
PHYSICAL REVIEW A 106, 063315 (2022)

Dynamics of quantum solitons in Lee-Huang-Yang spin-orbit-coupled Bose-Einstein condensates
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We present the numerical results of the structure and dynamics of the self-bound ground state arising
solely because of the presence of beyond-mean-field quantum fluctuation in spin-orbit- (SO-) coupled binary
Bose-Einstein condensates in one dimension. We obtain an analytical soliton solution for nonzero SO coupling
that matches quite well with the numerical results. Further, we investigate the dynamical stability of these
solitons by adopting three protocols, such as (i) adding initial velocity to each component, (ii) quenching the
SO- and Rabi-coupling parameters at initial and finite time, and (iii) allowing collision between the two spin
components by giving equal and opposite direction velocity to them. For small velocity perturbation, the soliton
has the presence of the breathing oscillation, while large velocity perturbations transform the soliton into moving
solitons. The maximum breathing frequency exhibits power-law dependence on the Rabi-coupling frequency
with an exponent ∼0.16. The quenching of SO and Rabi couplings results in several interesting dynamical
features, such as dynamical phase transition from plane to stripe phase, dynamical flipping of the spin state, and
secondary solitonic modes. In the absence of the SO and Rabi couplings, depending upon the velocity of the up-
and down-spin components, the collision between them is either elastic or inelastic, which is consistent with the
earlier numerical and experimental observations. However, in the presence of coupling parameters, the collision
appears to be inelastic and quasielastic in nature.
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I. INTRODUCTION

An exciting aspect of weakly interacting Bose-Einstein
condensates (BECs) is the appearance of a self-bound quan-
tum droplet state that results from the balance between the
attractive force due to the mean-field interaction and repulsive
force due to quantum fluctuation [1–3]. One can theoretically
model the contribution of the quantum fluctuations by consid-
ering the beyond-mean-field (BMF) term, popularly known
as the Lee-Huang-Yang (LHY) correction, in the mean-field
Hamiltonian of the condensate [4]. BMF terms were cor-
roborated first time in experiments with homogeneous and
single-component Bose gas of 85Rb [5] and 7Li [6], and re-
cently in binary 39K [7]. In a binary mixture, the quantum
droplet in three dimensions manifests in a spherical shape due
to the competition between the effective short-range attractive
interaction between the atoms and the repulsive interaction
arising solely due to the BMF, which is also responsible for
its stabilization [3]. In general, the LHY correction term is
attractive in quasi-one dimension, while it is repulsive in two
and three dimensions [1,3].

The advancement in the state-of-art technology and simu-
lation tools in ultracold BECs led to an upsurge in the research
in quantum droplets during the past few decades. The quantum
droplet was first reported experimentally in the dipolar BECs,
for which a single-component dipolar BEC made of dyspro-
sium (164Dy) produced elongated quantum droplets in one
direction [8–10]. Chomaz et al. observed similar features with
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the condensate of erbium atoms (166Er) [11]. Subsequently,
several groups realized quantum droplets in binary mixtures
of isotropic BECs [12–15], Bose-Fermi mixture [16], and also
in binary magnetic gases [17]. These quantum droplets are
commonly observed in three dimensions, while it is possible
to increase the lifetime of the droplets in the lower dimen-
sions. The formation of one-dimensional quantum droplets
is due to the balance between the repulsive mean-field (MF)
contribution to the energy per particle, which is linear in the
density (n) of the gas, and the attractive BMF correction,
proportional to −n1/2 [1,2].

Since the proposition of the nontrivial attractive nature of
the LHY term in quasi-one-dimensional quantum droplet [2],
it has caught the great attention of the scientific community.
A significant number of experimental [18] as well as theo-
retical and numerical works have been performed in recent
years using the effective one component [19], binary [20],
and spin-orbit- and Rabi-coupled binary BECs [21,22] that
explored the structure and dynamics of the quantum droplet.
Tononi et al., in SO-coupled BECs, demonstrated that the self-
bound states are solitonic in nature for vanishing mean-field
contribution [21]. Depending upon the Rabi- and SO-coupling
parameter ranges, these solitonlike states are either of single-
peak (bright soliton) or multiple-peak (stripe soliton) nature
[21,23]. Some of these works demonstrate the existence of
soliton and droplet nature of the self-bound state for the ef-
fective one-component binary BECs in one dimension [24]
as well as in the binary mixture with SO coupling in two di-
mensions [22,25]. The transition between the quantum soliton
and quantum droplet regimes depends on several parameters,

2469-9926/2022/106(6)/063315(14) 063315-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1043-9776
https://orcid.org/0000-0002-5326-3221
https://orcid.org/0000-0002-3246-3566
https://orcid.org/0000-0003-1566-0012
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.063315&domain=pdf&date_stamp=2022-12-20
https://doi.org/10.1103/PhysRevA.106.063315


SONALI GANGWAR et al. PHYSICAL REVIEW A 106, 063315 (2022)

like the atom number (N), interaction strength, the strength
of the confining potential, etc. [24]. For large N , a highly
dense droplet solution exists, while low dense bright soliton
occurs for small N [19]. A recent experiment shows that the
attractive mixture of BECs confined in an optical waveguide
could exhibit both quantum soliton and quantum droplets. At
large N , the droplet exhibits similar characteristics as those of
the classical droplets [13].

Although lots of emphasis on exploring the structure and
stability of quantum droplets in the recent past, only a limited
number of works are available in the literature that focus on
the dynamical aspect of quantum droplets. Ferioli et al. ana-
lyzed the dynamics of quantum droplets in a binary mixture
by allowing the droplets to collide with each other [15]. In
classical droplet collisions, there are two possibilities, either
they merge into a single one, or the colliding droplets separate
two or more ones after collision [26]. Ferioli et al. have
investigated the collision between the quantum droplets by
experimental and numerical means for the binary mixture of
hyperfine states in 39K and found the merging and separation
between the droplets depending on their velocity. Critical
velocity for the transition between the elastic and inelastic col-
lision strongly depends upon the atom number N [15]. A few
theoretical studies are available that establish the robustness
of the quantum soliton or quantum droplet during the colli-
sion. For instance, Astrakharchik and Malomed numerically
investigated the static and dynamical properties of quantum
droplets using the mean-field theory and studied the colli-
sion properties of two counterpropagating droplets [19]. They
showed that collisions between the tiny droplets are quasielas-
tic, indicating solitonic behavior. While depending on the
velocity, the large droplets may undergo merging or fragmen-
tation, which shows the collision as inelastic. Recently, Young
and Adhikari numerically studied the collision properties of
bright solitons in two-dimensional dipolar BECs [27].

In recent years, one may witness numerous theoretical and
numerical works focusing on the structure and dynamics of
the droplets in binary BECs. However, only a few studies are
available on the droplets in the spinor BECs, especially in
spin-orbit-coupled binary BECs [21,28]. In particular, the role
of SO- and Rabi-coupling parameters in dictating the shape
and dynamics of the quantum droplet is not well understood.
In this paper, we present a detailed numerical investigation
to understand the effect of the SO- and Rabi-coupling pa-
rameters on the stability and shape of the quantum soliton.
Although Tononi et al. [21] demonstrate the presence of the
self-bound quantum soliton due to the LHY term with vanish-
ing mean-field contributions, several aspects, like dynamical
robustness of the ground state for different perturbations, have
not been explored yet. In this paper, we have performed a
systematic analysis of the effect of initial velocity, quenching
of the SO- and Rabi-coupling parameters, and allowing the
collision between the components by initially perturbing the
components with equal and opposite speeds. All these pro-
tocols facilitate us to obtain a variety of dynamical phases
that include breathing (both in space and time), repelling,
multifragmented solitons, etc.

The structure of our paper is as follows. In Sec. II, we
present governing equations and numerical simulation details
and outline a possible scenario to connect our numerical

parameters with the experiment. We illustrate an analytical
solution of the ground state of the quantum soliton in the
presence of SO coupling in Sec. III. Following this in Sec. IV,
we present a detailed analysis of the ground-state structure
followed by its dynamics which are set up in the system by
different procedures. First, we discuss the different sorts of dy-
namics that arise due to the initial velocity given to the soliton,
followed by the dynamics due to the quenching of coupling
parameters. Further, we highlight some of the pronounced
dynamical behavior shown by the solitons in the presence of
collisions. Finally, we conclude our work in Sec. V.

II. BEYOND-MEAN-FIELD MODEL
FOR SO-COUPLED BECs

We consider a pseudo-spin- 1
2 Bose-Einstein condensate

confined in strong transverse confinement modeled using
quasi-one-dimensional spin-orbit- and Rabi-coupled conden-
sates with LHY term. The corresponding coupled Gross-
Pitaevskii (GP) equations in dimensionless form are given by
[21]

i∂tψ↑ =
[
−1

2
∂2

x − ikL∂x + g|ψ↑|2 + g↑↓|ψ↓|2

− g3/2
LHY

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑ + �ψ↓, (1a)

i∂tψ↓ =
[
−1

2
∂2

x + ikL∂x + g↓↑|ψ↑|2 + g|ψ↓|2

− g3/2
LHY

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↓ + �ψ↑, (1b)

where ψ↑ and ψ↓ are the wave functions of the spin-up
and -down components, respectively, kL is the spin-orbit-
coupling strength, � is the Rabi-coupling frequency, g is the
intraspecies interaction, and g↑↓ are the interspecies interac-
tion strengths. We consider the interaction term due to the
LHY correction as gLHY = g. The wave functions are sub-
jected to the following normalization condition:∫ ∞

−∞
|ψ↑|2dx =

∫ ∞

−∞
|ψ↓|2 dx = 1, (2)

which remains conserved with the time.
Equations (1) are nondimensionalized using transverse har-

monic oscillator length a0 = √
h̄/(mω⊥) as a characteristic

length scale (where ω⊥ is the trap frequency in the trans-
verse direction), ω−1

⊥ as a timescale, and h̄ω⊥ as an energy
scale. The other interaction parameters are considered as g =
2Na↑↑/a0 and g↑↓ = 2Na↑↓/a0. Here, a↑↑ and a↑↓ represent
the scattering length corresponding to intracomponents and
intercomponents, respectively. The SO- and the Rabi-coupling
parameters have been rescaled as kL → kLa0 and � → �/ω⊥,
respectively, while the wave function is rescaled as ψ↑,↓ =
ψ↑,↓

√
a0.

To make the numerical simulation experimentally vi-
able, we choose the parameters same as considered in the
recent realization of the quantum droplet in the binary
hyperfine states mixture of 39K condensates [12,13,15]. Fol-
lowing this we consider N ∼ 104 atoms confined in the
harmonic trap potential with frequencies ωx = 2π×50 Hz,
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ω⊥ = 2π×800 Hz in axial and perpendicular directions, re-
spectively. Using this, the characteristic length scale can be
obtained as a⊥ ∼ 0.6 µm. Generally, in the experiment two in-
ternal hyperfine states |F = 1, mF = −1〉 and |F = 1, mF =
0〉 are considered which can be attributed, respectively, to the
pseudo-spin-up |↑〉 and pseudo-spin-down | ↓〉 states of our
model. These two spin states have an equal number of atoms,
and intraspecies and interspecies interaction strengths can be
controlled by tuning s-wave scattering lengths through Fesh-
bach resonance and by varying the magnetic field. Following
the experiment we set a↑↑ = a↓↓ = −a↑↓ = 0.2686a0 (a0 is
the Bohr radius) which gives the dimensionless interaction
strengths as g = gLHY ≈ 0.5. Note that here we have taken all
the scattering lengths to be the same to make the contribution
of the mean-field term on the structure and dynamics of the
soliton vanishingly small. However, the recent experiment on
the quantum droplet with 39K indicates the presence of soliton
nature of the condensate is only possible when all the scatter-
ing lengths are not equal [13]. We expect our results will not
alter much upon considering the unequal scattering lengths,
as observed in the experiment. Another parameter in this
system is the Rabi-coupling frequency (�), commonly used
for coupling the spin states by tuning the frequency of Raman
lasers ranging from � = 2π×{0.080–40} kHz, which implies
that the dimensionless Rabi-coupling frequency range as � =
{0.1, 50}. It is possible to vary the SO-coupling strength (kL)
with the laser wavelength and their geometry. In this work
we have considered the dimensionless SO-coupling range
kL = {0.1, 8}, where the laser wavelength varies as λL =
17.8 µm–223.2 nm. Note that the LHY interaction is not equal
to the MF interaction because the LHY nonlinear interaction
term appears with an extra factor π . We have considered
gLHY = g = 0.5 and 1.0, for which the quantum fluctuation
term contributes approximately of the order of 11% and 30%,
respectively. Interestingly albeit of small contribution, we
have obtained a large variety of dynamical features for our
system without any confinement.

We employ the imaginary-time propagation method with
the aid of a split-step Crank-Nicolson scheme [29–31] to
numerically solve the coupled GP equations (1a) and (1b).
The box size [−153.6:153.6] with spatial resolution as dx =
0.025 is chosen for all the simulation runs, and we use the
Gaussian initial condition with antisymmetric profiles on the
components, i.e., ψ↑(x) = −ψ↓(−x). The time step is fixed
at dt = 10−5. We also consider various interaction strength
(g = 0.5, 1, 2) for our studies.

III. ANALYTICAL SOLITON SOLUTION

Here, we present the analytical solution of the ground state
for our model. For brevity, we wish to obtain a solution for
zero Rabi-coupling frequency (� = 0) and finite kL. For this
purpose, we consider the following transformation to elimi-
nate the SO-coupling term from Eq. (1):

ψ↑(x, t ) = ψ̃↑(x, t ) exp

[
ikL

2
(kLt − 2x)

]
, (3a)

ψ↓(x, t ) = ψ̃↓(x, t ) exp

[
ikL

2
(kLt + 2x)

]
(3b)

Using the single field approximation we get ψ̃↑ = ψ̃↓ =
φ(x) exp (iμt ). Based on the system parameters g↑↓ = −g, we
find that the mean-field interaction term cancels each other,
which yields the stationary state solution of the form

−μφ = −1

2
∂2

x φ −
√

2

π
g3/2φ2 (4)

which gives

φ′2 = αφ2 − βφ3 (5)

where the prime (′) represents the spatial derivative with re-
spect to x and α = 2μ, β = 2

√
2g3/2/3π . Now the solution

of Eq. (5) becomes [21]

φ(x) = φ(0) sech2(
√

μ/2 x), (6)

where φ(0) = α/β. Here, the stationary state solution de-
pends on the chemical potential. Using the normaliza-
tion condition

∫ |ψ↑|2dx = ∫ |ψ↓|2dx = 1 we obtain 2|μ| =
(g2/32/3π4/3). Thus, the final solution of Eq. (1) has the form
as

ψ↑ =
(

α

β

)
sech2

(√
μ

2
x

)
exp

[
ikL

2
(kLt − 2x) + iμt

]
,

ψ↓ =
(

α

β

)
sech2

(√
μ

2
x

)
exp

[
ikL

2
(kLt + 2x) + iμt

]
. (7)

In Fig. 1, we plot the analytical (red line) solution [Eqs. (7)]
as well as numerical simulation (black dots) results of the
stationary ground state of Eq. (1) for gLHY = g = 0.5, with
� = 0 and kL = 1. Both analytical and numerical simulation
results match reasonably well for the real and imaginary parts
and the total density of components.

In brief, we found the approximate soliton solution
for the system of coupled Eqs. (1) by eliminating the
SO-coupling term using the transformation with zero Rabi-
coupling frequency. In the process, we have used single field
approximation, which provides sech2(x) soliton solution due
to quadratic nonlinearity [21].

IV. NUMERICAL RESULTS

In this section, first, we present our numerical results for
different ground-state solitons obtained using the imaginary-
time propagation scheme. Our main emphasis is to ascertain
the role of mean-field and beyond-mean-field LHY term on
the overall shape and structure of the self-bound quantum
soliton state. Following this, we focus on the soliton dynamics
by employing the real-time propagation of the governing dy-
namical GP equations. Finally, we present a detailed analysis
of the dynamics of quantum solitons by giving initial velocity,
quenching the coupling parameters, and allowing the collision
between the components by initially imparting them with an
equal speed in the opposite direction.

A. Stationary ground states of quantum solitons

To better understand the role of the beyond-mean-field
term (gLHY) along with the SO- and Rabi-coupling frequency
on the shape and size of the ground state, we now proceed
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FIG. 1. A comparison between the numerically obtained soliton
profiles (dotted black line) and analytical (solid red line) solution
(7) for interaction strengths g = 0.5, and coupling parameters kL = 1
and � = 0. Real parts of the spin components: (a) Re(ψ↑) and
(b) Re(ψ↓); imaginary parts of the spin components: (c) Im(ψ↑) and
(d) Im(ψ↓); and the densities of the (e) up |ψ↑|2 and (f) down |ψ↓|2
components.

to get the different ground states of the solitons by assuming
g = −g↑↓ = gLHY. Here, we use MF and BMF acronyms to
represent the ground states of the system in absence (gLHY =
0) and presence of LHY correction (gLHY �= 0), respectively.
In general, depending upon the coupling parameters’ range,
the ground states are either bright soliton (BS) or stripe soliton
(SS) in nature [21,32].

We begin the analysis of the structure of BS in absence of
gLHY (labeled as MF) for the fixed parameters kL = � = 1 and
g = −g↑↓ = 0.5. In Fig. 2(a), the solid black line represents
the BS state. In the presence of gLHY (labeled as BMF) mag-
nitude of the BS gets doubled, and it tends to become more
localized even though the width of the soliton appears to get
reduced, as represented by the dashed red line in Fig. 2(a).

Further, upon increasing the interaction strengths to
g= −g↑↓ = 1, we find a negligible change in the amplitude
and width of the mean-field bright soliton (MF-BS) [see
Fig. 2(b) (solid black line)]. However, in the presence of
LHY interaction (gLHY = 1) a well-localized quantum bright
soliton (QBS) width gets reduced by half, while its amplitude
is increased by a factor ≈2.66 [see Fig. 2(b) (dashed red line)].

Next, we consider the shape and structure of SS both in
presence and absence of LHY correction term which was ob-
tained for � = 1 and kL = 4 at g = 0.5, 1. A phase transition

FIG. 2. Ground-state density profiles of the spin-up component
in the presence and absence of LHY term. Bright soliton for � = 1
and kL = 1 with (a) g = 0.5 and (b) g = 1.0, and stripe soliton for
� = 1 and kL = 4 with (c) g = 0.5 and (d) g = 1.0. The spin density
gets more confined when the LHY term (dashed red line) is present.
The insets in (c) and (d) show the magnified views of the stripe
patterns in the presence and absence of the LHY term.

from BS to SS states occurs as we change the SO-coupling
strength from kL = 1 to 4. The fringes that appear in the
density profiles characterize the stripe wave pattern. One may
note that several local maxima appear in the density profile for
both the MF and quantum solitons. In the presence of the LHY
term with interaction strength g = 0.5, the number of stripes,
as well as the width, gets reduced, and amplitude gets doubled
compared to those without LHY, indicating the localization
of the soliton [see Fig. 2(c)]. On increasing the interaction
strength to g = 1, we find that the mean-field stripe soliton
(MF-SS) [shown with the black line in Fig. 2(d)] exhibits
similar nature as those for g = 0.5. However, the LHY-SS or
quantum SS (QSS) phase width gets reduced by half, and
an increase in the amplitude by a factor ≈4, accompanied
by a loss in the number of stripes and an increment in the
localization [shown with the red line in Fig. 2(d)] is observed.
Overall, we noticed that the condensate shape hardly changes
upon increasing the MF interaction strengths. However, we
note a significant change in the shape and amplitude when
we consider the LHY correction (gLHY �= 0). With the LHY
correction on increasing the nonlinear interaction (g), the size
of the soliton gets reduced while the amplitude increases.

B. Dynamics of different phases of quantum soliton

In this section, we present the dynamics of the ground
state of the MF and quantum soliton by solving the governing
equation [cf. Eqs. (1)] with the help of real-time propagation.
The main aim here is to investigate the dynamics of the MF
and BMF quantum solitons by giving some initial velocity
to the condensate by making a uniform change in the phase
of the soliton wave function [21,33]. Further, we demonstrate
the appearance of breathing solitons, fragmented soliton, free
expansion of soliton, etc., by manipulating the magnitude of
the initial velocity.
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FIG. 3. Temporal evolution of mean-field (MF) bright soliton (BS) at different initial velocities: (a) v = 0, (b) v = 0.2, (c) v = 0.5, and
(d) v = 1 for g = −g↑↓ = 0.5 and � = kL = 1. Upon increasing the velocity from v = 0 to 0.2, a transition from the soliton to an oscillating
soliton takes place. For large velocity multisolitons (at v = 0.5) and bifurcated solitons (at v = 1) are observed. Temporal evolution of MF
stripe soliton for different velocities: (e) v = 0 and (f) v = 0.4 with g = −g↑↓ = 0.5, � = 1, and kL = 4. For v = 0 shape of the soliton
remains unchanged until t ∼ 200. For finite velocity (v = 0.4), the stripe soliton shows propagation along the initial velocity direction.

Figures 3(a)–3(d) depict the temporal evolution of BS for
different velocities v = 0, 0.2, 0.5, and 1, respectively, with
g = −g↑↓ = 0.5 and � = kL = 1. For v = 0, the soliton prop-
agates without any distortion [see Fig. 3(a)]. For a small but
finite initial velocity (for example, v = 0.2), we notice setting
up a time-dependent oscillation in the soliton that manifests
as an undulating motion of the density in time and space. Be-
yond t ∼ 30, the oscillation amplitude appears to vanish and
a stable soliton is observed [cf. Fig. 3(b)]. This oscillation can
be associated with the instability that soliton displays upon
making a sudden change in the phase by a factor exp (±ivx),
where v is the resultant acquired velocity. Note that up- and
down-spin components of the condensates have been given
negative and positive x-direction velocity, respectively. We
also observe an expansion in the soliton upon waiting for
a longer period. For v = 0.5, the soliton appears to display
breaking into secondary solitons and breatherlike oscillation
in which it exhibits expansion followed by compression at
a periodic time interval [see Fig. 3(c)]. The spin component
exhibits interesting dynamical behavior. We noticed the ab-
sence of the breather on one side while it is present on the
other side. However, the middle lobe exhibits oscillation for a
shorter time and expansion in a long duration indicates the
presence of an oscillation deathlike behavior in the soliton
[34]. In addition, we also observe the presence of multisoliton-
like features. At v = 1, fragmented solitons with breatherlike
modes get generated and propagate in the respective directions
for the spin components, accompanied by the appearance of
bifurcationlike multisolitons [cf. Fig. 3(d)].

We observe similar nature of dynamical behavior in the SS
as those observed for BS in the absence of the LHY term. In
Figs. 3(e) and 3(f), we show the temporal evolution of SS in
the absence of LHY term for � = 1 and kL = 4 with g = 0.5
for (e) v = 0 and (f) v = 0.4. For v = 0, the SS state exhibits
stripe solitonic feature. However, at higher velocity (v = 0.4),
bifurcation of the stripe soliton into two propagating solitons
occurs, which exhibits expansion with time.

After discussing the dynamics of the soliton in the presence
of MF term only, we now analyze the dynamical evolution
when we consider the BMF term along with MF term for both

QBS and QSS. In Fig. 4, we illustrate the dynamics of QBS
with the BMF (i.e., with LHY correction term) for different
initial velocities v = 0, 0.5 and v = 1.0 at g = −g↑↓ = 0.5
and � = kL = 1. For zero velocity the soliton exhibits stable
nature with no change in its shape and size with time as
depicted in Fig. 4(a): the feature is same as that for the MF
bright soliton. On increasing the velocity to v = 0.5, the soli-
ton displays breatherlike expansion and compression behavior
at periodic intervals, as shown in Fig. 4(b). Here we find
that the expansion of the condensate gets under control due
to the presence of gLHY interaction, stabilizing the expanding
condensate without any trap. The frequency of these breathing
modes depends on the coupling parameters, which we shall
discuss in detail in the later part of the paper. Note that Tononi
et al. reported similar breatherlike soliton [21], which was
attained by a slight perturbation in the width of the ground
state. As we increase the initial velocity to v = 1, the soliton
develops periodic breather oscillations and exhibits bifurca-
tionlike features in which the center of the soliton moves in
the ±x directions. Note that the up-spin component moves in
the −x direction while the other component moves in the +x
direction. This feature is noticeable for a finite time t � 10.
Beyond this time, the breathers expand and span the entire
space while the centered soliton exhibits expansion. Apart
from this, we also notice that it exhibits bright-dark soliton for
a shorter time, which finally gets converted into multisoliton
at a longer period [19] as displayed in Fig. 4(c).

Further, we focus on the dynamics of QSS with LHY
correction at different velocities v = 0, 0.2, and 1.0 for the
parameters g = −g↑↓ = 0.5, � = 1, and kL = 4. At v = 0,
QSS remains stable and maintains its shape and size for
a longer duration [see Fig. 5(a)]. However, with finite ve-
locity (v = 0.2) QSS propagates for a while in the ±x
directions, thereafter, for t � 50 they start displaying de-
caying (dilatation) feature until t � 300. Following this, the
dilatation slowly gets diminished and for t � 500 the soli-
ton gets revived [see Fig. 5(b)]. The whole revival and
expansion of the soliton with time is similar to those ob-
tained for the QBS [see Fig. 4(b)]. For v > 0.5, the QSS
evolves with time in the respective directions and, after
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FIG. 4. Plots of the total density,
∑

j=↑,↓ |ψ j |2, showing dynamics of quantum bright soliton (QBS) with LHY correction for g = −g↑↓ =
0.5, � = 1, kL = 1 at different velocities: (a) soliton propagates with no shape change for v = 0, (b) breathers for finite velocity v = 0.5,
and (c) oscillation and bifurcation for v = 1.0. Increase in the velocity leads transitions from bright soliton to breather which further gets
transformed into multisolitons.

separation, they do not combine again, as shown for v = 1.0
in Fig. 5(c).

Next, we analyze the dependence of the breathing fre-
quency for the quantum soliton as observed in Figs. 4(b) and
5(b) on the SO- and Rabi-coupling parameters. We compute
the breathing frequency (ωbf) using the time series of the
density oscillation of the soliton. In Fig. 6(a) we show de-
pendence of ωbf on the SO couplings (kL) for various � when
the soliton was assigned the initial velocity as v = 0.1. Fol-
lowing Ref. [21], here we consider the initial wave function
as Gaussian, which is different than that of the exact solution
of the ground state. The breathing frequency is around 0.025
for kL = 0 for all values of �. At � = 0 the ωbf remains
unchanged upon increasing kL. For finite Rabi-coupling fre-
quency (� = 1, 2, 4), breather starts appearing at periodic
intervals. For fixed � as k2

L < � the breathing frequency
increases upon increasing in kL. It attains the maximum at
critical SO coupling (k2

L = �) where the QBS to QSS phase
transition occurs. For k2

L > �, ωbf decreases slowly in the
regime of quantum stripe soliton. At higher kL, ωbf have the
same value as those at kL ∼ 0 for all �. The critical breathing
frequency (ωc

bf) increases upon an increase in the Rabi fre-
quency. Figure 6(b) illustrates the variation of ωb f with kL

for different velocities v = 0.1 and 0.2 at g = 0.5. We have
considered two sets of Rabi couplings � = 1 and 4 for the
analysis. The overall variation in ωb f with kL appears to be the
same for both the velocities (v = 0.1 and 0.2), except that at
lower velocity (v = 0.1) it has higher value compared to those
at large velocity (v = 0.2). Interestingly, ωc

bf remains the same
for all the velocities (v = 0.1 and 0.2) as shown in Fig. 6(b),
indicating that the breathing frequency at the critical point
remains unchanged upon increasing the velocity. To better un-
derstand the dependence of the ωbf on the interaction strengths

in Fig. 6(c) we show its variation with kL for different g
(g = 0.5, 1.0, 2.0) at � = 4 and v = 0.1. We observe that the
ωbf for a given kL shows increasing behavior on increasing
the interaction strength. The critical SO coupling (kc

L) and
corresponding critical breathing frequency (ωc

bf) also increase
upon the increase in g.

In Fig. 7(a), we plot the variation of ωc
bf with � for v = 0.1.

We find that ωc
bf shows power-law dependence on � with an

exponent 0.16. In Fig. 7(b), we plot the variation of ωbf with
initial velocity for fixed Rabi coupling (� = 2) and for two
sets of SO couplings kL = 1.2 (solid red line) and kL = 1.8
(dashed blue line). Here, we notice that ωbf decreases upon
increasing the initial velocity for both the kL. The fall in the
breathing frequency with the velocity becomes sharper upon
the increase in kL. However, for a given initial velocity, the
ωbf is small for kL = 1.8, which happens to be in QSS than
those for kL = 1.2 at which we have QBS ground state. We
note that the chemical potential in the QBS regime does not
change with kL until kL < kc

L, which indicates that the soliton
is energetically stable in the BS regime. On the other hand,
when we increase the Rabi frequency � to 2, the critical
kL for the transition from the bright to stripe soliton also
increases. Overall, we find that the ground-state energy of the
quantum soliton gets lower upon increasing � for a given kL,
suggesting a better way of obtaining an energetically stable
soliton.

Another notable feature is the transition of the breathing
soliton phase into the moving soliton upon the increase in
the velocity as depicted in Figs. 4 and 5. A similar feature
of the soliton with increase in the velocity has been reported
in Ref. [19] for the binary mixture with an assumption of sym-
metric behavior of the components. However, the presence of
Rabi and SO coupling between the components makes the

FIG. 5. Plots of the total density,
∑

j=↑,↓ |ψ j |2, showing the dynamics of quantum stripe soliton (QSS) with LHY correction at different
velocities: (a) v = 0, (b) v = 0.2, and (c) v = 1.0 for g = −g↑↓ = 0.5 and � = 1, kL = 4. For v = 0 stable stripe soliton is observed. However,
for finite velocity breathers (v = 0.2) and bifurcated (v = 1.0) solitons are observed.
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FIG. 6. (a) Variation of breathing frequency (ωbf) with the SO-coupling strength (kL) for different � with fixed velocity v = 0.1. (b) The
variation of ωbf with kL for different Rabi coupling (� = 1, 4) and velocities v = 0.1, 0.2 with g = 0.5. At the critical kLwhere PW-SS phase
transition happens, ωc

bf remains independent of the velocity. (c) Variation of ωbf with kL for different interaction strengths g = 0.5, 1.0, 2.0 at
� = 4 and v = 0.1. To bring the graph to the same scale, we multiply the data for g = 0.5 and g = 1.0 by a factor of 2.

nature of these breathing and moving solitons more compli-
cated here. We can understand the instability that leads to the
transition from breathers to the moving soliton by looking at
the SO, Rabi, and the kinetic part of the chemical potential.
While the kinetic term varies as v2, the SO and Rabi parts
will have linear and square dependence on the velocity, re-
spectively. Due to this, one witnesses competition between
the kinetic energy, which is positive and the SO and Rabi
parts will have negative values upon changing the velocity.
Overall, we expect the domination of the breathing soliton

FIG. 7. (a) Variation of breathing frequency (ωc
bf

) at critical kL

with � for fixed velocity v = 0.1. The other parameters are the same
as those in Fig. 6. The critical breathing frequency increases and
exhibits power-law behavior with � as ωc

bf
∼ �0.16. The dashed line

is drawn as a guide to the eye to show the power-law nature of the ωc
bf

with �. (b) Variation of breathing frequency ωbf with initial velocity
v for different kL keeping Rabi frequency fixed to � = 2. The ωbf is
small for higher kL for all the velocity.

region by the SO- and Rabi-coupling contributions, while the
moving soliton region kinetic energy dominates. The above
also indicates that the chemical potential attains minimum at
the critical velocity, which is consistent with our numerical
observation.

After analyzing the dynamics of the solitons by imparting
an initial velocity, in the following section, we present differ-
ent dynamical features arising due to making an instantaneous
quench in the coupling parameters (� and kL).

C. Quench dynamics of quantum soliton

To better understand the effect of the SO and Rabi cou-
plings on the overall dynamics (without giving any initial
velocity) of the quantum solitons, in this section we employ
the instantaneous quench of the coupling parameters and an-
alyze the resultant dynamics. With this protocol, we have
obtained a variety of notable features like the generation of
secondary and repulsive solitons, the dynamical phase transi-
tion from the QBS to the QSS and vice versa, etc.

In Fig. 8, we show the dynamical evolution of the soliton
which generally arises due to the quench of Rabi-coupling
frequency by fixing the interaction strength to g = −g↑↓ =
0.5. The ground-state soliton was initially prepared for � =
0, kL = 2. As we quench the Rabi frequency from � = 0 → 1
at finite time (t ∼ 20) we notice that the QBS gets transformed
to the QSS [see Figs. 8(a)–8(c)]. However, upon employing
� = 0 → 5, the QBS phase of the soliton gets transformed
into a phase that displays expansion and certain characteristics
of the repulsive soliton as shown in Figs. 8(d)–8(f).

In Fig. 9, we show the dynamical evolution of the solitons
for two kinds of quenching protocols: (a)–(c) when � = 0 →
50 and kL = 2 → 4 and (d)–(f) when � = 0 → 50, kL =
2 → 8. In the first case, we find the appearance of multisoli-
tons with interferencelike patterns. Following the quenching,
solitons get bifurcated into four that propagate away from
each other and behave like repelling solitons. In the density
profile, the outermost solitons show breathinglike features,
and the innermost one inherits pure, stable solitonlike char-
acteristics, i.e., they do not exhibit any change in shape and
size with time as shown in Figs. 9(a)–9(c). For the second
quenching protocol (� = 0 → 50 and kL = 2 → 8), again,
multisoliton behavior appears, which has some differences
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FIG. 8. Dynamics of the quantum soliton appearing due to different quenching protocols at g = −g↑↓ = 0.5 as it was initially prepared
for � = 0, kL = 2. (a)–(c) When the Rabi frequency is quenched as � = 0 → 1 at t = 20, the initial QBS phase changes to QSS. (d)–(f)
Quenching of Rabi frequency as � = 0 → 5 at t = 20 transforms the QBS phase into repulsive solitons.

compared to the previous case. For this case, we notice that
the outermost soliton breather gets transformed into solitons
with a relatively larger repulsive angle, while the innermost
solitons transform into the stripe solitons and show attrac-
tion towards each other as depicted in Figs. 9(d)–9(f). Thus,
quenching of the coupling parameters (either one of Rabi and
SO or both simultaneously) leads to generation of secondary
solitons. Similar types of secondary solitons have been no-
ticed experimentally as an excitation of the bright matter wave
solitons in quasi-one-dimensional geometry [35].

Next, we discuss the effect of double-quench protocols
on the soliton dynamics. In Fig. 10, we show the dynamics
of the quantum solitons as we implement double-quenching
protocols [36] of the coupling parameters for the initial
ground state prepared at � = 0, kL = 2 for g = −g↑↓ = 0.5.
In Figs. 10(a)–10(c), we show the evolution when the first
quench is performed by instantaneously switching off the SO
coupling, that is, making the change kL = 2 → 0 at t = 0.
Subsequently, we allow the soliton to evolve until t = 20
when we apply another quench by changing Rabi frequency
as � = 0 → 1 and switching on the SO coupling as kL =

0 → 2. The first quenching, where we switch off the SO
coupling, initially allows the solitons corresponding to the up
and down components to display repulsive behavior and move
in the space until the application of a second quenching. Af-
ter the second quench (� = 0 → 1, kL = 0 → 2) at t = 20,
we notice a switching off the soliton position from x = 0 to
some finite value which further remains invariant with time.
Overall, we see that the double-quench protocol provides
more stability to the solitons. This particular feature is one of
the promising potential applications for quantum information
and quantum computing which is based on the mixing and
demixing of qubits [37,38]. As we perform the first quenching
the same as the previous case while in the second quench,
only change in Rabi frequency is executed with � = 0 → 5
at t = 10 we find the appearance of moving BS with the
generation of the second harmonics [see Figs. 10(d)–10(f)].

Further, we consider � = 2, kL = 0 with v = 0 which
shows only the stable BS. As we quench kL = 0 → 2 and
� = 2 → 0 the solitons repel each other [see Figs. 11(a)–
11(c)]. Upon quenching the Rabi-coupling frequency from
� = 2 → 4, we find that the soliton gets transformed into

FIG. 9. Dynamics of the quantum soliton appearing due to different quenching protocols at t = 20 with g = −g↑↓ = 0.5 as it was initially
prepared for � = 0, kL = 2. (a)–(c) When both Rabi frequency and SO coupling are quenched as � = 0 → 50, kL = 2 → 4 at t = 20, which
results the transformation of nonmoving QBS soliton into moving multisoliton with large repulsion angle. (d)–(f) For quenching � = 0 →
50, kL = 2 → 8 at t = 20, QBS undergoes bifurcation into moving multisoliton state with small repulsive angle.
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FIG. 10. Dynamics of the quantum soliton prepared with g = −g↑↓ = 0.5, � = 0, and kL = 2 appearing due to double-quenching
protocols. (a)–(c) First quenching is performed at t = 0 with change in SO coupling (kL = 2 → 0) and second quenching is done at t = 20
when both coupling parameters are changed as � = 0 → 1 and kL = 0 → 2 which results as transforming the moving soliton to the stationary
soliton. (d)–(f) At t = 0 first quenching is same as those in (a)–(c), while at t = 10 second quenching is done as � = 0 → 5 that results
transforming the moving soliton into a soliton with secondary waves.

filaments after a finite time (t � 150), which also appears to
repel each other at (t � 250) as depicted in Figs. 11(d)–11(f).
The decay followed by the revival of the soliton along with
multiple humps could be understood following the line of
Ref. [34]. The main reason behind the fragmentation is the
increase in the Rabi coupling while the change in the SO
coupling triggers the movement of the soliton.

After discussing different dynamical behavior arising in the
quantum bright soliton due to the quench of the coupling pa-
rameter in what follows, we present the related dynamics for
the quantum stripe soliton. In Fig. 12, we depict the dynamics
that arise due to the quenching of both coupling parameters
when the ground state is quantum stripe soliton nature.

In Figs. 12(a)–12(c), we show the dynamics of soliton
when quenching of both coupling parameters is performed
at t = 50 for the initial state prepared with g = −g↑↓ =
0.5,� = 1, kL = 2. The quenching protocol for SO coupling
is implemented as kL = 2 → 0.2, while for Rabi-coupling
frequency, it is � = 1 → 0.5. We noticed that the quenching
results in the bifurcation of stripe solitons into two parts
wherein one shows weak breather soliton while the other

exhibits stronger behavior. Interestingly, here we find that
the quenching leads to the excitation mode that exhibits the
spin-flipping characteristics, which is quite evident from the
dynamical change in the population in the spin-up and -down
states in the alternate fashion with time. The observed spin
flipping has been observed for the cases when Rabi coupling
is quenched from the small (� < k2

L) to large (� > k2
L) value

leading to the oscillatory instability. Similar observation has
been made for the attractive binary mixture [34]. Note that the
spin flipping can also be observed by making an imbalance in
the atomic population of the condensate state at the initial time
[39]. Further, the decrease of Rabi-coupling frequency leads
to the disappearance of breathers and the generation of repul-
sive solitons. In Figs. 12(d)–12(f), we depict the dynamics of
soliton when quenching of Rabi-coupling frequency is exe-
cuted from � = 1 → 2 at t = 20. The quenching generates
the stripe soliton breathers. Similar kinds of breathing solitons
observed upon quenching the interaction strength so that the
mean-field contribution becomes small in the binary mixture
of the condensates [20].

FIG. 11. Dynamics of the quantum BS soliton prepared with g = −g↑↓ = 0.5 and � = 2, kL = 0 as quenching of both the coupling
parameters is performed. (a)–(c) Quenching is done as kL = 0 → 2, � = 2 → 0 that results the transition of bright soliton into moving
soliton. (d)-(f) With quenching kL = 0 → 2, � = 2 → 4 breather soliton gets bifurcated into filament like soliton beyond t ∼ 250.
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FIG. 12. Dynamics of the quantum stripe soliton prepared with g = −g↑↓ = 0.5 and � = 1, kL = 2 and the quenching is performed at
finite time. (a)–(c) Quenching is performed as kL = 2 → 0.2, � = 1 → 0.5 at t = 50 that results the transition from the stripe soliton to the
space-time breather bright soliton. (d)–(f) Quenching is performed as � = 1 → 2, kL = 2 at t = 20 resulting in the transition from the stripe
soliton to the breathing stripe soliton.

In Fig. 13, we show the dynamics that solely arises due
to the quenching of the Rabi coupling for the ground states
initially prepared for g = −g↑↓ = 1.0 and � = kL = 2. We
quench the parameters as (a) � = 2 → 1 and (b) � = 2 → 3
at t = 10. Here we notice that the stripe soliton exhibits ex-
pansion upon the quenching of the parameters. We find that
the breathing oscillation frequency increases on increasing
the interaction strength, as shown in Fig. 6(c). Further, we
consider another stripe soliton with � = kL = 2 in which the
Rabi coupling is quenched as � = 2 → 1. For this, we find
that the frequency of the striped soliton breather becomes
ωbf ∼ 0.08 upon increasing the interaction strength. When we
change � = 2 → 3, we obtain that the initial profile, which
has two maximum peaks and two side lobes, gets transformed
into the multiple side lobes after the quench. Apart from this,
the innermost soliton appears to repel each other after a finite
time as they approach each other. A similar kind of dynamical
behavior gets repeated over time.

FIG. 13. Dynamics of quantum stripe soliton prepared with g =
−g↑↓ = 1.0 and � = kL = 2 as the quenching is performed on the
Rabi frequency at t = 10. (a) Soliton gets bifurcated into repulsive
and attractive solitons as Rabi coupling is quenched as (a) � = 2 →
1 and (b) � = 2 → 3.

D. Collisional dynamics of quantum soliton

After studying the quenching dynamics of the quantum
soliton by perturbing it with an initial velocity, in this section,
we investigate how the solitons undergo different kinds of
collisions that affect their overall stability depending upon the
magnitude of the initial velocity. In particular, we find elastic,
inelastic, repulsive, and space-time breather soliton against
collisions.

In absence of the trap, the quantum solitons are set in mo-
tion by giving an initial velocity ∓v to the stationary ground
state (ψ↑, ψ↓) with a multiplier exp (∓ivx), respectively [19].
Here we start for the case when the solitons are positioned
at ±50 for g = −g↑↓ = 0.5 and � = kL = 0. For a weak
velocity (v = 0.2) the solitons undergo inelastic collision as
depicted in Fig. 14(a). We find that the densities before the
collision and after the collision are not the same. This indi-
cates that after the collision, the solitons are unable to retain
their shape and size same as those before the collision. As
the initial positions of the soliton are at ±50 the expected
time for collision is t = x/v = 250 which can be clearly seen
in Fig. 14(a). We find that after the collision (t ∼ 400), the
solitons start exhibiting the expansion, which makes them
quite different in shape and size than they were before the
collision. In order to understand the inelastic collision in a
better way in Fig. 14(b) we plot the time evolution of the
different energy contribution, like, kinetic energy (Eki), mean-
field energy (Emf), LHY energy (ELHY), and the total energy
(ET ). The explicit form of energies is provided in the Eq. (A6)
of Appendix A. We find that the mean-field, kinetic, LHY, and
total energies after the collision do not remain same as they
are before the collisions which is consistent with the inelastic
nature of the collision observed in the classical case.

For large velocity (v = 0.9), we observe the elastic col-
lision with no change in the shape of the soliton after the
collision. In Fig. 14(c) we show the total density correspond-
ing to the soliton when each component has been given an
initial equal velocity (v = 0.9) but opposite direction with
their initial positions at ±50 for g = −g↑↓ = 0.5 and � =
kL = 0. For this, the expected collision time will be at t =
55.5. We find that the densities before and after the collision
are almost similar. In Fig. 14(d), we plot the time evolution of
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FIG. 14. (a) The total density plots depicting the inelastic collision dynamics between the quantum soliton for g = −g↑↓ = 0.5 and � =
kL = 0 as the velocity given to the up and down components is in the direction of −x and x, respectively, with magnitude v = 0.2. (b) Evolution
of the different energies Eki, ELHY, Emf, and total energy (ET ) with time for collision as shown in (a). There is a significant increase in the ELHY

and total energy (ET ) after the collision, indicating the inelastic nature of the same. (c) Plots of the total density depicting the elastic collision
dynamics of quantum soliton for v = 0.9. (d) Evolution of the different energies with time for the collision as shown in (c). Before and after
the collision, all the energy remains the same, indicating the elastic collision nature.

the different energy contributions to confirm the elastic nature
of the collision. It is observed that the mean-field, kinetic,
LHY, and total energies remain the same after the collisions
than they were before the collision, which are consistent with
the elastic nature of the collision. This behavior is consistent
with the experimental observations of the collision between
the quantum droplet in three dimensions [15]. Note that sim-
ilar feature of the collision between the quantum droplets has
been reported for the symmetric components of the binary
mixture with finite interaction [19]. So far, we have analyzed
the collisional dynamics of the binary BECs with LHY correc-
tion and in the absence of Rabi- and SO-coupling parameters.
However, as we consider it for finite SO and Rabi couplings,
we find that the solitons get degenerated and, thus, it could
not provide the relevant collision dynamics. Considering what
follows, we present the collision dynamics by keeping either
SO- or Rabi-coupling frequency to be finite. Here as we obtain
the spatially separated soliton, we employ the quenching of
velocity and the coupling parameter, which was zero while

preparing the states. To study the collisional dynamics with
finite coupling parameters, we prepare the initial ground state
with � = 1 and kL = 0. For this case, we find each spin com-
ponent degenerates in the ±x direction and further exhibits
the space-time breathers, which experience expansion after
the finite time (t ∼ 40). As we pass on the finite velocity, the
solitons start interacting with each other. As for an example,
for v = 1 the soliton starts moving towards each other that
results in the elastic collision between them at t ∼ 20. Note
that here, after the collision, there is a small change in the den-
sity, which is different from the collision behavior observed
in Fig. 14(c). Therefore, we refer to this as the quasielastic
collision. To avoid the repetition of depiction of the typical
solitonic behavior (like, space-time breathers and quasielastic
collision) here we have not given any figure corresponding to
this observation.

Next, we present the collisional dynamics by preparing
the ground states with finite SO-coupling and zero Rabi-
coupling frequencies. We consider the system with � = 0,

FIG. 15. Collisional dynamics of the quantum solitons prepared with g = −g↑↓ = 0.5, � = 0 and kL = 0.5 and the individual components
are given equal and opposite velocity (v = 0.5) at t = 0. Also, quenching on SO coupling parameter is performed as (a)–(c) kL = 0.5 → 0.1
and (d)–(f) kL = 0.5 → 2. Upon quenching the SO coupling, the solitons undergo inelastic collision in (a)–(c), while solitons repel each other
for (d)–(f).

063315-11



SONALI GANGWAR et al. PHYSICAL REVIEW A 106, 063315 (2022)

FIG. 16. Collisional dynamics of the quantum solitons prepared with the same parameters and given same velocity at t = 0 as those for
Fig. 15. At t = 0 the Rabi coupling is quenched as (a)–(c) � = 0 → 0.1, (d)–(f) � = 0 → 0.8. Upon quenching, the Rabi-coupling quantum
soliton undergoes inelastic collision and displays an interference pattern (a)–(c). However, the soliton displays quasielastic collision with
secondary solitons generation in (d)–(f).

kL = 0.5 with g = 0.5 and finite velocity v = 0.5. Once we
prepare the ground state, we analyze the collisional dynamics
by quenching the SO coupling for two different situations.
When v > kL/2, the nondegenerated soliton with decaying or
expansion feature undergoes inelastic collision as depicted in
Figs. 15(a)–15(c). However, for v < kL/2 we observe that the
soliton appears to repel each other upon progression of time
[see Figs. 15(d)–15(f)].

Further, we analyze the collision dynamics by quenching
the Rabi coupling. Like in the previous case, we study the
dynamics of the solitons for two different situations. When
� < k2

L the nondegenerated soliton undergoes inelastic colli-
sion. They appear to show the stripe fringes as depicted in
Figs. 16(a)–16(c). For � > k2

L, we find a collision of bright
soliton is quasielastic with the generation of interference
stripe fringes. We also witness the generation of secondary
solitons, as shown in Figs. 16(d)–16(f).

V. SUMMARY AND CONCLUSIONS

Using the mean-field model along with the LHY cor-
rection, we have numerically investigated the structure and
dynamics of the ground state of the self-bound state in 1D
spin-orbit-coupled BECs. Depending upon the nature of Rabi
and SO couplings, the ground state is either quantum bright or
stripe soliton. We deduced an analytical solution of the quan-
tum bright soliton without Rabi coupling. We further studied
the dynamics of the soliton using the three protocols, namely,
by giving the initial velocity to the soliton, quenching the SO
and Rabi coupling parameters, and allowing the component to
collide by attributing an equal and opposite initial velocity. We
found that the velocity perturbations generate breathinglike
soliton. The breathing frequency increases upon the increase
in the SO coupling for a given Rabi coupling frequency attains
a maximum at the SO coupling, where the phase transition
from the quantum bright to stripe soliton takes place. The
magnitude of breathing frequency at critical SO coupling
remains independent of the initial velocity and exhibits a
power-law dependence on the Rabi-coupling frequency with
an exponent ∼0.16. We found that the critical breathing fre-
quency increases upon increasing the interaction strengths.

Using the contribution of the kinetic, SO, and Rabi energy
terms, we find that while domination of the breathing soliton
phase by the SO and Rabi couplings, the moving soliton phase
is the result of the kinetic energy part. This particular feature
leads the attainment of the minima of the chemical potential
at the critical velocity where change in the phase takes place.
We have realized the presence of several dynamical phase
transitions, like QBS to QSS and the multisoliton behavior
depending upon the quenching protocol of the Rabi-coupling
parameters. By quenching both Rabi and SO couplings, we
can control the direction and angle of the inner and outer
solitons. The quenching of Rabi and SO couplings facilitates
several interesting dynamical phases like a repulsive soliton,
space-time breathers, filamentation, etc.

We have also analyzed the collision dynamics of solitons.
Depending upon the velocity of the soliton, we observed
the presence of elastic and inelastic collisions. An inelastic
collision occurs for low velocities, while it exhibits elastic col-
lision at high velocities consistent with earlier experimental
observations [15]. We have also complemented the collision
dynamics by analyzing the nature of different energy terms
like kinetic energy, mean-field energy, and LHY. Also, we
analyzed the collision dynamics of the solitons by quenching
either the velocity or the SO and Rabi couplings. For the
former, we found the presence of quasielastic collision, while
for the latter, we realize inelastic collision.

In this paper, we have considered the dynamical evolution
of the quantum solitons for the situation when the mean-field
contribution is negligible. It would be interesting to explore
the dynamics in the similar line presented in this work in the
presence of significant mean-field contribution along with the
LHY correction in the quantum soliton.
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APPENDIX: CALCULATION OF ENERGY IN THE
SO-COUPLED BECs WITH LHY CORRECTION

In this Appendix, we provide the detailed steps to obtain
the total energy of the SO-coupled BECs with LHY correc-

tion. The stationary state solution is given by

ψ j (x, y) = (
ψ jR + iψ jI

)
e−iμ j t , (A1)

where j ∈ {↑,↓}, ψ jR and ψ jI are the real and imaginary parts
of the stationary wave function, respectively, and μ↑,↓ are
the chemical potential of the spin-up and -down components,
respectively [40]. As we insert this solution in Eqs. (1) we get

μ↑ψ↑R =
[
−1

2

∂2

∂x2
+ g|ψ↑|2 + g↑↓|ψ↓|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑R + kL

(
∂ψ↑I

∂x

)
+ �ψ↓R, (A2a)

μ↓ψ↓R =
[
−1

2

∂2

∂x2
+ g|ψ↓|2 + g↓↑|ψ↑|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↓R − kL

(
∂ψ↓I

∂x

)
+ �ψ↑R, (A2b)

and for the imaginary parts we have

μ↑ψ↑I =
[
−1

2

∂2

∂x2
+ g|ψ↑|2 + g↑↓|ψ↓|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑I − kL

(
∂ψ↑R

∂x

)
+ �ψ↓I , (A2c)

μ↓ψ↓I =
[
−1

2

∂2

∂x2
+ g|ψ↓|2 + g↓↑|ψ↓|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑I + kL

(
∂ψ↓R

∂x

)
+ �ψ↑I , (A2d)

where |ψ↑|2 = ψ2
↑R + ψ2

↑I and |ψ↓|2 = ψ2
↓R + ψ2

↓I . Multiplying Eq. (A2a) with ψ↑R and Eq. (A2b) with ψ↓R, and integrating we
get

μ↑
∫

dx ψ2
↑R =

∫
dx ψ↑R

{[
−1

2

∂2

∂x2
+ g|ψ↑|2 + g↑↓|ψ↓|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑R + kL

(
∂ψ↑I

∂x

)
+ �ψ↓R

}
, (A3a)

μ↓
∫

dx ψ2
↓R =

∫
dx ψ↓R

{[
−1

2

∂2

∂x2
+ g|ψ↓|2 + g↓↑|ψ↑|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↓R − kL

(
∂ψ↓I

∂x

)
+ �ψ↑R

}
. (A3b)

Similarly, from the imaginary-part equations [Eqs. (A2c) and (A2d)] we obtain

μ↑
∫

dx ψ2
↑I =

∫
dx ψ↑I

{[
−1

2

∂2

∂x2
+ g|ψ↑|2 + g↑↓|ψ↓|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑I − kL

(
∂ψ↑R

∂x

)
+ �ψ↓I

}
, (A4a)

μ↓
∫

dx ψ2
↓I =

∫
dx ψ↓I

{[
−1

2

∂2

∂x2
+ g|ψ↓|2 + g↓↑|ψ↑|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↓I + kL

(
∂ψ↓R

∂x

)
+ �ψ↑I

}
. (A4b)

Upon rearranging the above equations [Eqs. (A3b)–(A4b) we obtain

μ↑ = 1∫ |ψ↑|2dx

∫ [
1

2

∣∣∣∣∂ψ↑
∂x

∣∣∣∣2

+
{

g|ψ↑|2 + g↑↓|ψ↓|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

}
|ψ↑|2

]
dx

+ 1∫ |ψ↑|2dx

∫ [
kL

(
∂ψ↑I

∂x

)
+ �ψ↓R

]
ψ↑Rdx + 1∫ |ψ↑|2dx

∫ [
−kL

(
∂ψ↑R

∂x

)
+ �ψ↓I

]
ψ↑I dx, (A5a)

μ↓ = 1∫ |ψ↓|2dx

∫ [
1

2

∣∣∣∣∂ψ↓
∂x

∣∣∣∣2

+
{

g|ψ↓|2 + g↓↑|ψ↑|2 − g3/2

π

√
|ψ↑|2 + |ψ↓|2

}
|ψ↓|2

]
dx

+ 1∫ |ψ↓|2dx

∫ [
−kL

(
∂ψ↓I

∂x

)
+ �ψ↑R

]
ψ↓Rdx + 1∫ |ψ↓|2dx

∫ [
kL

(
∂ψ↓R

∂x

)
+ �ψ↑I

]
ψ↓I dx. (A5b)

From the above equations we obtain the different contribution in the energy as

Eki =
∫ [

1

2
∫ |ψ↑|2dx

∣∣∣∣∂ψ↑
∂x

∣∣∣∣2

+ 1

2
∫ |ψ↓|2dx

∣∣∣∣∂ψ↓
∂x

∣∣∣∣2
]

dx, (A6a)
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Emf =
∫ [

1∫ |ψ↑|2dx

[ g

2
|ψ↑|2 + g↑↓

2
|ψ↓|2

]
|ψ↑|2 + 1∫ |ψ↓|2dx

[g↓↑
2

|ψ↑|2 + g

2
|ψ↓|2

]
|ψ↓|2

]
dx, (A6b)

ELHY =
∫ [

− 1∫ |ψ↑|2dx

[
2

3π
g3/2

√
|ψ↑|2 + |ψ↓|2

]
|ψ↑|2 − 1∫ |ψ↓|2dx

[
2

3π
g3/2

√
|ψ↑|2 + |ψ↓|2

]
|ψ↓|2

]
dx, (A6c)

ESO =
∫ {

1∫ |ψ↑|2dx

[(
kL

∂ψ↑I

∂x

)
ψ↑R +

(
−kL

∂ψ↑R

∂x

)
ψ↑I

]
+ 1∫ |ψ↓|2dx

[(
−kL

∂ψ↓I

∂x

)
ψ↓R +

(
kL

∂ψ↓R

∂x

)
ψ↓I

]}
dx, (A6d)

ERabi =
∫ {

1∫ |ψ↑|2dx

[(
�ψ↓R

)
ψ↑R + (

�ψ↓I
)
ψ↑I

] + 1∫ |ψ↓|2dx

[(
�ψ↑R

)
ψ↓R + (

�ψ↑I
)
ψ↓I

]}
dx, (A6e)

where Eki represents the kinetic energy, Emf mean-field contribution, ELHY is the energy due to the LHY correction, and ESO is
the contribution due to the SO coupling. The total energy ET = Eki + Emf + ELHY + ESO.
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