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Droplet arrays in doubly dipolar Bose-Einstein condensates
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Gases of doubly dipolar particles, with both magnetic and electric dipole moments, offer intriguing novel
possibilities. We show that the interplay between doubly dipolar interactions, quantum stabilization, and external
confinement results in a rich ground-state physics of supersolids and incoherent droplet arrays in doubly dipolar
condensates. Our study reveals novel possibilities for engineering quantum droplets and droplet supersolids,
including supersolid-supersolid transitions and the realization of supersolid arrays of pancake droplets.
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I. INTRODUCTION

The anisotropic and long-range nature of the dipole-
dipole interactions leads to a rich physics in dipolar quantum
gases, qualitatively different than that of their nondipolar
counterparts [1–3], including anisotropic superfluidity [4–6],
roton-like excitations [7,8], and the recent realization of quan-
tum droplets [9–12]. The latter result from the interplay
between contact and dipolar interactions and the stabilization
provided by quantum fluctuations [13]. Interestingly, the ex-
ternal confinement may result in the formation of arrays of
droplets, which under proper conditions may remain mutually
coherent, building a dipolar supersolid [14–17], whose prop-
erties have recently been the focus of major attention [17–26].

Experiments on dipolar Bose-Einstein condensates have
been realized so far with atoms with large permanent mag-
netic moments such as chromium [27,28], erbium [29], and
dysprosium (Dy) [30]. Interestingly, a pair of quasidegenerate
states with opposite parity offers the possibility of induc-
ing an additional electric dipole moment in Dy atoms using
an electric field [31]. Recently, doubly dipolar atoms and
molecules possessing both electric and magnetic dipole mo-
ments [31–39] have attracted a large deal of interest due to
their potential applications in quantum simulation [40], com-
puting [41], tests of fundamental symmetries [42], and for the
tuning of collisions and chemical reactions [43]. Interestingly,
the electric and magnetic moments may be oriented in differ-
ent directions, opening novel possibilities for doubly dipolar
condensates [44]. Self-bound quantum droplets may undergo
a dimensional crossover when varying the angle between the
dipole moments without modifying the external confinement.

In this paper, we show that the control of the relative angle
between the two dipole moments opens new intriguing scenar-
ios for quantum droplet arrays in doubly dipolar condensates,
including a density-modulated single-droplet ground state,
supersolid-supersolid transitions, and the possibility of real-
izing an array of pancake-shaped quantum droplets.

The paper is structured as follows. In Sec. II, we review
a particular realization of a doubly dipolar system using
dysprosium atoms, employed in the rest of the paper. In

Sec. III, we discuss the anisotropic properties of the dou-
bly dipolar potential. In Sec. IV, we introduce the extended
Gross-Pitaevskii equation for a doubly dipolar condensate,
incorporating beyond-mean-field corrections. The properties
of a single self-bound droplet are briefly discussed in Sec. V.
Section VI is devoted to analyzing quantum droplet arrays
in doubly dipolar condensates. Finally, we summarize our
conclusions in Sec. VII.

II. DOUBLY DIPOLAR DYSPROSIUM ATOMS

In this section, we discuss a particular realization of a
doubly dipolar system using Dy atoms, briefly reviewing the
proposal of Ref. [31]. However, other realizations, e.g., using
molecules, should result in a similar physics.

In addition to its permanent magnetic moment, an electric
moment may be induced in Dy atoms by an external electric
field owing to a pair of quasidegenerate states with opposite
parity. These states, |a〉 (odd parity) and |b〉 (even parity), have
total angular momenta {Ja = 10, Jb = 9}, and energies {Ea =
17513.33 cm−1, Eb = 17514.50 cm−1}. Within the electric-
dipole approximation, the linewidths of the states are �a ≈ 0
(metastable) and �b = 2.98 × 104 s−1, respectively. We as-
sume that the Dy atoms are in uniform magnetic and electric
fields. The magnetic field, B = Bẑ, is directed along z, set-
ting the quantization axis and splitting the degeneracy of the
energy levels Ea and Eb. The electric field, E = E û, mixes
the Zeeman sublevels of the states, {|Ma = −Ja〉, . . . , | +
Ja〉, |Mb = −Jb〉, . . . , | + Jb〉}, inducing an electric dipole mo-
ment along û. We assume that û lies on the xz plane forming
an angle α with the z axis. This relative angle plays a crucial
role in the physics discussed below.

Restricting to the subspace of both Ea and Eb, the Hamil-
tonian for a Dy atom is Ĥ = ĤB + Ĥstark with

ĤB = Ea

∑
Ma

|Ma〉〈Ma| + Eb

∑
Mb

|Mb〉〈Mb|

+μBB(gaMa + gbMb), (1)
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where ga = 1.3 and gb = 1.32 are the Landé g factors. The
term Ĥstark accounts for the interaction of the electric field with
the Dy atom. The electric field strength is such that the lowest
eigenstate of the atom is |S〉 = c0|Ma = −10〉 + ∑′

i ci|i〉 with∑′
i |ci|2/|c0|2 � 1, where the sum

∑′
i is taken over all the

magnetic sublevels except |Ma = −10〉, and ci is the prob-
ability amplitude for finding the atom in the state |i〉. The
summation

∑′
i has two contributions, one from the sublevels

of |a〉 and the other from those of |b〉. Since �a ≈ 0, only the
contributions from the sublevels {|Mb〉} determine the lifetime
of the stretched state |S〉, τ = (nb�b)−1, where nb is the total
population in {|Mb〉} sublevels. The magnetic and electric
dipole moments of a Dy atom in |S〉 are, respectively,

dm = −μB

⎛
⎝ga

Ja∑
Ma=−Ja

|cMa |2Ma + gb

Jb∑
Mb=−Jb

|cMb |2Mb

⎞
⎠ (2)

de = − 1

E
∑

Ma,Mb

c∗
Ma

cMb〈Ma|Ĥstark|Mb〉 + c.c. (3)

with

〈Ma|Ĥstark|Mb〉 = −
√

4π

3(2Ja + 1)
〈a||d̂||b〉E

×Y ∗
1,Ma−Mb

(α, 0)CJaMa
JbMb,1,Ma−Mb

, (4)

where,〈a||d̂||b〉 = 8.16 debyes is the reduced transition
dipole moment, Yl,m(θ, φ) are the spherical harmonics, and
CJaMa

JbMb,1,Ma−Mb
are the Clebsch-Gordan coefficients.

Figure 1 depicts, for B = 100 G, de and dm for the state
|S〉, as a function of E and α. When α = 0, the spherical
harmonics, Y ∗

1,Ma−Mb
(α, 0), are nonzero only when Ma = Mb

and thus, the electric field couples pairs of sublevels with
Ma = Mb. Since the state |Ma = −10〉 has no counterpart in
the {|Mb〉} subspace, the former is unaffected by the electric
field. Hence, the electric dipole moment of the Dy atom in
the state |S〉 vanishes for α = 0. When α grows, the electric
field couples |Ma = −10〉 with other |Mb〉 sublevels, reaching
a maximum mixing for α = π/2 [see Fig. 1(a)]. Therefore, for
a given E , de increases with α until α = π/2. This comes at
the cost of decreasing the lifetime of |S〉, as shown in Fig. 1(b).
For a range of experimentally realistic E = 0–4 kV/cm, de

varies from 0 to 0.16 debyes and the magnetic moment re-
mains constant, dm � 13 μB (higher than ground-state Dy
atoms), whereas the lifetime of |S〉 varies from 28 s (consid-
ering electric-quadrupole and magnetic-dipole transitions) to
10 ms [31].

III. DOUBLY DIPOLAR POTENTIAL

The doubly dipolar interaction between two atoms is

Vd (r) = μ0d2
m

4π

(1 − 3 cos2 θm)

|r|3 + d2
e

4πε0

(1 − 3 cos2 θe)

|r|3 , (5)

where μ0 (ε0) is the vacuum permeability (permittivity) and
θm (θe) is the angle formed by the magnetic (electric) dipole
moment with the vector r joining the atoms (Fig. 2). Whereas
Vd (r) is always repulsive along the y axis, it is anisotropic
on the xz plane. This anisotropy is well characterized by the

FIG. 1. (a) Electric dipole moment de and (b) lifetime τ of the |S〉
state of a Dy atom, as a function of the electric field strength E and
the angle α between the electric and magnetic fields for B = 100 G.

angular part of the dipolar potential on the xz plane:

V y=0
d (r, θ )∝

[
1 − 3

cos2 θ + γ (cos θ cos α + sin α sin θ )2

1 + γ

]
,

(6)

where θ is the polar angle, and γ = (de/dm)2/(μ0ε0) charac-
terizes the relative strength between the electric and magnetic
dipole moments. The ratio γ can be varied independently of
α by tuning E . In Fig. 3, we depict V y=0

d (r) for different α and
γ . When α = 0, we have the usual dipolar potential, attractive
along z and repulsive along x [3]. As α increases up to π/2, the

FIG. 2. Doubly dipolar atoms. Both electric (de) and magnetic
(dm) dipoles are assumed polarized on the xz plane, forming an angle
α between them. The angle θm (θe) is the angle between dm (de) and
the vector joining the atoms, r.
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FIG. 3. Anisotropy of the doubly dipolar potential on the xz plane [V y=0
d (r, θ )] for different values of α and γ . Gray arrows indicate the

effective polarization axis determined by the polarization angle θp [Eq. (7)].

dependence of the potential on γ becomes more significant.
For α = π/2, when γ grows the potential inverts eventually
its anisotropy (last column of Fig. 3). If −4γ 2 + γ − 4 �
9γ , there exists a critical angle 1

2 cos−1[(−4γ 2 + γ − 4)/9γ ]
above which the xz potential becomes purely attractive [see
Fig. 3, panels (g), (h), and (l)], but remains anisotropic except
when α = π/2 and γ = 1. For that case V y=0

d (r, θ ) = −1/r3.
Despite this nontrivial anisotropy, we may define an effec-

tive polarization axis, depicted by arrows in Fig. 3, given by
the direction in which the potential is maximally attractive.
This direction lies on the xz plane, sustaining an angle

θp(α, γ ) = cos−1

[
1√
2

√
1 + 1 + γ cos 2α√

1 + γ 2 + 2γ cos 2α

]
, (7)

with the positive z axis. As shown in Fig. 4, for a
dominant magnetic dipole (γ < 1), θp increases with α,
reaches a maximum [θmax

p = cos−1( 1
2 [1 +

√
1 − γ 2])1/2] at

α = 1
2 cos−1(−γ ), and then decreases back to zero at α =

π/2. On the contrary, for a dominant electric dipole (γ > 1),
θp increases monotonically from zero to π/2. A linear re-
lation, θp = α/2, holds for γ = 1. When α = π/2 and γ =
1, θp is not defined due to the isotropic nature of the xz-
interactions. Thus, θp exhibits a discontinuous behavior as
a function of γ for α = π/2, changing abruptly from zero
to π/2 across γ = 1 (inset of Fig. 4). As discussed below,
θp plays a key role in determining the properties of doubly
dipolar droplets.

IV. EXTENDED GROSS-PITAEVSKII EQUATION

At this point, we consider a condensate of N doubly dipolar
Dy bosonic atoms of mass M. The condensate wave function
ψ (r, t ) is given in mean-field theory by the nonlocal Gross-
Pitaevskii equation: ih̄ψ̇ (r, t ) = Hψ (r, t ), with

H = −h̄2∇2

2M
+ Vext (r) +

∫
d3r′V (r − r′)|ψ (r′, t )|2, (8)

where Vext (r) = M(ω2
x x2 + ω2

y y2 + ω2
z z2) is the external har-

monic confinement, and V (r) = gδ(r) + NVd (r) is the in-
teraction potential, including contact and doubly dipolar

FIG. 4. Polarization angle θp as a function of α for different
values of γ . The inset shows θp as a function of γ for α = π/2,
exhibiting a jump at γ = 1.
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interactions. The coupling constant g = 4π h̄2asN/M charac-
terizes the contact interaction, with as the s-wave scattering
length. To quantify the strength of the dipolar interactions, we
introduce the constants gm = Nμ0d2

m/4π , ge = Nd2
e /4πε0,

and γ = ge/gm.
For a homogeneous condensate [Vext (r) = 0] of density n0,

the Bogoliubov excitations are

εk =
√√√√ h̄2k2

2M

(
h̄2k2

2M
+ 2gmn0[β + F(θk, φk, α)]

)
, (9)

where k is the quasimomentum, β = g/gm, and

F(θk, φk, α) = 4πγ

3
[3(cos α cos θk

+ sin α sin θk cos φk )2 − 1]

+ 4π

3
(3 cos2 θk − 1), (10)

with θk and φk the angular coordinates in momentum space.
The phonon modes εk→0 = c(θk, φk )h̄k determine the stability
properties of the condensate, where

c(θk, φk ) = {gmn0[β + F(θk, φk, α)]/M}1/2 (11)

is the direction-dependent sound velocity. The stiffest
phonons (largest c) propagate along the effective polarization
axis set by θp, whereas the softest ones are perpendicular to it.
For dipoles polarized on the xz plane, phonons propagating
along y are always soft, and determine the stability crite-
ria, i.e., c2

y = c2(π/2, π/2) = c2
m[β − 4π

3 (1 + γ )] < 0, where
cm = √

gmn0/M. Thus, a homogeneous doubly dipolar BEC
becomes unstable against local collapses if β < 4π

3 (1 + γ ).
Using the dispersion in Eq. (9), we obtain the Lee-Huang-
Yang (LHY) correction to the ground-state energy:

�E = V

2

∫
d3q

(2π )3

[
εq − h̄2q2

2m
− nVq + mn2V 2

q

h̄2q2

]
,

where V is the volume and Vq is the Fourier transform of V (r).
After integrating over k, we get the LHY correction to the
chemical potential �μ = ∂�E/∂N [45–51]:

�μ = g5/2
m

3π3N

(
Mn0

h̄2

)3/2 ∫
d�k[β + F(θk, φk, α)]

5
2 , (12)

where
∫

d�k = ∫ 2π

0 dφk
∫ π

0 dθk sin θk . The correction, �μ,
becomes complex when β < 4π

3 (1 + γ ) for which the ho-
mogeneous doubly dipolar BEC is unstable. The real part
of �μ is dominated by hard modes, whereas the unstable
low-momentum excitations determine the imaginary part. Not
very deep in the instability regime, Im[�μ]/Re[�μ] � 1
and Im[�μ] can be disregarded when analyzing the physics
of doubly dipolar condensates. For a finite-size condensate,
Im[�μ] is further suppressed by a low-momentum cutoff
[48,49,51].

The LHY correction �μ is repulsive and has a density
dependence of n3/2

0 . Because of this density dependence, the
LHY correction becomes significant at high densities, stabiliz-
ing the condensate against mean-field collapse. Incorporating
the LHY correction into the Gross-Pitaevskii equation in the

local density approximation [n0 → n(r, t )] [46,48–53], we
obtain the extended Gross-Pitaevskii equation (eGPE):

ih̄ψ̇ (r, t ) = {H+ �μ[n(r, t )]}ψ (r, t ). (13)

Below, we numerically solve Eq. (13) via imaginary-time
evolution to obtain the ground states of a doubly dipolar BEC.

V. SELF-BOUND DROPLET

Before discussing the properties of droplet arrays, it is con-
venient to briefly review the properties of individual doubly
dipolar quantum droplets [44], which may be well understood
using a variational Gaussian ansatz

ψ (r, t ) = 1

π3/4
√

L′
xLyL′

z

exp

[
− x′2

2L′2
x

− y2

2L2
y

− z′2

2L′2
z

+ ix′2βx + iy2βy + iz′2βz + ix′z′βxz

]
, (14)

with x′ = x cos θ − z sin θ , and z′ = x sin θ + z cos θ . The
variational parameters are the orientation angle θ of the
droplet on the xz plane, and L′

x, Ly, and L′
z, the droplet widths

along x′, y, and z′, respectively. The droplet minimizes its
energy by orienting along the effective polarization direction
(θ = θp).

Figure 5(a) shows the equilibrium widths, L0
x′,y,z′ , as a func-

tion of α, for γ = 1, N = 2000, and as = 200a0. Changing α

results in a dimensional crossover. For α = 0, the droplet is
cigar-shaped (L0

x′ = L0
y � L0

z′ ); see Fig. 5(b). As α increases,
the effective polarization axis tilts away from the z axis, and
the repulsive interaction along the x axis is reduced. The latter
causes an increase of L0

x′ , and a decrease of L0
y and L0

z′ , giving
a completely anisotropic droplet, as in Fig. 5(c). When α ap-
proaches π/2, the droplet acquires a pancake shape, reaching
L0

x′ = L0
z′ 
 L0

y at α = π/2 [see Fig. 5(d)]. Hence, whereas
droplets are cigar-like in usual dipolar condensates [9–12],
doubly dipolar condensates open the interesting possibility of
a controllable modification of quantum droplets from cigar- to
pancake-shaped.

VI. DOUBLY DIPOLAR DROPLET ARRAYS

The presence of an external confinement may result in
multidroplet ground states, as observed in condensates of
magnetic atoms [15,17,25,54]. Under proper conditions, the
droplets may keep mutual phase coherence, resulting in dipo-
lar supersolids. In this section, we investigate the novel
possibilities opened by the doubly dipolar potential in the
context of droplet arrays and supersolids.

In the following, we consider a doubly dipolar Dy conden-
sate of N = 35 000 atoms in a magnetic field of B = 100 G
and an electric field E = 2.68 kV/cm (experimentally more
convenient than the values considered in the previous section).
Fixing the field strengths makes the electric dipole moment
(or γ ) and the lifetime of |s〉 depend on α as in Fig. 1. For the
chosen field strengths, γ = 1 for α = π/2, and the lifetime of
state |S〉 varies from 28 s at α = 0 to 58 ms at α = π/2 (ex-
perimentally sufficient to observe the physics discussed here).
As in the previous section, the effective polarization direction
is assumed to lie on the xz plane. To distinguish between in-
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FIG. 5. (a) Equilibrium widths of a self-bound droplet as a func-
tion of α for N = 2k, γ = 1, and as = 200a0. The numerical results
of Eq. (13) (solid points) are in very good agreement with those of
variational calculations (solid and dashed lines). (b)–(d) show the
density isosurface of the ground states of the self-bound droplets
obtained via imaginary-time evolution of Eq. (13) at α/π = 0, 0.32,
and 0.5, respectively. The peak density of the droplet is provided at
the top for each case. We observe a structural transformation from a
cigar to pancake shape as a function of α.

coherent droplets and supersolids, we employ Legget’s upper
bound of the superfluid fraction [55]:

fs = (2L)2

[∫ L

−L
dqñ(q)

∫ L

−L

dq

ñ(q)

]−1

, (15)

where q is the coordinate along which the droplet array is
formed, and ñ(q) is the column density obtained after inte-
grating over the other two axes. The length 2L encloses the
central region, where droplets form. For a mean-field stable
condensate (BEC regime) and an unmodulated single droplet
(SD regime), fs = 1, whereas fs ∼ 0 for an incoherent droplet
array (Dn) with n > 1. Intermediate fs values characterize
the supersolid regime. We employ the criterion fs > 0.1 to
identify a regime as supersolid. In the following, we discuss
separately the case of weaker confinement on the dipole plane
and orthogonal to it.

A. Weaker confinement on the dipole plane

Figure 6 illustrates the possible ground states as a function
of α and as for the case of weaker confinement on the dipole
plane. We consider N = 35 000 atoms in a trap elongated
along x, with ωx,y,z = 2π × (18.5, 53, 81) Hz. In the diagram,
incoherent (supersolid) droplet arrays are labeled as Dn (SSn),
where n stands for the number of droplets. For α = 0, we re-
trieve the known physics of usual dipolar condensates. When

FIG. 6. Ground-state phase diagram as a function of α and as

for ωx,y,z = 2π × (18.5, 53, 81) Hz, N = 35 000, B = 100 G, and
E = 2.68 kV/cm. The incoherent (supersolid) arrays with n droplets
are denoted as Dn (SSn). The color bar shows the superfluid fraction
fs of the multidroplet states. Solid lines separate states with different
number of droplets whereas dashed lines separate supersolid and
incoherent arrays with the same droplet number. MD is the region
where we observe a density modulated droplet, and SD is the regime
for a single droplet. To distinguish between BEC and SD, the super-
fluid fraction is not shown in the SD region.

decreasing as, the ground-state transitions from an unmodu-
lated (denoted as BEC) regime to a supersolid and eventually
to incoherent droplets [14–16]. For lower as, the dipolar inter-
actions become more dominant, leading to fewer incoherent
droplets, and eventually to a single one (SD regime). The
phase diagram remains unchanged for α � 0.12π , since the
electric dipole moment is very small [see Fig. 1(a)].

Since the doubly dipolar potential changes from repulsive
to attractive along x axis with increasing α, the phase dia-
gram is radically altered for larger α. Remarkably, the ground
state may undergo, as a function of α, a transition between
supersolid phases with a different number of droplets. Partic-
ularly, upon increasing α, the number of droplets decreases
until reaching the SD. These transitions are performed while
keeping a significant superfluid fraction (see Fig. 7). Note
as well that due to the changing anisotropy of the doubly
dipolar potential, varying α results in a modification of the
shape and orientation of the droplets that form the supersolid
[see Figs. 7(b)–7(d)]. For a sufficiently large α � 0.15π , the
mean-field stable condensate transitions for decreasing as into
a single droplet (see Fig. 8), resembling the situation found in
usual dipolar condensates for a small-enough particle number
[11]. For α � 0.23π , the single droplet remains the ground
state when further decreasing as. However, the droplet shape
may depart very significantly from the typical elongated form
found in usual dipolar condensates. The interplay between the
external confinement and the doubly dipolar potential causes
shearing and tilting, leading to rectangular cuboid shapes,
with an aspect ratio controlled by as (see Fig. 9).
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FIG. 7. Supersolid-supersolid transitions. Superfluid fraction fs

as a function of α for as = 145a0. The other parameters are same
as in Fig. 6. (b)–(d) show supersolid densities [|ψ (x, y = 0, z)|2] at
α/π = 0 (SS5), 0.18 (SS4), and 0.21 (SS3), respectively.

The situation is very different for 0.15π � α � 0.23π ,
where the single droplet acquires a density modulation for
decreasing as due to the roton-like softening of the lowest
droplet mode along the x axis [56]. When further decreas-

FIG. 8. Superfluid fraction fs as a function of as for α/π = 0.18.
The other parameters are the same as in Fig. 6. Dashed line sepa-
rates supersolid and incoherent arrays with the same droplet number.
(b)–(d) show the densities |ψ (x, y = 0, z)|2. Upon decreasing as,
the BEC phase [depicted in (b) for as = 170a0] transitions into a
single droplet [shown in (c) for as = 155a0], which develops density
modulations [as seen in (d) for as = 149a0].

FIG. 9. Droplet density [|ψ (x, y = 0, z)|2] in the xz plane for
α/π = 0.25, and as/a0 = 155 (a), 146 (b), and 135 (c). The other
parameters are the same as in Fig. 6. The droplet acquires a rectan-
gular cuboid shape with its aspect ratio controlled by as.

ing as (see Fig. 8), this modulated droplet (MD) supersolid
ground state evolves into a droplet supersolid and then into an
incoherent droplet array, with a decreasing number of droplets
until reaching back a single-droplet solution.

B. Weak confinement perpendicular to the dipole plane

We consider at this point the same trap as above, but ex-
changing the x and y axes, ωx,y,z = 2π × (53, 18.5, 81) Hz.
As shown in Fig. 10, for α � 0.12π , the phase diagram re-
mains the same as in the previous case since the electric dipole
moment is small, and the trap frequency along z (the magnetic
dipole direction) is unchanged. In contrast, for larger α, the
phase diagram drastically departs from that of Fig. 6. The
transitions move to larger values of as, but their nature remains
unaltered because the doubly dipolar potential along the y
axis remains repulsive irrespective of α. Most remarkably,
droplets become pancake-shaped on the xz plane for α > 0.4π

as the doubly dipolar potential becomes purely attractive in

FIG. 10. Ground-state phase diagram as a function of α and as

for ωx,y,z = 2π × (53, 18.5, 81) Hz. The other parameters are the
same as in Fig. 6. The color bar shows the superfluid fraction fs of the
multidroplet states. Solid lines separate states with different number
of droplets, whereas dashed lines separate supersolid and incoherent
arrays with the same droplet number.
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FIG. 11. Superfluid fraction fs as a function of as for α/π = 0.5.
The other parameters are the same as in Fig. 10. Insets (b) and
(c) illustrate, respectively, the cases of incoherent and supersolid
pancake droplet arrays.

the xz plane. As a result, doubly dipolar condensates offer
the unique possibility of realizing arrays of pancake droplets,
as illustrated in Fig. 11 for the case of α/π = 0.5. Upon
decreasing as, the unmodulated BEC phase undergoes a tran-
sition to a pancake supersolid (SS6), followed by a pancake
supersolid-supersolid (SS6-SS5) transition. Eventually, it be-
comes an incoherent array of pancake droplets (D5), and a
further decrease in as leads to arrays with lesser droplets.

VII. SUMMARY

The interplay between doubly dipolar interactions and har-
monic confinement leads to novel possibilities for quantum
droplet arrays. The relative orientation between the electric

and magnetic dipole moments constitutes a novel control
parameter that may be employed to drive intriguing scenar-
ios, such as modulated droplets and supersolid-supersolid
transitions. Moreover, changing the relative angle allows,
without changing the external confinement, transitioning from
an array of cigar-shaped droplets, as those of usual dipolar
condensates, to a novel array of pancake droplets. Although
we have focused on one-dimensional droplet arrays, two-
dimensional arrangements open new possibilities for other
forms of supersolids and density patterns, as explored in
the usual dipolar condensates [17,20,23–26]. The fascinating
physics of two-dimensional quantum-stabilized doubly dipo-
lar condensates will be the subject of future studies.
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