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Propagation of partially coherent light in non-Hermitian lattices
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Band theory for partially coherent light is introduced by using the formalism of second-order classical
coherence theory. It is demonstrated that the cross-spectral density function can have bands and gaps and form a
correlation band structure. The propagation of a partially coherent beam in non-Hermitian periodic structures is
considered to elucidate the interplay between the degree of coherence and the gain or loss present in the lattice.
‘We apply the formalism to study partially coherent Bloch oscillations in lattices having parity-time symmetry.
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I. INTRODUCTION

It has been recognized for a long time that the coherence
of optical wave fields is one of the main features that dictates
how the field will evolve and interact with matter [1]. The
importance of considering the optical coherence properties
is reflected in the numerous developments in technological
applications, such as optical coherence tomography [2], which
enabled noninvasive cross-section imaging of biological tis-
sues, trapping of dielectric particles [3], with the advantage of
using beams with low intensity such that biological samples
are not damaged, photovoltaics [4], where the coherence prop-
erties of sunlight are investigated along with its harvesting at
the Earth’s surface, to cite a few [5].

Since the interaction between radiation and matter is
ubiquitous in nature, each development of a novel class of
dielectric materials is followed by the investigation of the dy-
namics of light propagation through such media. In this view,
there has been enormous interest in so-called non-Hermitian
materials, which represent another class of dielectrics that can
give to or take energy from the optical wave in a controlled
manner [6,7]. Apparently, the most successful subclass of
non-Hermitian materials that has been proven to give new and
unique optical effects is the subclass having the property of
parity-time (P7) symmetry [8,9].

Despite the large amount of investigations regarding prop-
agation of optical beams in complex materials, the role of the
degree of coherence and its relation to P77 -symmetric struc-
tures has not yet been fully explored. In fact, the interaction
between partially coherent classical light and materials having
PT symmetry has just started to be considered in scattering
systems [10—19]. These initial results provide strong evidence
to the fact that the interplay between gain, loss, and the degree
of coherence is not trivial and that coherence-induced non-
Hermitian effects can be controlled in such systems. We hope
that the results reported here may place classical coherence
theory into a more robust framework in the context of non-
Hermitian photonics.
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II. PROPAGATION OF PARTIALLY COHERENT BEAMS

Let us begin by considering the stochastic optical field
u(x,z,t) in the scalar approximation and assume that it
only depends on the x and z spatial coordinates with the z
axis denoting the main propagation direction. A monochro-
matic component of u(x, z, t) with frequency w is written as
¥ (x, z, w) with the dependence on w being suppressed from
now on. Suppose the beam propagates in a paraxial condition
such that ¥ (x, z) satisfies the paraxial wave equation (written
in scaled units [20]),
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where V (x) is the complex potential function related to the
refractive index of the structure [8]. In second-order classical
coherence, we characterize the beam dynamics through the
cross-spectral density function W (xy, x,, z) defined as [1]

W(xi, x2,2) = (U (x1, DV (X2, 2)) s 2

where the average is taken over an ensemble of functions
of monochromatic components. Being a field function, the
cross-spectral density must evolve according to a differential
equation, which is obtained by taking the derivative of (2) with
respect to z and using (1),
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where V(x1,x2) = V*(x;) — V(x;) is an effective potential
function for the cross-spectral density. A more general differ-
ential equation has been derived to describe the evolution of
partially coherent light in nonlinear media [21,22]. The par-
tial differential equation (3) indicates that if the optical field
¥ (x, z) evolves under the potential V (x), its cross-spectral
density W (xy, x», z) must evolve under the effective poten-
tial V(x1, x2). Apart from the difference between the sign in
the second-order derivative in x, (3) is essentially a (2+1)-
dimensional description of paraxial wave beams U (x,y, z)
propagating in the z direction through a material described by
the transverse refractive index profile V(x, y).
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Contrary to the case of monochromatic and fully co-
herent beams, the cross-spectral density cannot be chosen
arbitrarily. It must satisfy the non-negative definiteness con-
dition fW(rl, ry)f*(ry)f(r)dridr, > 0 for any choice of
well-behaved functions f(r) [1]. A sufficient condition for
constructing such genuine correlation functions is obtained by
writing [23]

W(X1,X2,Z)=/P(U)H*(X1,Z, V)H (x2, z, v)dv,  (4)

where p(v) > 0 and H (x, z, v) is an arbitrary Kernel. Notice
that the spectral density S(x) = W(x, x,2) = (¥ (x, 2)|*)w
is always positive, independent of the particular form of
H(x, z, v). Representation (4) also guarantees that the degree
of coherence p(xy, x3, z), defined by

W (x, x2, 2)
[S(x1, x1, 2)S(x2, X2, 2)]/2°

satisfies 0 < |u(x1, x2, )| < 1 such that it can be used to char-
acterize the spatial coherence of the field between positions
(x1, z) and (xp, z). In dealing with the propagation of paraxial
beams, we choose H(x, z,v) = [ W(k, z, v)e**dk such that
the representation for W (x|, xp, z) acquires the interesting
form

®)

w(xy, x2,2) =

W (x1,x2,2) = / / dkidkyw(ky, ky, z)e’ ™2 =420 (6)

where w(ky, ka, 2) = [ @*(ky, z, vV)(ka, 2, V)P(V)d V.

III. BAND THEORY FOR PARTIALLY COHERENT LIGHT

Considering a periodic material described by the complex-
valued potential function V(x) = o Y ro _ c,e™™ /L where
¢, and o are real-valued parameters, L is the lattice period
and after substituting (6) into (3), we obtain the differential
equation governing the evolution of w(ky, k7, z):
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Notice how the definition of w(ky, k, z) implies the sym-
metry w(ky, ka2, z2) = w*(kp, k1, z) which is already satisfied
by (7). This equation indicates that the lattice couples the k-
space cross-spectral density of the incident beam into discrete
regions in the (ky, k») plane during propagation. We call atten-
tion to the fact that this is very similar to the standard theory
of coherent waves propagating in two-dimensional periodic
lattices, but here this coupling happens in the correlation func-
tion while the physical system is intrinsic (141)-dimensional.
Furthermore, the negative sign present in the Laplacian oper-
ator (which is reflected in the k? — k7 term) introduces several
changes in the band structure of the system and in the propa-
gation properties of the field, as described next.

In the absence of the lattice, the general solution of
(7) is given by wa=o(ki, k2, 2) = wa=o(ki, ko, 0)e™ (12K ),

(ki —i5)wki, ka, 2)
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FIG. 1. Comparison between the beam waist oy, of W (x1, x,, 2)
and oy, of U(x, y, z) in the diagonal positions x; & x, = 0 and x £
y = 0 during propagation in free space. (a) Initial profiles at z =0
given by the same function f(&, &, 0) = e~¢i+63)/25% =(61=£2)*/287
with W (xy, x2, z) evolving according to (3) and U (x, y, z) propagat-
ing with the same equation but with a plus sign in the Laplacian
term (standard paraxial propagation). (b) The position where the
blue curves cross indicates that o, = o, so that the beam U (x, y, z)
becomes symmetrical. This crossing never occurs for W (x, x2, z).
Parameters used: § = 10 and A = 5.

where the exponential factor closely resembles the Fourier
propagator for (241) coherent systems. A similar propagator
appears in a distinct system as the Fourier propagator for a
TM polarized harmonic mode in homogeneous but anisotropic
media [24]. Figure 1 shows the main difference between the
free-space propagation of a monochromatic beam U (x, y, ),
evolving under the standard paraxial wave equation, and the
cross-spectral density W (xy, x2, z), evolving under (3) with
VY = 0, when both are given the same initial asymmetrical
field distribution. The figure plots the evolution of the beam
widths (o7, for W and oy, for U) along the two main diago-
nals of the field (x; £ x, = 0 and x &+ y = 0), defined as twice
the second moment of the intensity distribution [25].

Consider now the effects of the lattice. Without loss of
generality, assume that the potential V(x) has only three
nonzero Fourier components, ¢y, ¢+, and write ¢y = 1 and
Cy] = %(1 4 y) where y > 0. The Hermitian configuration
with real V is recovered if y = 0 and for y # 0 the potential
is PT -symmetric with y = 1 being the symmetry breaking
point. Let us now try to define a coherence band structure,
analogous to the usual band structure of coherent waves, by
writing w(ky, k», z) = p(ki, k»)e'P?, where B is the coherence
eigenvalue, and substituting this form into (7). The coher-
ence band structure for « = 0 is seen to be g = %(k% — kf),
described by a hyperbolic paraboloid, which has a very dif-
ferent topology when compared to the band structure of a
two-dimensional coherent beam (described by a paraboloid)
due to the minus sign in the expression.

This unusual topology has its origin in the fact that,
from the symmetry requirement w(ky, k>, z) = w*(ks, k1, 2),
the necessary condition 8 = 0 must be satisfied whenever
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FIG. 2. Coherence band structures for partially coherent light in
non-Hermitian lattices with (a) y = 0 (Hermitian lattice), (b) y =
0.25 and (c) y = 0.75 (PT -symmetric lattices below threshold), and
(d) y =1 (PT-symmetric lattice at the symmetry breaking point).
The bands in the last case are identical with the bands in the absence
of the lattice « = 0. The lattice period is L = 2.

ki = k. This is because w(k, k, z) has to be a real-valued
function. No such requirements are needed when considering
the usual coherent propagation because U (x,y, z) does not
represent a correlation function. Therefore, the necessity of
the cross-spectral density to be a genuine correlation profile
changes the topology of the coherence band structure. Fig-
ure 2 shows the plots of the band structure for several values of
y . Part (d) of this figure indicates the symmetry breaking point
where the band merging occurs. Clearly, non-Hermiticity can
influence the propagation of partially coherent beams in a
nontrivial way. The connection between band gaps and classi-
cal coherence has recently been emphasized in the context of
plasmonics [26].

In this view, one can still form correlation wave packets by
linear combinations of p, (ki, k»)eP as long as w(ky, kp, 27) =
w*(ky, k1, z). It is thus necessary that for every positive
eigenvalue S, (k, k) present in the wave packet there is a cor-
responding negative one —f,(k, k). The band diagram must
reflect this symmetry and Fig. 3 highlights the eigenvalues
along the diagonal k; = k; to confirm these claims. This ex-
plains why the bands are symmetrical with respect to 8 =0
along the k; = k, axis.

The significance of the coherence eigenstates w,(ki, k2, z)
becomes clear if we consider the k-space degree of coherence
i (ky, ka, 2) = wy(ki, ka, 2)/[wa(ky, ki, Dwy ko, ko, 212,
defined in analogy with the spectral degree of coherence,

— hi=h

FIG. 3. Cross section along the diagonal (k; = k,) of the band di-
agram for y = 0.5. This figure indicates the symmetrical distribution
of the positive and negative coherence eigenvalues 8.

and note that || is independent of z, which is the partially
coherent version of the stationary states present in the usual
band theory for coherent states.

IV. BEAM DYNAMICS

It is now time to discuss some beam dynamics. Consider
a beam having finite transverse extent § propagating in the
complex lattice V (x). The beam is assumed to be initiated at
z =0 and described by the Gaussian-Schell model with the
cross-spectral density W (xy, x,, 0) given by

W (31,02, 0) = Spe~ () /20 tmeae g

where § is related to the beam width at z =0 and A is
the spatial coherence parameter which controls the statistical
correlations between positions x; and x,. The spectral den-
sity is given by a Gaussian function S(x,0) = W(x, x,0) =
Soe‘xz/ 52, where Sy is the amplitude of the incident beam.
From (5) we obtain the spatial degree of coherence, u(x; —
X)) = e~@1™%)/2A% The beam is said to be fully coherent in
the limit A — oo (u — 1) where W (x;, x,) becomes a sep-
arable function, as can be verified. We are mainly interested
in the relationship between the coherence parameter A and
the non-Hermitian lattice and how they influence the beam
propagation through the material.

For the Gaussian-Schell model (8), the function
w(ky, ky, 0) can be calculated directly from (6). It is given by

2785082 A { 82
V2ot 1 Az P17 2287 1 A
x [tk — k)8 + 2+ A% | ©

w(ky, k2, 0) =

which can be used as the initial condition in (7). However, it is
more efficient to solve (3) directly by using split-step Fourier
numerical methods, with an absorbing material on the bound-
aries to prevent reflection of the outgoing modes, and use (8)
as the initial condition [27]. We also compared all numerical
results with second-order perturbation theory and obtained
an excellent agreement. Figure 4 shows the evolution of the
spectral density S(x, z) (right panels), along with w(ky, k2, z)
(left panels), for a passive y = 0 and P7T -symmetric y = 1
lattice. In the Hermitian case with (large) spatial coherence
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FIG. 4. Double refraction of a Gaussian-Schell beam propagat-
ing in Hermitian and non-Hermitian lattices. (a) Hermitian lattice
with y = 0 and (top) A = 20, (bottom) A = 2. The spectral corre-
lation function w(ky, kz, z) couples to the lattice according to (7).
(b) Evolution in a non-Hermitian lattice with y = 1. In both cases
the k-space correlation function broadens as the degree of spatial
coherence decreases, washing out any non-Hermitian effects on its
propagation. The incident beam width remained fixed at 6 = 10. The
left panels display |w(k, k,, z)|*> evaluated at z = 0.5. The initial
distribution at z = 0 is given by Eq. (9) in both cases. All plotted
quantities are dimensionless.

A = 20, we see in the top panel of Fig. 4(a) the usual Bragg
diffraction with symmetrical first-order modes, which reflects
the symmetry of the coherence lattice w(ky, k2, z). However,
as the degree of spatial coherence decreases, the once discrete
Bragg modes merge in a symmetric way along the diagonal
ki = ky and the overall effect of the Bragg modes is washed
out during propagation.

In the case of a lattice having gain and loss at the symme-
try breaking point y = 1, and large coherence, a few of the
Bragg modes are not excited and the beam evolution displays
the phenomenon of double refraction [20], as can be seen
in Fig. 4(b). However, as A decreases, the spatial correla-
tion induces the creation of new modes in such a way that
the observed double refraction is destroyed, albeit in a more
asymmetrical way. The curious pattern of diagonal stripes
can be understood by noticing that in the A — O limit, the
cross-spectral density function must behave as W (xy, x2, z7)
8(x1 — xp) and from (3) we concluded that w(ky, k>, z) de-
pends only on the difference between k; and k,. We emphasize

0
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FIG. 5. Bloch oscillations with partially coherent light in com-
plex media. (a) Coherence-induced transition between oscillating
and breathing modes with y = 0, (top) A = 100, and (bottom) A =
2. (b) Evolution through the lattice at the symmetry breaking point
y =1 with (top) A =100 and (bottom) A = 2. In both cases the
initial beam width is § = 10, L = 2w, and ¢ = 5 x 1073, In panels
(a) and (b) 8 = —0.2 x 1073, and for panel (c) B = 0.2 x 1073 with
y = 1. All plotted quantities are dimensionless.

that the initial beam width is the same in all simulations, so it
is indeed the spatial correlation that is exciting new modes.
As the previous results suggest, the broadening in the cor-
relation space as A decreases, i.e., as the beam becomes more
spatially incoherent, can lead to a nontrivial dynamics and
excitation of a large number of modes for a fixed initial beam
width. In order to show a more dramatic example, consider
adding a linear ramp to the periodic lattice, thus breaking
the periodic symmetry of the material. More quantitatively,
let us consider the propagation of the Gaussian-Schell beam
(8) through the potential V(x) =a Y oo c,e*™™/L + Bx,

n=—
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where § is a constant parameter, again with ¢ = 1, cy; =
1(1£y),andc, =0(n| > D).

Figure 5 plots the beam evolution by numerically solving
(3). Part (a) displays the Hermitian case with (top panel) large
A = 100 and (bottom panel) small A = 2 spatial coherence
for a fixed beam width § = 10. We observe a coherence-
induced transition between oscillating and breathing modes
of Bloch oscillations as A — 0. To explain this, recall that
the breathing mode is observed in fully coherent systems as
the incident beam width decreases [28,29]. The initial beam
width of our simulation remained fixed at § = 10. However,
in the correlation space (kj, k;), the overall area of the beam
width (which is composed of § and A) actually decreases as
A — 0. In other words, less modes are initially excited in the
A — 0 limit. Since it is the spatial correlation that determines
the beam evolution, the role of the partial coherence is re-
flected in the real-space propagation of the spectral density
Sx,z) =W(x, x, 2).

In the case of a lattice at the symmetry breaking point y =
1, (3) is able to describe the usual behavior of an accelerating
beam, shown in the top panel of Fig. 5(b), as if propagating in
free space. In the low coherence regime, shown in the bottom
panel, the partially coherent beam spreads strongly, albeit in
a more skewed distribution. This suggests that it is possible
to control, and even cancel, the accelerating effect present in
fully coherent systems. These results were obtained by con-
sidering B negative. The case with 8 > 0 is shown in Fig. 5(c)
where the top panel shows the beam evolution in the case of
high coherence. In this case, the beam amplitude increases
during propagation, which is a well-known result [29]. The
bottom panel displays the analogous breathing mode, where

the amplitude also increases during propagation, as the spatial
coherence decreases. These results are direct generalizations
of previous studies [29] when the beam is no longer fully
(spatially) coherent.

V. CONCLUSIONS

The inclusion of partial coherence in optical systems can
generate new dynamics not present in the fully coherent coun-
terparts. In the same way that a real Hermitian theory can
be extended to the complex non-Hermitian domain, a fully
coherent theory can be made partially coherent by introduc-
ing the cross-spectral density function, as done here. In this
respect, every theory reported involving propagation of beams
through inhomogeneous media in paraxial conditions, can
be generalized to include the role of the degree of coher-
ence. The formalism can be easily generalized to include a
z-dependent potential function, which has important applica-
tions in photonics [30,31]. Our results provide a step towards
an understanding between the role of spatial coherence and
complex media in paraxial conditions.
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