purity site, we speak of selftrapping. This type of self-trapping
is a common feature of many discrete nonlinear lattices for a
variety of nonlinearity types. Figure 6 shows the self-trapping
for the bulk and surface impurity, and for several values of
the fractional impurity s. Roughly speaking both cases are
qualitatively similar, with an amount of trapped fraction that
increases with a decrease in s. A very distinctive feature of
Fig. 6 is the presence, in both cases, of self-trapping at small
value of χ . This linear trapping increases with a decrease
in s and at s → 0, the trapped fraction approaches unity,
independent of the impurity strength. This behavior can be
explained as follows: When s → 0, Ks(m) → (s/m) + O(s2).
Thus, evolution equation (5) reduces to

i
dCn

dt
+ 2VCn + δn,d χ

Cn

1 + |Cn|2 = 0 (33)

with initial condition Cn(0) = δnd , where d = 0 for the sur-
face impurity, or d ∼ N/2 for the bulk impurity. To verify
this further, the computed the time evolution of Eq. (5) in-
cluding the Laplacian term

∑
m �=n Ks(n − m) (Cn(t ) − Cm(t )).

We observe that, as s approaches zero, the contribution of the
Laplacian term goes to zero and thus, Eq. (33) is correct. After
multiplying Eq. (33) by C∗

n , we have

iC∗
n

dCn

dt
+ 2V |Cn|2 + δn,d χ

|Cn|2
1 + |Cn|2 = 0. (34)

Finally, we substract from Eq. (34) its complex conjugate,
obtaining

d

dt
|Cn|2 = 0, (35)

which implies Cn(t ) = Cn(0) = δnd . Thus, at s → 0 there is
complete trapping of the initial excitation, regardless of the
impurity strength χ . This is clearly seen in Fig. 6. For finite
s, the trapping curves show that for the surface case more
impurity strength is needed to effect a similar trapped value as
in the bulk case. Perhaps this is a manifestation of a sort of a
position uncertainty effect: The presence of a surface confines
the impurity much more than in the bulk case, thus increasing
its kinetic energy; thus the need for a stronger potential well
χ to effect trapping.
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IV. CONCLUSIONS

We have examined analytically and numerically the
physics of a single saturable impurity embedded in a 1D
lattice, when the usual discrete Laplacian is replaced by a
fractional one, characterized by a fractional exponent. We
considered two types of impurity: a bulk one, located far away
from the edges of the lattice, and a surface impurity located
at one of the edges (site zero). By means of the formalism
of lattice Green functions, we determined the existence of a
single bound state. While for the bulk case there is a bound
state for any amount of impurity strength, for the surface case
a minimum amount of impurity strength is needed. These
features are markedly different from the well-known case of a
cubic impurity [15,37]. There, for the bulk case a bound state
is only possible for impurity strengths larger than a critical
value, while a surface impurity also requires a minimum im-
purity strength to generate a bound state, and up to two bound
states are possible. Rather, our results resemble the ones for
the linear impurity. The fractional exponent does not seem to
play an important role in this respect.

The bound state energy curves are more or less similar for
the bulk and surface cases, for given values of the fractional
exponent. When this value is close to unity (standard case), the
bound state spatial profiles resemble the ones found for the
cubic impurity where the staggered-unstaggered symmetry
is obeyed. However as the exponent approaches zero, this
symmetry is no longer obeyed.

The transmission of plane waves across the impurity de-
creases in an overall sense, since the energy interval of the
passing waves shrinks with a decrease of the fractional expo-
nent. In fact, in the limit of a vanishing exponent, the only
wave that can be transmitted is the one with energy equal to 2.

The self-trapping of an initially localized excitation is not
dissimilar for the bulk and surface cases. In both cases it
increases monotonically with an increase in impurity strength
and, for a fixed impurity strength, it increases with a de-
creasing fractional exponent. The main difference between
the two cases is that for the surface case, it takes more im-
purity strength to effect a degree of trapping. For both cases
we observe the existence of linear trapping at small impu-
rity strength, for all fractional exponents. In the limit of a
vanishing exponent, the trapped fraction converges to unity,
regardless of the impurity strength value. This can be traced
back to the vanishing of the effective coupling Ks(m) at small
fractional exponents.

All in all, the main effect of fractionality in this sat-
urable impurity was rather secondary, except at small
values of the fractional impurity. This is the regime where
the bandwidth is substantially shrunk, pushing all eigen-
values together and thus, inducing a tendency towards
degeneration.
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