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Quantum gas systems are ideal analog quantum simulation platforms for tackling some of the most challenging
problems in strongly correlated quantum matter. However, they also expose the urgent need for new theoretical
frameworks. Simple models in one dimension, well studied with conventional methods, have received consid-
erable recent attention as test cases for new approaches. Ladder models provide the logical next step, where
established numerical methods are still reliable, but complications of higher dimensional effects like gauge
fields can be introduced. In this paper, we investigate the application of the recently developed neural-network
quantum states in the two-leg Bose-Hubbard ladder under strong synthetic magnetic fields. Based on the
restricted Boltzmann machine and feedforward neural network, we show that variational neural networks can
reliably predict the superfluid-Mott insulator phase diagram in the strong coupling limit comparable with the
accuracy of the density-matrix renormalization group. In the weak coupling limit, neural networks also diagnose
other many-body phenomena such as the vortex, chiral, and biased-ladder phases. Our work demonstrates
that the two-leg Bose-Hubbard model with magnetic flux is an ideal test ground for future developments of
neural-network quantum states.
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I. INTRODUCTION

Quantum simulation emerged as a powerful tool not only
to realize long-sought practical technologies related to quan-
tum information and quantum computation but also to study
strongly correlated quantum matter [1,2]. Recent experimen-
tal progress established the quantum gas systems as the ideal
analog quantum simulation platforms for tackling some of
the most challenging problems in condensed matter from a
fresh perspective which has the potential to elucidate the
mysteries in superconducting cuprates, fractional quantum
Hall systems, and frustrated quantum magnets [3–6]. Pio-
neering cold-atom experiments have already started to probe
low-energy quantum correlations but have also revealed the
urgent need for more reliable theoretical frameworks that can
efficiently benchmark the experimental output [7].

A successful program that has received both experimen-
tal and theoretical prominence to alleviate this profound
challenge is the investigation of toy models in reduced di-
mensional systems such as two-leg ladders. On the one hand,
these are engineered experimental setups small enough to
deploy the state-of-the-art accurate theoretical and numeri-
cal approaches developed for quasi-one-dimensional systems;
on the other hand, they are large enough to accommo-
date magnetic flux and the resulting complex many-body
phases—such as the vortex and chiral phases of the su-
perfluid state akin to phases of superconductors under a
magnetic field as well as the Mott insulating phase emanating
from strong interactions [8,9]. Two-leg ladders are realized
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experimentally in a wide variety of cold-atomic sys-
tems [10–17], including synthetic dimensions [17–20], and
their theory is studied extensively in conjunction with critical
experimental advances [21–28]. In the ensuing effort to realize
quantum simulation in a fully two-dimensional system and
to build new theoretical schemes that can reliably predict
the underlying physical phenomena, it is crucial to test the
emerging numerical techniques in such well-controlled toy
systems and expose their limits.

Variational and projection Monte Carlo techniques are
among the most effective unbiased methods in the numerical
studies of strongly correlated matter, especially in high dimen-
sions. They have been widely utilized to study the Hubbard,
t-J , and Heisenberg models based on stochastic minimization
of a class of variational wave functions derived from well-
understood physical phenomena [29–32]. In 2017, Carleo and
Troyer proposed an alternative family of wave functions de-
rived from neural networks trained in a similar variational
Monte Carlo scheme, motivated by the remarkable progress
of machine learning and artificial intelligence [33,34]. Their
study laid the groundwork to demonstrate that these wave
functions—dubbed the restricted Boltzmann machine ansatz
or, more broadly, the neural-network quantum states—are
capable of approximating the ground state and the dynam-
ics of canonical strongly correlated quantum systems with
polynomial resources in the exponential Hilbert space. Fur-
thermore, their accuracy can be improved systematically,
competing with some of the most sophisticated methods,
such as tensor networks and projected entangled pair states
(PEPS). Subsequently, it was shown that the neural-network
quantum states contain volume law entanglement and have
an expressive capacity analogous to the tensor network
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quantum states [35–42]. Neural-network quantum states can
be efficiently optimized using well-developed tools in ma-
chine learning and variational Monte Carlo techniques. These
optimization methods alleviate the fundamental challenges
in studying tensor networks, such as the difficulty of ten-
sor contraction [43] or the exponential scaling of the matrix
product state (MPS) bond dimension with transverse system
size [44–46]. Neural-network quantum states have been exten-
sively generalized to different deep learning architectures and
have been successfully applied to a wide range of problems in
condensed matter physics [47–52].

Motivated by these parallel developments in cold atomic
systems and variational quantum Monte Carlo simulations,
we use neural-network quantum states to probe the novel
quantum phases that can be realized in two-leg Bose-Hubbard
ladders under synthetic magnetic fields. Despite the signif-
icant interest from a fundamental theoretical point of view
and the flurry of recent experimental progress, applications
of neural networks to bosonic systems are relatively scarce.
Before this work, they have been applied to study superfluid-
Mott insulator transition in the Bose-Hubbard model using a
restricted Boltzmann machine [53] and a feedforward neu-
ral network ansatz [54,55]. Still, their efficiency was not
investigated under artificial magnetic fields, which breaks
time-reversal invariance and frustrates the many-body sys-
tem. Our work aims to be a step toward filling this gap
and to contribute to the explorations of alternative numerical
schemes that can be useful in future studies of optical lattice
experiments with synthetic magnetic fields. Furthermore, we
also bring the two-leg flux ladder system and its surprisingly
wide variety of many-body phases to the attention of neural
network studies and showcase the potential of this system
as a prototypical many-body system for future algorithmic
developments.

This paper is organized as follows: In Sec. II, we briefly
review the restricted Boltzmann machine and feedforward
neural network for variational Monte Carlo calculations and
discuss some details about their application to the Bose-
Hubbard model. In Sec. III, we introduce the two-leg
Bose-Hubbard ladder under an artificial magnetic field and
show how neural-network quantum states can reliably de-
scribe the canonical superfluid and insulator phases of this
model. First, in the strong coupling regime, we show that
the neural-network quantum states can successfully capture
the superfluid-Mott insulator transition in systems under mag-
netic flux in close agreement with the previous theoretical
and numerical results [26]. Second, we obtain the chiral and
vortex phases in the weak coupling limit, which are predicted
theoretically [21] and confirmed experimentally [12]. Lastly,
in the latter regime, we confirm the existence of a novel
quantum phase called the biased-ladder phase using the neural
networks initially predicted in [56]. In Sec. IV, we give a
summary and our main conclusions.

II. NEURAL-NETWORK QUANTUM STATES

In this section, we briefly review the neural network quan-
tum states in the context of the Bose-Hubbard model and their
stochastic optimization for completeness. We consider two
different neural network architectures to calculate the ground

FIG. 1. Restricted Boltzmann machine (a) and feedforward neu-
ral network (b) applied to the Bose-Hubbard model. For (a), the input
layer S = { σ j | σ j ∈ { 0, 1 } }Ni

j=1 represents the physical space with
the occupation number nk , a so-called one-hot encoding with a max-
imum local occupation number nmax. The number of input neurons is
Ni = Ns × (nmax + 1). The hidden layer { hi | hi ∈ {−1, 1 } }Nh

i=1 con-
tains Nh = α × Ni neurons, where α ∈ Z+. For (b), the input layer
is composed of the site occupation numbers S = { nk | nk ∈ Z+

0 }Ns
k=1,

which have no limitation on the maximum occupation number. The
hidden layer is composed of Nh = α × Ns neurons where α ∈ Z+.
The output layer contains only two neurons, which are Re[ln(�)]
and Im[ln(�)].

state wave function of our model: The first is the restricted
Boltzmann machine (RBM) ansatz, which was initially in-
troduced in the seminal work of Carleo and Troyer [33] to
describe quantum spin models, and also applied to study the
phase diagram of one-dimensional Bose-Hubbard model [53].
The second is the so-called feedforward neural network
(FNN) which is well known in machine learning and has been
recently applied to find the ground state of Bose-Hubbard
model [54,55].

The RBM ansatz is constructed by considering input and
hidden layers, just like the neural network studies in machine
learning, as shown in Fig. 1(a). The input layer corresponds
to the physical space. In contrast, the hidden layer is an
abstract space determining the architecture of the variational
parameters in the wave function. We use the so-called one-hot
encoding for the bosonic occupation numbers in the physical
space S = { σ j | σ j ∈ { 0, 1 } }Ni

j=1 for a system of Ni sites in
an arbitrary dimension. Each kth site in real space, where
the total number of sites is Ns, is represented with nmax + 1
binary elements nk = { 0, 0, . . . , 1, . . . , 0 } with only the mth
element 1 and all the others 0, meaning that there are m − 1
bosons on the kth site. Here, we set an upper bound for the
maximum occupation number per site as nmax. The hidden
layer comprises Nh neurons, which take the values of −1 or 1.
Then, the variational wave function is written as a summation
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over the hidden layer neurons as follows:

�(S;W ) =
∑
{hi}

e
∑

i aihi+
∑

j b jσ j+
∑

i j Wi j hiσ j , (1)

which is the probability amplitude of the given state S , and the
dependence on the set of all variational parameters is shown
with W = { ai, b j,Wi j } for i = 1, . . . , Nh and j = 1, . . . , Ni.
Conventionally, ai and b j are called bias parameters for input
and hidden layers, respectively, and Wi j are called the weights
of the links between the layers. Crucially, any neuron in the
visible layer is connected to all neurons in the hidden layer.
However, there is no connection between two neurons in the
same layer, hence the name “restricted.” Thanks to this as-
sumption, we can trace out the hidden neurons by performing
the summation over { hi } in Eq. (1), which results in the
following compact expression for the variational ansatz

�(S;W ) = e
∑

j b jσ j
∏

i

θi(S;W ), (2)

where

θi(S;W ) = 2 cosh

⎛
⎝ai +

∑
j

Wi jσ j

⎞
⎠. (3)

For Ns lattice sites, Nh hidden neurons, and a given maximum
occupation number nmax, we have Ni = (nmax + 1) × Ns input
neurons. We denote the hidden layer neuron density with α =
Nh/Ni ∈ Z+, which can be tuned to increase the accuracy of
the ansatz. Notably, the network parameters can be R and C
valued in our implementation, which is essential for systems
with broken time-reversal invariance.

In contrast, FNN ansatz first applied to Bose-Hubbard
model in [54], is composed of three layers, as shown in
Fig. 1(b). The input layer corresponds to the physical sites
as in RBM, but each neuron takes integer values correspond-
ing to the number of bosons in that site without any cutoff
in a maximum occupation such that S = { nk | nk ∈ Z+

0 }Ns
k=1.

The hidden layer, which consists of R-valued Nh neurons, is
obtained by

h j (S;V ) = b j +
∑

k

Vjknk, (4)

where V = { b j,Vjk } is the set of variational network param-
eters connecting the input and hidden layers, bj are the biases
for the hidden layer, and Vjk are the weights of links between
the layers. Lastly, the output layer contains only two neurons
obtained from the hidden layer using the so-called hyperbolic
tangent activation function, which amounts to

ui(S;W ) = ai +
∑

j

Wi j tanh [h j (S;V )], (5)

where i = 1, 2. Here W = { ai,Wi j, b j,Vjk } is the combined
set of all variational network parameters between the input
and the output layers. The final variational wave function is
written in terms of the neurons in the output layer as

�(S;W ) = eu1(S;W )+iu2 (S;W ), (6)

which is C valued as required for our system, whereas all
the network parameters are R valued. This gives us a sig-
nificant computational advantage compared to the RBM. We

use a similar definition for the hidden layer neuron density
as α = Nh/Ns. In our implementation, these variational wave
functions are conveniently created using FLAX [57], a neural
network library for JAX [58].

For sampling from the Hilbert space and optimizing the
variational network parameters, we follow the same approach
used in Ref. [33], which uses a Markov chain Monte Carlo
(MCMC) based on the Metropolis-Hastings algorithm [59].
We start with randomly initialized variational parameters W .
From a given configuration S (i) ≡ S , we suggest a candidate
configuration S ′ and calculate the probability amplitudes from
the neural network ansatz. If the acceptance ratio defined
by pratio = |�(S ′;W )/�(S;W )|2 is greater than a random
number sampled from the uniform distribution, accept S ′ as
the next configuration S (i+1) = S ′; otherwise, set S (i+1) = S
in the Markov chain. We implemented update rules both in
canonical and grand canonical ensembles with and without
conservation of the total number of particles, respectively,
and confirmed the consistency of the converged ground states.
After many samples are generated in the Markov chain, we
calculate the expectation values of the necessary observables,
such as the ground state energy stochastically [29], as follows:

〈A〉 = 1

M

M∑
i=1

Aloc(S (i);W ), (7)

where M is the number of samples in the Markov chain and
Aloc is the so-called local observable defined by

Aloc(S (i);W ) =
∑

k

〈i|A|k〉�(S (k);W )

�(S (i);W )
, (8)

which can be efficiently calculated in the entire Hilbert space
for a given configuration S (i) due to the sparsity of the most
often required observables of interest. More importantly, gra-
dients of the energy, which will require the calculation of
the observables set up from the derivatives of the ansatz in
Eqs. (1) and (6), can also be calculated from the same Markov
chain efficiently, enabling the use of gradient-based optimiza-
tion with respect to variational parameters W .

Typically, even the most straightforward optimization
schemes, like the method of steepest descent, can be used for
elementary states, as demonstrated in [54]. For more com-
plicated ground states requiring a larger set of variational
parameters with slower convergence in a rugged energy land-
scape, one needs to implement more robust optimizations
such as the stochastic reconfiguration method [30,60,61],
which was also applied to neural networks [33]. Here, we
use the adaptive moment estimation (ADAM) [62] as the op-
timizer instead of the stochastic reconfiguration to avoid the
computationally expensive calculation of the inverse of the
correlation matrix. ADAM is a gradient-based optimizer that
adaptively estimates the first and second moments of the en-
ergy derivatives for the optimization of neural network ansatz,
which can be conveniently implemented using the gradient
processing and optimization library OPTAX [63] that can be
used on the top of powerful JAX [58]. We benchmarked our
code in the one-dimensional Bose-Hubbard model and found
the superfluid-Mott insulator phase diagram to be in excel-
lent agreement with the density-matrix renormalization group
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FIG. 2. Definition of hopping amplitudes in two-leg Bose-
Hubbard model under magnetic field. Due to the applied artificial
magnetic field, hopping amplitudes have Peierls phases, and each
plaquette is pierced with flux φ.

(DMRG) result. Similarly, we tested our code in a two-leg
Bose-Hubbard ladder with L = 32, α = 4, M = 104, and an
ADAM learning rate of 0.01, and determined that a phase
convergence, especially for a biased-ladder phase, can take up
to 28 hours with an Apple M1 CPU.

III. TWO-LEG BOSE-HUBBARD LADDER IN ARTIFICIAL
MAGNETIC FIELD

We now consider a bosonic system confined on an optical
lattice in the form of ladder geometry with rungs, as shown in
Fig. 2. The Hamiltonian is given by

H = −J
L∑

m=1

∑
�∈{u,d}

(eiσ�φ/2a†
�,m+1a�,m + H.c.)

− K
L∑

m=1

(
a†

u,mad,m + H.c.
)

+
L∑

m=1

∑
�∈{u,d}

[
U

2
n�,m(n�,m − 1) − μn�,m

]
, (9)

where a†
�,m and a�,m are bosonic creation and annihilation

operators at the site (�, m), � = u, d labels upper and lower
site in a rung, n�,m = a†

�,ma�,m is the boson number operator,
J is the intraleg hopping amplitude, K is the interleg hopping
amplitude, U is onsite interaction strength, μ is the chemical
potential, L is the number of rungs, φ is a phase from the
artificial magnetic field, and σ� = +1 (−1) for � = u (d). The
hopping amplitudes J, K and the overall phase φ can be sep-
arately engineered in a standard cold atomic system through
adjusting the depth of the optical lattice and a more compli-
cated Raman coupling or shaking technique [11,12,17,64]. By
using the Peierls substitution [65], one can relate the phase to
an artificial magnetic flux passing through each plaquette φ =∫
A B · da = ∮

C A · dl, where B and A are the corresponding
synthetic magnetic field and vector potentials, respectively.
C is a closed path around a plaquette; A is the area, and
B = ∇ × A. Unlike the standard solid state experiments, the
phase here can take any value giving rise to arbitrarily large
artificial magnetic flux in this system, which paves the way

FIG. 3. Superfluid-Mott insulator phase diagram of the two-leg
ladder Bose-Hubbard model with K/J = 1.00 and φ/π = 0.90 from
the RBM (green square) and FNN (orange up-triangle) ansatzes for
a system of L = 12 sites compared with DMRG (blue circle) [26].

for many desired strongly correlated states. Due to the invari-
ance of the Hamiltonian in Eq. (9) under the transformation
(u, d, φ) → (d, u,−φ), one can focus on the domain 0 < φ �
π . Above a critical field φc, the single-particle spectrum shows
two degenerate minima at some ±kc �= 0, which is the key to
obtaining novel many-body phases by tuning the interaction
in this system. Here, we are interested in testing which phases
can be captured reliably within the variational neural networks
and in exposing their accuracy.

We first focus on the strongly interacting regime J/U 	
1 to determine the phase boundaries of the Mott insulator
state in the presence of finite flux as an initial benchmark of
our implementation. As emphasized in the previous section,
C-valued RBM is necessary here since the Hamiltonian in
Eq. (9) breaks the time-reversal symmetry. In the FNN, the
variational network parameters are R valued even though the
final wave function in the output layer in Fig. 1(b) has both
real and imaginary parts. For a total number of sites Ns, one
can calculate the variational energies for Ns and Ns ± 1 bosons
by optimizing the RBM and FNN ansatzes in the given filling
sectors. Here, the energies with Ns ± 1 bosons correspond
to the particle and hole excitation energies of the system.
Then, one can write the following expression for the chemical
potential, which is also known as the charge gap:

±μ± = E (Ns ± 1) − E (Ns ), (10)

where the energies of Nb bosons on a fixed system of Ns lattice
sites are represented with E (Nb), leaving lattice size implicit
for brevity. Each energy in Eq. (10) is calculated stochastically
from the expression in Eq. (7) as the minimum energy in the
given sector. The resulting phase diagram in the μ-J plane is
shown in Fig. 3, along with the DMRG results [26]. For small
J/U , where a mean-field Gutzwiller ansatz is more reliable,
RBM and FNN show excellent agreement with DMRG with
minimal statistical fluctuations. For larger J/U , the deviations
from the DMRG data and the enhanced statistical fluctuations
are more pronounced. However, the results are still supe-
rior to any mean-field approach, showcasing neural-networks’
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FIG. 4. (a) The chiral current as a function of K/J for fixed N = L = 16, U/J = 0.20, and φ/π = 0.50 from the FNN ansatz (blue dot)
normalized by the maximum current jc,max = 2nJ sin(φ/2) = J

√
2 compared with the mean-field result for L = 32 (black line) [56] and

DMRG for L = 64 (dark-gray circle). The phase diagram has vortex, biased-ladder, and chiral phases. The dashed lines show the approximate
phase boundaries. (b) The particle density normalized by the mean density n = N/L for L = 32 as a function site index m in upper (blue dot
with line) and lower (green dot with dashed line) legs for selected points in the phase diagram K/J = 1.40 (top), K/J = 1.05 (middle), and
K/J = 0.65 (bottom) compared with DMRG (up- and down-triangles).

capability of capturing basic correlations. The proximity of
the Mott insulator phase is expected to facilitate more com-
plicated correlated phases deep inside the superfluid phase
due to competing effects of the magnetic field, kinetic energy,
and strong interactions [66] such as fractional quantum Hall
phases [6] and charge-density waves [67]. Therefore, this
region can be a good candidate for designing more innovative
neural networks in future studies, which may also have direct
experimental relevance in new generation cold-atom setups.
Note that, around the tip of the Mott insulator phase, the
transition is of Berezinskii-Kosterlitz-Thouless type driven by
phase fluctuations rather than number fluctuations. It requires
an analysis different from Eq. (10), which is beyond the scope
of this work [68].

We now move on to the regime of weaker interactions
J/U � 1 outside the Mott insulator to probe the states with
superfluidity based on the FNN ansatz exclusively, which we
found to be more accurate. A surprisingly wide variety of
superfluid phases can be realized in this system with different
vortex and particle density profiles [27]. For simplicity, we
focus on three basic phases that can be tuned as a function of
interleg hopping K for a fixed magnetic flux. In the regime
K/J 	 1, where the legs are coupled weakly, one has the
vortex phase on which the particle density along the ladders
is modulated, its period increases with K/J , and there are
currents along the rungs. In regime K/J ≈ 1, where the legs
are coupled strongly, one has the chiral phase, also called the
Meissner phase. Here, the particle density is homogeneous
along and across the legs. The superfluid velocities are equal
and opposite across the legs, with no flow from one leg to the
other along the rungs. In the intermediate regime, one has the
biased-ladder (BL) phase, where the particle density is larger
in one leg and the superfluid velocity is larger in the other leg,
but the net current still is zero. We identify these phases by
calculating the densities at each site and the currents along

and across the legs. The current operators along the legs and
rungs are given as

j‖�,m = iJ (eiσ�φ/2a†
�,m+1a�,m − H.c.) (11)

j⊥m = iK (a†
u,mad,m − H.c.). (12)

Here j‖u,m and j‖d,m are the currents along the upper and lower
legs, respectively. The chiral current operator is defined as

jc = 1

L

∑
m

( j‖u,m − j‖d,m). (13)

The maximum value of the chiral current is jc,max =
2nJ sin(φ/2) [56], where n = N/L is the mean density and N
is the number of particles. This will be used for the overall nor-
malization below such that in the chiral phase 〈 jc〉 ≈ jc,max,
and in other phases 〈 jc〉 < jc,max.

In Fig. 4(a), we present a cut along the phase diagram as a
function of K/J for fixed U/J = 0.20, and φ/π = 0.50 from
the expectation value of the chiral current for N = L = 16 and
particle densities for N = L = 32. In the vortex phase (green
region), the chiral current is small and grows smoothly to
a finite value much smaller than jc,max, whereas the particle
densities, shown in Fig. 4(b), are equal in the upper and lower
legs and oscillate along the legs. Above a critical K/J ≈ 0.75,
the chiral current shows a rapid increase to a larger value
which is still less than jc,max. Within this intermediate BL
phase (orange region), the current continues to grow slowly,
and the particle densities at the upper and lower legs are
different. After a second critical point K/J ≈ 1.05, inside
the expected chiral phase (purple region), the chiral current
saturates close to jc,max and the particle densities, which are
equal in upper and lower sites, become uniform along the
legs. It is important to note that convergence of the energy
is considerably slow within the BL phase due to delicate
competition between the vortex and chiral phases. Whereas
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FIG. 5. (a) The variational energy normalized by the intraleg hopping amplitude J times the number of rungs L and the normalized chiral
current as a function of the number of ADAM iterations for fixed K/J = 0.35, U/J = 0.20, and φ/π = 0.50 from the FNN ansatz in L = 8 (blue
[dim gray] line), 16 (green [gray] line), 24 (orange [dark gray] line), 32 (pink [silver] line) compared with the mean-field result for L = 32
(dashed line) [56] and DMRG for L = 64 (dash-dot line). (b) The normalized chiral current as a function of the inverse number of rungs 1/L
compared with the mean-field result [56] and DMRG. The light blue lines indicate the linear fitting of chiral currents over 1/L = 8−1 (blue
dot), 16−1 (green down-triangle), 24−1 (orange up-triangle), 32−1 (pink star) for the selected points in the phase diagram K/J = 1.40 (top),
K/J = 1.05 (middle), and K/J = 0.35 (bottom).

the regions around the Mott insulator phases, as well as the
vortex and chiral phases, took at most a few thousand itera-
tions for convergence (see Fig. 5), we observed a slow drift
of energy in the BL phase up until 60–70 thousand iterations
and the density profiles changed considerably before converg-
ing to the BL phase. The RBM ansatz, which is not shown
here, also performed relatively poorly around this region.
Finding more competitive network architectures to capture
this region more accurately is the subject of future work.
Nevertheless, the fact that the FNN ansatz could reveal this
phase without any bias still demonstrates the power of neural-
network quantum states in finding novel quantum many-body
phases.

For benchmarking, we have also included the chiral cur-
rent calculated using the state-of-the-art DMRG simulation
for L = 64 [69]. For these, we took MPS bond dimensions
up to 160 and performed 15 sweeps for each data point.
To reduce the effect of initial random MPS and prevent
DMRG from being trapped in local minima, we increased
K from zero gradually and used the optimized MPS ob-
tained for a smaller K for the initial ansatz of the next value
K + δK . One can see from Fig. 4(a) that FNN correlates
with DMRG in the vortex phase region, whereas the mean-
field results give a much higher chiral current than these
two simulations. In the chiral phase region, nearly all the
results agree with each other. However, in the biased-ladder
phase region, the currents start to vary from the DMRG more
markedly, which is expected since DMRG uses open bound-
ary conditions, which greatly affect the chiral current due to
boundaries.

IV. SUMMARY AND CONCLUSIONS

In this paper, we developed an application of neural-
network quantum states to find the many-body phases in

the two-leg ladder Bose-Hubbard model under an artificial
magnetic field. The strong magnetic flux, inter- and intraleg
kinetic hopping, and the onsite interactions enable a plethora
of competing phases in this toy model, which is ideal for
testing the power of neural networks. Due to the broken
time-reversal invariance, we implemented RBM ansatz with
complex network parameters and the FNN with real param-
eters but two output neurons for real and imaginary parts of
wave function amplitude. In the strong coupling regime where
onsite interactions dominate, we showed that both RBM and
FNN wave functions describe the Mott transition reliably, in
a precision comparable with the DMRG results. In the weak
coupling regime with competing superfluid phases, we fo-
cused on the FNN wave function. We showed that three phases
are predicted from the FNN ansatz. First is the vortex phase
in the weak leg coupling regime, where particle density has
modulations and homogeneous superflow. Second, the chiral
phase with uniform density and leg currents in opposite direc-
tions. Third, the biased-ladder phase where particle density
and superfluid velocities are different in each leg, but the total
current is zero. We emphasize that these phases came out
of the variational minimization of the ground-state energies
without bias.

Our work demonstrates that the two-leg ladder Bose-
Hubbard model with magnetic flux is an ideal test ground for
future developments of neural-network quantum states. Sev-
eral key questions can be investigated with other promising
neural networks. First, the vicinity of the Mott insulator phase
where the phase boundary showed enhanced fluctuations is a
candidate for strongly correlated phases [26,27], which may
be unveiled by the use of more sophisticated networks such as
the recently developed convolutional networks, which show
improved accuracy [48,70]. This regime is also suitable for
experimental investigations in the new generation quantum
gas setups. Secondly, even for weak interactions where differ-
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ent superfluid phases compete, the convergence of the neural
network showed considerable slowing down, which can be
circumvented in alternative ansatzes. However, the FNN can
reasonably give the expected biased-ladder phase. Apart from
the realization of this system in cold atom experiments with
a high degree of control, the ability to benchmark this toy
model with independent powerful numerical tools like DMRG

or quantum Monte Carlo using worm sampling [71] makes
future studies of this system beneficial for both techniques.
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