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Soliton collisions in Bose-Einstein condensates with current-dependent interactions
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We study general collisions between chiral solitons in Bose-Einstein condensates subject to combined
attractive and current-dependent interatomic interactions. A simple analysis based on the linear superposition
of the solitons allows us to determine the relevant time and space scales of the dynamics, which is illustrated by
extensive numerical simulations. By varying the differential amplitude, the relative phase, the average velocity,
and the relative velocity of the solitons, we characterize the different dynamical regimes that give rise to
oscillatory and interference phenomena. Apart from the known inelastic character of the collisions, we show
that the chiral dynamics involves an amplitude reduction with respect to the case of regular solitons. To compare
these results with feasible ultracold-gas experiments, the influence of harmonic confinement is analyzed in both
the emergence and the interaction of chiral solitons.
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I. INTRODUCTION

Research on matter-wave solitons has entered a new stage
since the first experiments on collapsing Bose-Einstein con-
densates (BECs) of ultracold gases [1,2]. The whole process
of emergence and evolution of bright solitons could be
observed in experiments that, by making use of magnetic
Feshbach resonances of some atomic species, tuned the inter-
atomic forces from repulsive to attractive interactions [3,4].
In this way, stable bright matter solitons were generated
in elongated condensates with quasi-one-dimensional (quasi-
1D) geometries; in most of the cases, an external harmonic
potential is necessary to keep the atomic cloud trapped [5].

The realization of matter-soliton trains led naturally to the
study of soliton collisions [4,6,7]. This scenario allowed for
the experimental testing in ultracold gases of predictions that
had been made long before for bright soliton interactions in
optical fibers [8,9]. In parallel, theoretical studies on mat-
ter solitons followed the experimental developments [10–15].
Currently, the interaction between bright solitons in the frame-
work of the 1D nonlinear Schrödinger equation is reasonably
well understood as a nonlinear-wave interference process dur-
ing which Josephson tunneling of particles can take place
[16,17]. However, there are still open, long-standing questions
regarding the process of soliton generation and subsequent
evolution that need detailed analysis in order to be settled. To
this end, recent experiments that use nondestructive imaging
have been carried out in scalar condensates [18,19].

This year, a new type of matter-wave soliton that shows
chiral properties has been observed in experiments with ultra-
cold atoms [20]. It was theoretically predicted in 1996 [21],
and its existence relies on the action of a density-dependent
gauge field, which provides the system with chiral proper-
ties. The experimental realization of density-dependent gauge

fields in ultracold atoms had been achieved in the presence
of optical lattices [22,23], but only very recently has it been
realized in translational-invariant settings [20,24]. The emer-
gent chiral properties of the system are reflected also in the
free expansion of the atomic cloud and the onset of persistent
currents [25], or the center of mass oscillations [26], and are
particularly manifest in the direction-dependent motion (and
existence) of bright, chiral solitons [20,21,27].

Before the experiments described in Ref. [20] took place,
chiral solitons had been demonstrated to be dynamically sta-
ble objects [28]. The collisions between chiral solitons with
an equal number of particles had been studied [29], where
a nonintegrable dynamics stands out as the main difference
with respect to the collisions of regular solitons. The action
of the modulational instability has also been analyzed in the
presence of a density-dependent gauge field and in the absence
of trapping [30], showing the chiral features of the resulting
soliton train. Still, as can be inferred from a comparison with
the extensive literature on regular solitons, the study of chiral
solitons is just starting and requires further characterization,
the more so with the prospect of experimental testing.

This paper contributes to this characterization by analyzing
general collisions between chiral solitons with different num-
bers of particles, including the variation of both the relative
phase and the relative velocity. The collisions are studied first
in the absence of confinement and later, motivated by the usual
experimental settings, within a harmonic trap. The soliton
emergence is also addressed in order to show the influence
of the harmonic confinement. We characterize the dynamical
regimes of chiral-soliton collisions, which are dominated by
oscillatory and interference phenomena. The relative phase
plays a more decisive role than in regular solitons, since it can
determine the transmission and reflection coefficients of the
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soliton scattering. Our analysis is made in the framework of
a generalized Gross-Pitaevskii (GP) equation that, besides the
usual contact-interaction term, includes a current-dependent
interaction as derived from a nonlocal unitary transformation
of the theory containing the density-dependent gauge field
[21].

The rest of this paper is structured as follows: Sec. II
provides a detailed introduction of the system model including
the properties of relevant states, such as plane waves and
solitons, trapped and untrapped, and their connection through
dynamical decay. Section III presents the theoretical basis that
rules the soliton collisions and their dynamical regimes, which
are tested first for regular solitons and later for chiral solitons.
Section IV summarizes our results. In Appendixes A and B
we clarify the particular units employed in our analysis and
provide additional details on several aspects of chiral-soliton
collisions, respectively.

II. MODEL

We assume that the system is an elongated BEC at
zero temperature with frozen transverse degrees of free-
dom, such that the order parameter of the three-dimensional
(3D) condensate is space separable �(r, t ) = ψ (x, t )χ (y, z),
where χ (y, z) is the transverse ground state. We further as-
sume, within a mean-field framework, that the axial wave
function ψ (x, t ) follows a generalized 1D Gross-Pitaevskii
equation

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
+ Uext (x) + g1D|ψ |2 + h̄κJ

]
ψ, (1)

where Uext (x) is an external axial potential, g1D < 0 is the
strength of the usual contact interparticle interaction, and
J (x, t ) is the current density J = h̄(ψ∗∂xψ − ψ∂xψ

∗)/(i2m).
The latter quantity, which introduces a current-dependent
mean field, can be demonstrated to enter the equation of
motion, in a different representation (see Ref. [21] for details),
through a density-dependent gauge field that induces a mo-
mentum shift of value h̄κ|ψ |2/2, where κ is the dimensionless
strength of the gauge field.

After multiplication on the left of Eq. (1) by ψ∗, and
subtracting the resulting equation from its complex conjugate,
one obtains the continuity equation

∂

∂t
|ψ |2 + ∂

∂x
J = 0, (2)

which, from the integration over the whole space
d/dt

∫
dx |ψ |2 = 0, gives the conservation of the number of

particles N = ∫
dx|ψ |2. Additionally, the Hamiltonian opera-

tor in Eq. (1), HGP = p̂2/2m + Uext + g1D|ψ |2 + h̄κJ , endows
the system with unusual global properties. The expectation
value of the momentum operator 〈p̂〉 = −ih̄

∫
dx ψ∗∂xψ ,

which follows the generic equation ih̄d/dt〈p̂〉 = 〈[ p̂, HGP]〉,
gives, making use of the continuity equation,

d

dt

〈
p̂ − h̄κ

2
|ψ |2

〉
=

〈
−∂Uext

∂x

〉
. (3)

In the absence of external potential, the total mechani-
cal momentum � = ∫

dx ψ∗( p̂ − h̄κ|ψ |2/2)ψ is conserved.

Analogously, the expectation value of the Hamiltonian, which
follows an equation for a time-dependent operator, gives
d/dt〈HGP〉 = 〈∂t (g1D|ψ |2 + h̄κJ )〉, and by using again the
continuity equation, d/dt〈HGP〉 = d/dt (〈g1D|ψ |2/2 + h̄κJ〉),
that is,

d

dt

∫
dx ψ∗

(
− h̄2

2m

∂2

∂x2
+ Uext + g1D

2
|ψ |2

)
ψ = 0; (4)

so the total energy E given by the above, explicit κ-
independent integral is a conserved quantity [21].

It is insightful to rewrite the current density as J = |ψ |2 v,
where the superfluid velocity v(x, t ) = h̄∂xS/m is defined
from the wave function phase S(x, t ) = arg ψ ; hence Eq. (1)
can be recast as

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
+ Uext + gv|ψ |2

]
ψ, (5)

where the velocity-dependent effective interaction gv is de-
fined by

gv (x, t ) = g1D + h̄κ v(x, t ). (6)

Therefore the effective interparticle interaction gv changes its
character (hence its sign) from attractive to repulsive when
the local velocity exceeds the limit value set by the contact
interaction v > (vg ≡ |g1D/h̄κ|); otherwise the effective inter-
action remains attractive for v < vg.

The stationary states present the space-time separa-
ble wave function ψ (x, t ) = ψ (x) exp(−iμt/h̄), where μ

is the eigenvalue of the Hamiltonian operator HGPψ =
μψ , but differently from the regular Gross-Pitaevskii equa-
tion, μ is not (in general) the chemical potential μch =
∂N E . The spectrum of linear excitations δψ j = [u j, v j]T

of stationary states, so that ψ (x, t ) → exp(−iμt/h̄) {ψ (x) +∑
j[u j (x) exp(−iω jt ) + v j (x)∗ exp(iω∗

j t )]}, with j being a
mode index, can be obtained through the Bogoliubov equa-
tions Bδψ j = h̄ω j δψ j , where the Bogoliubov matrix can be
written as B = BGP + Bκ , explicitly,

BGP =
(

HGP + g1D|ψ |2 − μ g1Dψ2

−g1Dψ∗2 −HGP − g1D|ψ |2 + μ

)
(7)

and

Bκ = i
h̄2κ

2m

(
ψ∂xψ

∗ − |ψ |2∂x −ψ∂xψ + ψ2∂x

−ψ∗∂xψ
∗ + ψ∗2∂x ψ∗∂xψ − |ψ |2∂x

)
. (8)

The existence of complex frequencies in the spectrum of lin-
ear excitations, that is, Im(ω j ) �= 0, indicates the presence of
unstable modes that have an exponential growth (in the linear
regime) from perturbative values, thus capable of breaking the
stationary configuration.

A. Plane waves

For Uext = 0, Eq. (1) is translational invariant; in this case,
it is useful to look at the spectrum of plane-wave eigenstates
ψq(x, t ) = √

n exp[i(qx − μqt/h̄)], having shifted frequen-
cies ωq = μq/h̄ defined by

μq = h̄2q2/2m + (g1D + h̄2κq/m) n. (9)
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FIG. 1. Linear excitation frequencies ω of plane-wave states with
wave number q in a system with current-dependent interactions
(and Uext = 0, g1D = 0). For q > −κn/4 (top panel) the plane-wave
states are dynamically stable (all the excitation modes present real
frequencies), and the speed of sound, c±

q = ∂kω|k→0, is different for
rightward and leftward moving waves [see Eq. (11)]. For q < −κn/4
the plane-wave states are unstable against long-wavelength perturba-
tion modes (bottom panel), which have imaginary frequencies.

Therefore the group velocity of the waves vq = ∂qμq/h̄ =
h̄(q + κn)/m does not match the superfluid velocity v =
h̄q/m. As relevant for the generation of chiral solitons, we
review the stability of plane-wave states, which has been
recently analyzed in Ref. [30]. In addition, we will report on
the related problem, usual in ultracold-gas experiments, of the
instability of a smooth density profile in a harmonic trap.

The linear excitations of a plane wave ψq

can also be expanded in Fourier modes δψk =
eikx{u exp(iqx), v exp(−iqx)}T that produce independent,
algebraic Bogoliubov equations for each excitation mode
with wave vector k. The resulting excitation dispersion is

ωk± = h̄k

m

⎛
⎝q + κn

2
±

√
k2 + (κn)2

4
+ q κn + m g1Dn

h̄2

⎞
⎠,

(10)

which is asymmetric, |ωk+| �= |ωk−| (see the top panel of
Fig. 1), even as looked at from a moving frame with veloc-
ity h̄q/m, and only becomes symmetric if looked at from a
reference frame moving with velocity h̄(q + κn/2)/m. This
fact reflects the origin of the current-density term in the gen-
eralized GP equation (1), which involves a momentum shift
of h̄κn/2 due to the action of a density-dependent gauge field
[21]. From the dispersion equation (10), the speed of sound
c± = ∂kωk± is obtained for long-wavelength excitations

k → 0 as

c± = h̄

m

⎛
⎝q + κn

2
±

√
(κn)2

4
+ q κn + m g1Dn

h̄2

⎞
⎠, (11)

which also shows the chiral features of the system. As follows
from Eq. (10), plane waves with wave vector q < −[κn/4 +
m g1D/(h̄2κ )] are unstable against perturbations [30]. The bot-
tom panel of Fig. 1 shows an example with g1D = 0 and q =
−κn; in this case, all wave vectors below −κn/4 correspond
to unstable states. Intuitively, the origin of this modulation in-
stability at g1D = 0, when the system energy does not include
any contribution from interparticle interactions, involves the
conversion of local canonical momentum into local density by
means of Eq. (3). Interestingly, in contrast to the case of just
attractive interactions (κ = 0), it is possible to find dynam-
ically stable states with negative effective interaction gv =
h̄2κq/m < 0 in the range q ∈ [−κn/4 + m g1D/(h̄2κ ), 0]. In
particular, for g1D = 0, the set of states with wave vectors
q ∈ [−κn/4, 0] are dynamically stable. From inspection of
Eq. (10), one can see that the cause of this extra stability
resides in the zero-point energy (h̄κn)2/4m associated with
moving excitation modes. In finite systems, due to the discrete
spectrum, the stability window is enlarged by approximately
(2π/L)2/(4κn), where L is the system size, within the domain
of negative wave numbers.

The dynamical decay of unstable plane waves gives rise
to the segmentation of the initial constant density into lo-
calized, moving wave packets, akin to bright solitons, that
interact with each other [30]. This process has been ob-
served in BECs with attractive contact interactions [5], where
the resulting number of solitons can be approximated by
the ratio L/λmax, where λmax = 2π/kmax is the wavelength
of the unstable mode with maximum imaginary frequency
max[Im(ωk )] [19,30,31]. Apart from the conservation of the
total mechanical momentum [Eq. (3)] instead of the canonical
momentum, an analogous process is followed in the pres-
ence of current-dependent interactions (see the recent work in
Ref. [30] for details). Figure 2 illustrates the decay process
of an unstable plane-wave state in a finite system of size
L = 20 n−1

0 , where n0 is the constant density, in agreement
with the predictions of the linear analysis; notice [Fig. 2(a),
top panel] that the canonical momentum is not a conserved
quantity. The decay is apparent after t = 20 m(κn0)−2/h̄, as
reflected by the wavy density at t = t1, which is consistent
with the typical time scale taken for the perturbation growth as
set by the maximum imaginary frequency max[Im(ωk )]−1 =
5.4 m(κn0)−2/h̄; moving and interacting solitonlike density
peaks are observed afterwards, as for t = t2, t f .

The emergence of solitons from the decay of a smooth
density profile is usually realized under harmonic trapping
in ultracold-gas experiments (see, for instance, Refs. [5,19]).
In such a setting, the system is subject to a quench in the
interatomic interactions, which are changed from repulsive to
attractive. The plane-wave instability analysis presented be-
fore provides just an approximation for the expected unstable
modes in the inhomogeneous density profile, by assuming
that the maximum density of the trapped system matches the
plane-wave density. The subsequent dynamics in the trap, in
the absence of current-dependent interaction and once the
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FIG. 2. (a) Decay of a plane-wave state ψ (t0) ≡ ψq =√
n0 exp(−i4h̄π x/L), seeded with a random perturbation, in a finite

domain of length L = 20 n−1
0 with periodic boundary conditions.

The interactions are set by g1D = 0 and κ = 1. The expectation value
of the canonical momentum 〈 p̂〉, in units of p0 = h̄n0, as a function
of time (top panel) and snapshots of the density profile at selected
times (bottom panel) are shown. (b) Decay in a harmonic trap after
a sudden change in the interatomic interactions from repulsive at
t = t0, with g1D = 1 h̄ωhoaho and κ = 0, to attractive for t > t0, with
g1D = −0.2 h̄ωhoaho and κ = 0.1. The top panel shows the evolution
of the center of mass, where time has units of Tho = 2π/ωho. The
initial wave function ψ (t0) corresponds to the system ground state
when the interactions are repulsive.

solitons have emerged, follows harmonic cycles of compres-
sion and expansion of the whole atomic cloud. As we show
in Fig. 2(b), the situation is clearly different for κ �= 0, since
the Kohn theorem is not fulfilled [26], and then the system
dynamics does not show harmonic oscillations.

B. Stationary bright solitons

Chiral bright solitons have been studied from the introduc-
tion of the theory of a density-dependent gauge [21,32], their
dynamics [29] and stability [28] have been analyzed, and, very
recently, they have been realized in translational-invariant set-
tings [20]. In this section we briefly review their differences
with respect to regular bright solitons and report on their ex-
pected features in harmonic traps, where we introduce simple
approximations for static states with a usual ansatz [15].

FIG. 3. Profile of bright solitons with varying velocity,
parametrized by ṽ = mv ξ/h̄, in the presence (top panel) and absence
(bottom panel) of current-dependent interactions for fixed number
of particles N = 2 × h̄ωho aho/|g1D| and contact interaction g1D < 0.
In the latter case, the comparison is made for static solitons in the
presence and absence of a harmonic trap by setting aho/ξ = 1, where
ξ = 2h̄2/(m|g1D|N ) is the soliton width found in the absence of trap
Uext = 0; see main text for the ansatz description.

In the absence of both axial potential and current-
dependent interaction, that is, Uext = 0 and κ = 0, Eq. (1)
admits moving-bright-soliton solutions

ψ =
√

N

2ξ
sech

(
x − vt

ξ

)
ei[m v x−(μ+mv2/2)t]/h̄, (12)

where N is the number of particles, ξ = 2h̄2/(m|g1D|N ) is
the soliton width, and μ = −h̄2/(2mξ 2) = −mg2

1DN2/8h̄3.
Note that the soliton amplitude A = √

N/2ξ ∝ √|g1D|N is
directly proportional to the number of particles. Due to the
U(1) symmetry of the system, a global, constant phase θ0 can
be added to the soliton phase without affecting observable
features such as energy or current. For κ = 0 the system is
Galilean invariant; so the soliton density profile is independent
of the soliton velocity v.

When κ �= 0, the bright soliton state equation (12) is still a
steady wave solution to Eq. (1) whenever v < vg; however, it
acquires chiral properties [21]. Due to the current-dependent
interaction, the soliton width varies with the velocity as
ξ (N ) → ξ (N, v) = 2h̄2/(m|gv|N ), that is, ξ (N, v)/ξ (N ) =
|g1D/gv| = (1 − v/vg)−1. From Eq. (4), the soliton energy is
Es = mg2

vN3(1 − |g1D/gv|)/(24h̄2) + Nmv2/2. Beyond a ve-
locity threshold v > vg the bright soliton equation (12) is no
longer a solution to the GP equation (1). When the stationary
soliton exists, it is dynamically stable [28]. The top panel
of Fig. 3 illustrates the different soliton profiles for varying
velocity at fixed particle number and contact interaction; for
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v = 0 the amplitude matches the profile of a regular soliton
(with κ = 0).

Harmonic confinement

Due to its experimental relevance in ultracold gases,
we consider also bright soliton states in the presence
of harmonic trapping Uext = m ω2

hox2/2. In this case, a
variational approach provides a good approximation to
the exact solutions; see, for instance, Ref. [15]. We use
the ansatz (in full units) ψ (x) = √

N/2ζ sech(x/ζ ), with the
width ζ (N, ωho) as the variational parameter for the stationary
solution. The minimization of the energy functional, as de-
fined in Eq. (4), E = ∫

dx [h̄2|∂xψ |2/2m + mω2
hox2|ψ |2/2 +

g1D|ψ |4/2], produces a quartic polynomial in ζ with a single
parameter aho/ξ , where aho = √

h̄/mωho is the trap charac-
teristic length and ξ = 2h̄2/(m|g1D|N ) is the soliton width
found in the absence of the trap. We approximate the solu-
tion to the quartic polynomial up to second order in aho/ξ

by ζ ≈ √
2/π [1 − 2 aho/(9ξ )] aho for aho/ξ ∈ [0, π2/4], and

ζ ≈ ξ otherwise. For a fixed number of particles, the soliton
width is always narrower, ζ/ξ < 1, in the trapped system, and
the chemical potential becomes

μ ≈ − h̄2

2mξ 2

(
5 − 2

ξ

ζ

)
ξ

3ζ
. (13)

The bottom panel of Fig. 3 depicts these features; as can
be seen, the analytical ansatz (solid line) provides a good
approximation to the exact numerical result (dots); the free
soliton (dashed line) is shown for comparison. When both
g1D �= 0 and κ �= 0, the above ansatz is still a good estimate
of the ground state, and it provides a good approximation to
the balance between kinetic, potential, and interaction energy.
In the particular case of current-dependent interaction without
contact interaction, g1D = 0, the ground state reduces to that
of the linear harmonic oscillator. However, differently from
the case of just contact attractive interaction, as we will show
in Sec. III D 3, when the ground state is forced to move in
the trap it changes its density profile according to the effective
interaction gv determined by the velocity of the motion.

III. BRIGHT SOLITON COLLISIONS

The interaction between regular solitons has been ex-
plained, by means of the exact two-soliton solutions to the
nonlinear Schrödinger equation, as a nonlinear-wave interfer-
ence process during which Josephson tunneling of particles
can take place [16,17]. In what follows, we elaborate on the
same idea, without resorting to the exact, complicated ana-
lytical solutions, by using simple physical arguments in the
analysis of chiral-soliton collisions (in the spirit of Ref. [33]
on optical solitons). The soliton amplitude interference en-
ters the dynamics through the mean-field, contact-interaction
term in GP equation (1). As we will show, in regular soli-
tons, the time evolution of noninteracting, interfering solitons
captures the characteristic time and length scales of the non-
linear time evolution, and so it does when the current-density
interaction is low in chiral solitons. Analogously, the current-
density interaction introduces additional interference terms in
the two-chiral-soliton dynamics, associated with the coupling

of amplitude and momentum of different solitons. We ana-
lyze both sources of interference, amplitude-amplitude and
amplitude-momentum couplings, within the regime of non-
interacting solitons, and show their relevance in the nonlinear
dynamics of chiral solitons.

Our analysis starts with the superposition of two approach-
ing, initially nonoverlapping solitons that solve Eq. (1) with
particle numbers N1 and N2, and relative global phase � =
θ1 − θ2:

ψ (x, t = 0) = ψA1,v1,�(x + x0) + ψA2,v2, 0(x − x0), (14)

where d0 = 2x0 is the initial intersoliton distance. To describe
the dynamics, we will make use of average-soliton units (see
Appendix A for details), which we will denote by barred sym-
bols; so the length unit ξ̄ = 2h̄2/(m|g1D + h̄κ v̄|N̄ ) is based
on the average number of particles N̄ = (N1 + N2)/2 and
average velocity v̄ = (v1 + v2)/2, and the time unit becomes
ω̄−1 = mξ̄ 2/h̄.

A. Amplitude-amplitude interference

Although the solitons are nonlinear waves, a qualitative
picture of the soliton interactions can be obtained from the
usual superposition of linear waves. Due to the coherent
properties of the underlying Bose-Einstein condensate, the
nonoverlapping solitons of Eq. (14), separated by the distance
d = 2(x0 − vt ), give rise to a neat amplitude interference pat-
tern in momentum space of period [34]

kd = π

x0 − vt
, (15)

where we assumed equal relative-velocity modulus |v1 − v̄| =
|v2 − v̄| = v. Notice that this period increases as the solitons
approach each other, and (in this approximation) it diverges,
resulting in no overlapping in momentum space, at the classi-
cal collision time t = x0/v.

We focus on the spatial interference as the solitons move.
Before they are close enough to have a significant overlapping,
the spatial interference of the solitons, ψA1,v1, �(t ) ≡ ψ1 and
ψA2,v2, 0(t ) ≡ ψ2, is approximated by

I (x, t ) =|ψ |2 − |ψ1|2 − |ψ2|2
≈2|ψ1||ψ2| cos[ kdB(x − v̄t ) − 2νω̄t + �], (16)

where ψ = ψ1 + ψ2, ν = (μ1 − μ2)/(2h̄ω̄), and kdB =
2m(v1 − v2)/h̄ is the de Broglie wave number corresponding
to the de Broglie wavelength λdB = 2π/|kdB| = π h̄/(mv).
The interference manifests as an oscillatory process, I =
F cos φ, characterized by an envelope wave F (x, t ) =
2|ψ1||ψ2| times a carrier wave cos[φ(x, t )], whose phase can
be recast as

φ = kdBξ̄

(
x − v̄t

ξ̄
− ν

V
ω̄t

)
+ �, (17)

where we have introduced the nondimensional parameter V =
v mξ̄ /h̄ = kdBξ̄ /2, which measures the relative velocity in
intrinsic units h̄/(mξ̄ ). From Eqs. (16) and (17) one can see
that when the solitons have equal frequencies μ1/h̄ = μ2/h̄,
that is, ν = 0, an interference pattern arises, and it is static in
the moving frame with coordinates x′ = x − v̄t , as given by
I = F cos(kdBx′ + �). The pattern is observable, roughly, if
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kdBξ̄ > 1; otherwise, for kdBξ̄ < 1 one would observe a net
(single fringe) constructive or destructive interference accord-
ing to the relative phase �. Overall, the relative phase just
shifts, both in momentum space and in physical space, the
positions of interference fringes. On the other hand, if the
relative velocity vanishes, v = 0, one expects a time-periodic
pattern (as is the case in bound soliton states) oscillating with
a frequency 2νω̄. Far from these limit cases the interference
evolves into an intermediate dynamical regime according to
the ratio |ν/V | between the two dynamical parameters ν and
V .

In regard to the interference amplitude, keeping the as-
sumption of small soliton overlapping, it can be approximated
by F (x, t ) = 2A1A2 sech ϕ1 sech ϕ2, where ϕ1 = (x + x0 −
v1t )/ξ1 and ϕ2 = (x − x0 − v2t )/ξ2. By making use of the
identities between hyperbolic functions,

F (x, t ) = 4 A1A2

cosh(ϕ1 + ϕ2) + cosh(ϕ1 − ϕ2)
, (18)

where

ϕ1 ± ϕ2 = ξ2 ± ξ1

ξ1 ξ2
(x − v̄t ) + ξ2 ∓ ξ1

ξ1 ξ2
(x0 − vt ). (19)

In the absence of current-dependent interactions, (ξ2 +
ξ1)/(ξ1 ξ2) = 2/ξ̄ , (ξ2 − ξ1)/(ξ1 ξ2) = −2α/ξ̄ , and A1A2 =
Ā2 (1 − α2), where α = (N1 − N2)/(2N̄ ) is the differential
number of particles and Ā = [N̄/(2ξ̄ )]1/2 is the average
soliton amplitude. The spatial modulation of the amplitude
interference acts in the equation of motion as a lattice potential
with time-varying depth and spatial period determined by
the linear superposition of the solitons; as a consequence, it
induces a corresponding modulation in the system state during
its nonlinear evolution. In this way, the interaction between
solitons emerging from the attractive interparticle interactions
can be understood as an interference process, where attractive
forces reflect constructive interference and repulsive forces
reflect destructive interference. Analysis of the exact two-
soliton solutions in regular solitons reveals that this is in fact
the case [16,17].

B. Current-density-mediated interference

An additional source of interference is associated with
the current-density interaction h̄κJ = h̄κRe(ψ∗ p̂ψ )/m.
It involves the coupling of the amplitude and mo-
mentum of different solitons, which we will write
as h̄2κ/(mξ̄ ) Iκ (x, t ), where Iκ = (ξ̄ /h̄)[Re(ψ∗ p̂ψ ) −
Re(ψ∗

1 p̂ψ1) − Re(ψ∗
2 p̂ψ2)]. When there is no significant

soliton overlapping, at the same order of approximation as
Eq. (16), it becomes

Iκ ≈ (ξ̄ /h̄) [Re(ψ∗
1 p̂ψ2) + Re(ψ∗

2 p̂ψ1)]

= 2|ψ1||ψ2|[V̄ cos φ + W (x, t ) sin φ]. (20)

Here, V̄ = v̄ mξ̄ /h̄ is the non-dimensional average ve-
locity, and W (x, t ) = ξ̄ [ 1/(2ξ2) tanh ϕ2 − 1/(2ξ1) tanh ϕ1 ].
The cosine term in Eq. (20) keeps the same functional form
as the amplitude interference [Eq. (16)], times the average
velocity V̄ , whereas the sine term, in phase quadrature with
respect to the amplitude interference, presents a space-time-
varying amplitude W that depends on the relative velocity.

For well-resolved solitons, the latter quantity can be approxi-
mated before the collision by W0 ≈ −(ξ1 + ξ2) ξ̄ /(2ξ1 ξ2) =
−(1 − ακN̄V/2) for the space between solitons, and W0 ≈
(ξ1 − ξ2) ξ̄ /(2ξ1 ξ2) = (α − κN̄V/2) otherwise. After the col-
lision time, W reverses its sign; so it experiences an overall
change of 2|W0| during an interval of the order of ξ̄ /v around
the collision time. This fact introduces a significant asym-
metry in the time evolution of chiral solitons, and different
dynamical regimes arise that depend on which, V̄ or W , is the
dominant term. In general, the interplay of the two oscillatory
components in phase quadrature gives rise to a phase shift
with respect to the contact-interaction term that translates into
a reduction of the soliton oscillation amplitude. In addition,
the time-varying interference amplitude W (x, t ) introduces
new time frequencies in the carrier wave that are absent in
regular solitons (see Appendix B for further details). Before
elaborating on the more complex dynamics of chiral solitons,
and in order to get better insight, we revisit the collisions
between regular solitons.

C. Collisions within the nonlinear Schrödinger equation

The theory of regular-soliton collisions, mainly based on
the interpretation of the complicated, exact solutions to the
nonlinear Schrödinger equation, can be found elsewhere (see,
e.g., Refs. [8,16,17]). We review it here from a different per-
spective, based on the above linear superposition analysis that
led to our equations (16)–(18), and through numerical simula-
tions that represent distinct dynamical regimes. In addition,
we report approximate expressions [see Eqs. (21) and (22)
below] that reproduce the main features of the process.

In the absence of both external potential and current-
dependent interaction, Uext = κ = 0, the seminal work of
Gordon [8] revealed the nature of forces acting between
nearby solitons through exact solutions to the nonlinear
Schrödinger equation. The intersoliton interaction depends
on three parameters featuring the differences between soli-
tons, namely, (α,V,�). In this case, α characterizes not only
the differential number of particles, but also, likewise, the
relative amplitude � = (A1 − A2)/(2Ā) = α and the relative
frequency ν = −α.

On many occasions, a simplified analysis of soliton col-
lisions based on just one (usually �) or two (usually V
and �) of these parameters is presented, which, assuming
solitons with equal amplitudes α = 0, leads to an over-
simplified conclusion: In-phase solitons, � = 0, experience
attractive forces, and opposite-phase solitons, � = π , ex-
perience repulsive forces between them. However, a deeper
analysis shows a far richer scenario [8,9,17,35]. The inter-
action forces decay exponentially with the soliton distance
[8], and when the solitons are within the forces’ reach, two
dynamical regimes that depend on the ratio |ν/V | = α/V can
be observed (assuming in this case α � 0, without lost of
generality). For α/V � 1 the soliton interactions involve an
oscillatory dynamics characterized by two frequencies: One
is directly proportional to the differential number of particles
α and characterizes the oscillations of the soliton amplitudes,
whereas the other frequency is directly proportional to V and
characterizes the exponential decay in the amplitude of the
oscillations. On the other hand, for α/V � 1, wave interfer-
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FIG. 4. Features of soliton collisions within the regular nonlinear Schrödinger equation. The time evolution of the density (top panels)
and phase profiles (middle panels) is shown for varying collision parameters (with values |ν/V | = 5.5, 10, and 0.04, from left to right); the
dashed lines in the phase graphs represent two density isocontours. The collision time tc is indicated on the time axis. Bottom left panel: soliton
separation, as measured between density peaks. Bottom center and right panels: Time evolution of the maximum density, comparing the exact
two-soliton solution with the approximate analytical expression [Eqs. (21) and (22)].

ence phenomena are dominant, and interference fringes of
wavelength λdB are observed. In both collisional regimes, the
soliton interactions (the proper collisions) take place mainly
during the time interval �t ≈ [tc − τ, tc + τ ] for a typical
time τ = (2V ω̄)−1 around the collision time tc (see below);
before and after this time interval the solitons translate freely,
conserving the properties, amplitudes and velocities, fixed
by the initial conditions. The singular case with v = 0 gives
rise to soliton bound states, whose oscillations depend on the
initial intersoliton distance [8,9,17].

The collision dynamics can be summarized by the time
evolution of the maximum amplitude in the system, which is
well approximated by the expression

max

[ |ψ (x, t )|
Ā

]
= 1 + α + f (t ) cos(2α ω̄ t + �0), (21)

with an envelope function f (t ) given by

f (t ) = f0

{
exp (−2V ω̄|t − tc|) if V < α

sech[ 2V ω̄(t − tc)] if V � α
(22)

and f0 =
{

1 − α if cos[2α ω̄(t − tc)] � 0
2α if cos[2α ω̄(t − tc)] < 0,

where �0 is a phase shift and tc = (x0 + �x)/(ξ̄ ω̄V ) is the
collision time obtained from the initial intersoliton distance
d0 = 2x0 and the soliton-interaction displacement 2�x =
− ln[(V 2 + 1)/(V 2 + α2)] ξ̄ /(1 − α2) [8]; this latter term is
not captured by the estimate in Eq. (18). Figure 4 shows three
examples of soliton collisions that illustrate the oscillatory

regime at low relative velocity (left and middle sets of panels)
and the interference-fringe regime at high relative velocity
(right panels). The time evolution of density and phase is
depicted in the top and middle panels, whereas the bottom
panels show the intersoliton distance (left) and the maximum
amplitude (center and right), comparing the numerical solu-
tion with the analytical results given by Eqs. (21) and (22). As
can be seen, these equations provide a faithful characterization
of the dynamics.

Soliton collisions under harmonic confinement

Apart from the influence of the trap on single soliton ampli-
tudes, a major influence is exerted on the dynamics of soliton
collisions. Assuming that the solitons are prepared in an initial
state with zero velocity at symmetric positions around the
trap center x1 = −x0 and x2 = x0, the oscillator force pushes
the solitons to meet at the potential minimum, where their
relative velocity, proportional to the initial separation d0 =
2x0, reaches the maximum value 2v = 2ωho x0. As before,
this velocity v can be compared with the intrinsic velocity
h̄/mζ̄ , as determined from the average number of particles
N̄ (see Sec. II B) to give V = ωhox0 mζ̄ /h̄ = x0 ζ̄ /a2

ho. Simi-
larly to the untrapped case, the parameter |ν/V | determines
the dynamical regime of the soliton collisions; however, an
important difference arises because now |ν| �= |α|, and the
frequency difference ν = (μ1 − μ2)/h̄, as can be inferred
from Eq. (13), is a nonlinear function of the differential num-
ber of particles α. Still, when |ν/V | > 1, the system enters
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FIG. 5. Collisions between regular solitons (κ = 0) in a harmonic trap. (a) and (b) show the initial states, the amplitude profiles in physical
space and momentum space, and the time evolution of the density profile for different separation and relative phase. The solitons are featured
by the differential number of particles α = 0.05, the relation between the trap and the interatomic interaction is fixed by the length ratio
aho/ξ̄ = 1.25, and the dynamical regimes are characterized by the ratio |ν/V | ≈ 0.07 in (a) and |ν/V | ≈ 0.034 in (b).

an oscillatory regime, whereas for |ν/V | � 1 the collisions
are featured by the presence of interference fringes. Fig-
ure 5 shows characteristic examples of soliton collisions in
a harmonic trap. The number of particles has been fixed by
α = 0.05, while both the relative phase and the intersoliton
distance (hence the eventual relative velocity) are varied. As
can be seen, the repeated collisions induced by the trap force
do not show identical outcomes (the motion is quasiperiodic),
due to the different soliton frequency; had we kept α = 0, we
would have obtained a real periodic dynamics. As anticipated,
the higher the initial separation, as in Fig. 5(b), the clearer the
interference pattern.

D. Collisions subject to current-density interactions

The conservation principles in Eqs. (3) and (4), along with
the additional interference terms due to the current-density
interaction, rule the collision dynamics. In analogy with the
amplitude interference of regular solitons, the “current inter-
ference” of chiral solitons induces an oscillatory dynamics
(see Appendix B for details). Due to the velocity-dependent
amplitude of the chiral solitons, the characteristic parameters
of a collision change accordingly. The differential amplitude
� becomes a function of α and the soliton velocities v1 =
v̄ + v and v2 = v̄ − v:

� = 1 + α

2

√
1 − κ̄V − 1 − α

2

√
1 + κ̄V , (23)

where κ̄ = κN̄/2 provides a reference value for the cur-
rent interaction strength in the system and, as before, V =
v mξ̄ /h̄. The product κ̄V = h̄κv/(|g1D + h̄κ v̄|) = v/|vg − v̄|
is a relative-velocity measure with respect to the average
velocity |vg − v̄|, where 0 � v < vg − v̄ is the condition for
the solitons to exist. High relative velocities such that v/|vg −
v̄| → 1 indicate the high broadening and reduced amplitude of
the forward moving soliton. Collisions with equal amplitudes
� = 0, for given α and v̄, correspond to the relative velocity
v0 = |vg − v̄| 2α/(1 + α2).

Similarly, the differential frequency can be written as a
function of α and κ̄V :

ν = (κ̄V − α)(1 − ακ̄V ). (24)

Thus equal soliton frequencies μ1/h̄ = μ2/h̄, which implies
also equal soliton widths ξ1 = ξ2, are obtained when α =
v/|vg − v̄|. For vanishing κ̄V , which is achieved not only for
κ = 0 but also for zero relative velocity V = 0 (while v̄ need
not vanish), the equalities � = α = −ν of regular solitons are
recovered. The ratio ν/V = (κ̄ − α/V )(1 − ακ̄V ), determin-
ing the oscillatory and interference-fringe regimes, involves
now the three nondimensional parameters (α, V, κ̄ ).

Finally, the interference envelope wave F (x, t ) =
2|ψ1||ψ2|, as given by Eqs. (18) and (19), is obtained
with (ξ2 + ξ1)/(ξ1 ξ2) = 2(1 − α κ̄V )/ξ̄ , (ξ2 − ξ1)/(ξ1 ξ2) =
2(κ̄V − α)/ξ̄ , and A1A2 = Ā2 (1 − α2)

√
1 − (κ̄V )2.

Therefore the amplitude of the interference process is at least
decreased by a factor (1 − v̄/vg)

√
1 − (κ̄V )2 with respect

to regular solitons. In this regard, the current-dependent
interparticle interactions reduce the soliton interactions. As
we will see later, due to the phase shift between particle
density and current density during the nonlinear evolution of
the system, Eqs. (16) and (20), a further soliton interaction
reduction can be observed in collisions at low relative
velocity.

1. Collisions at low current-density interaction

The dynamical regime of low current-density interaction
corresponds to κ̄V � 1, that is, to v � |vg − v̄|. In this case,
the differential amplitude equation (23) is approximated by
� ≈ α − κ̄V/2, and the differential frequency is parametrized
by ν ≈ κ̄V − α. Since ν/V = κ̄ − α/V , a similar dynamics to
that in the absence of current-density interactions is expected
when κ̄ � α/V . Figure 6 shows the outcome of chiral-soliton
collisions in this latter situation. We have set a zero aver-
age velocity v̄ = 0, an interaction ratio h̄2κ̄/(mg1Dξ̄ ) = 0.2,
a differential number of particles α = 0.2, and a relative ve-
locity determined by V = 0.02. As expected, the results are
qualitatively similar to those in regular solitons [shown for
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FIG. 6. Chiral-soliton collisions at low current-density interac-
tion (κ̄V = 0.004) characterized by the nondimensional parameters
h̄2κ̄/(mg1Dξ̄ ) = 0.2, α = 0.2, V = 0.02, and global relative phase
� = π . The average velocity of the solitons is zero, and the dynami-
cal ratio |ν/V | ≈ 10. (a) shows the evolution of the system canonical
momentum in units of p0 = h̄/ξ̄ (top panel), along with the evolution
of the maximum density (bottom panel); for comparison, the corre-
sponding evolution for regular solitons is depicted with dashed lines.
(b) shows the evolution of the density profile.

comparison in Fig. 6(a) by dashed lines], and the correspond-
ing dynamical regime characterized by amplitude oscillations
can be observed. As predicted, the amplitude oscillation pe-
riod is practically indistinguishable from the case of regular
solitons. Despite the fact that the canonical momentum is not
a conserved quantity, only small variations are observed, and
the system recovers the total initial canonical momentum after
the collision event.

However, relevant differences with respect to regular soli-
tons appear, like the peak density reduction (of about 50% in
this case) and the emergence of partial or even total reflection
during the collisions. It is worth comparing Fig. 6(b), which
shows a total reflection of chiral solitons, with the middle set
of panels of Fig. 4 for regular solitons. The latter solitons go
through each other in a collision, and no reflection is pro-
duced. In contrast, chiral-soliton collisions involve in general
both transmission and reflection processes that are regulated
by the relative phase. Our results show that total reflection
occurs at low relative velocity |ν/V | � 1, whereas total trans-
mission can be observed at high relative velocity |ν/V | � 1.
In this latter regime, as far as low current-density interaction
κ̄ � 1 are kept, chiral-soliton collisions are even more similar
to those of regular solitons, with no significant amplitude

FIG. 7. Schematic phase diagram of chiral-soliton collisions as a
function of the current-density interaction strength κ̄V , and the ratio
ν/V , which characterizes the crossover between the oscillating phase
(yellow shaded region) and the regime of spatial-interference fringes
(blue shaded region); the value |ν/V | = 1 (dot-dashed vertical line)
marks the middle point. The top red lines at κ̄V = 1 indicate the
relative-velocity limit, whereas the horizontal dashed line at κ̄V = 0
corresponds to regular solitons. The dotted region represents the
presence of nonsolitonic radiation increasing with κ̄V . The open
symbols correspond to the discussed cases: Point A refers to the case
shown in Fig. 6, point B refers to that shown in Fig. 8, points C, D,
and E refer to that shown in Fig. 10, and points F, G, H, and I refer
to that shown in Appendix B, Fig. 13.

reduction, and the appearance of interference fringes of wave
number kdB = 2m v/h̄ (see Appendix B for further details).

2. General collisions

Figure 7 shows a simple phase diagram of chiral-soliton
collisions as a function of the strength of the current-density
interaction, as measured by κ̄V , and the ratio ν/V , which
parametrizes a smooth crossover, with |ν/V | = 1 as the
middle point (dot-dashed vertical line), between the regime
dominated by soliton-amplitude oscillations (yellow shaded
region) and the regime dominated by spatial-interference
fringes (blue shaded region). The dotted region indicates the
expected presence of nonsolitonic radiation increasing with
κ̄V . Viewed as a scattering event of two incoming solitons,
the collision produces outgoing waves that can be classified
under two main sets: One set is characterized by two outgoing
solitons with, in general, different velocities and amplitudes
from the incoming ones; the second set includes outgoing
waves that involve nonsolitonic radiation along with solitons.
In both sets, the initial relative phase has a strong influence on
the scattering process (significantly stronger than in regular
solitons), so that, for otherwise equal initial soliton parame-
ters, different relative phases can change the outcome of the
collision from one set to the other. This picture is consistent
with the results of Ref. [29], where collisions between solitons
with an equal number of particles, α = 0, were addressed,
and the elasticity of the collision versus the relative phase
was measured through the restitution coefficient (as a ratio of
incoming and outgoing kinetic energies).

A case of chiral-soliton collisions for an intermediate
value of the current-density interaction κ̄V = v/v̄ = 0.15
(and g1D = 0) is shown in Fig. 8. The average soliton ve-
locity is V̄ = v̄ mξ̄ /h̄ = 1, and we have chosen a reference
frame moving with the average velocity v̄, where the solitons
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FIG. 8. Chiral-soliton collisions with no contact interactions
(g1D = 0), intermediate current-density interaction κ̄V = 0.15, ratio
|ν/V | = 0.3, and varying initial relative phases �, as viewed in
a reference frame moving with the average soliton velocity V̄ =
v̄ mξ̄ /h̄ = 1. As in Fig. 6, (a) shows the evolution of the system
canonical momentum (in units of p0 = h̄/ξ̄ ) and maximum density,
whereas (b) shows the evolution of the density profile.

have equal relative-velocity modulus |v1 − v̄| = |v2 − v̄| =
v. The differential number of particles is α = 0.2, so that
the differential amplitude and frequency become � = 0.12
and ν = −0.05, respectively. Although the ratio |ν/V | = 1/3
points to a nonoscillatory dynamics, the sizable influence
of the relative phase � (shown for three particular values)
gives rise to different scenarios. While at � = −π/2 one
can see the almost total reflection of the solitons (with a 2%
variation in each soliton particle number), at � = π/2 the al-
most total transmission (with practically conserved canonical

FIG. 9. (a) and (b) Same as Fig. 8, but for different values of
the initial, global relative phase � close to the transition from pre-
dominant reflection [top panel of (b)] to predominant transmission
[bottom panel of (b)] events.

momentum) is observed. In between, a highly asymmetrical
outcome is produced at � = π (with an outgoing differential
number of particles α = 0.4), which, due to the conservation
of the total mechanical momentum �, Eq. (3), involves a
significant change in the velocities of the outgoing solitons.
The peak density achieved during the collisions is equally
affected by the relative phase, with very small variation for
the total transmission event. However, particular values of the
relative phase close to the transition from total reflection to
total transmission cause a significant variation in the duration
of the collision. As can be seen in Fig. 9, one or more cycles
of soliton oscillations, mediated by momentum and particle
exchange, can be observed.
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FIG. 10. (a) and (b) Same as Fig. 8, but for high current-density
interaction κ̄V = 0.7 and varying differential number of particles α,
which translates into different dynamical ratio, differential ampli-
tude, and frequency. They take the values |ν/V | = 0.6, � = −0.19,
and ν = 0.43, for α = 0.2, vs |ν/V | = 1, � = −0.38, and ν = 0.7,
for α = 0. That is, decreasing α moves the system horizontally to the
right in the phase diagram, from point C to point D in Fig. 7; further
variation (not shown) gives |ν/V | = 1.5 at α = −0.2 (point E).

High current-density interaction, as shown in Fig. 10
for κ̄V = 0.7 and average soliton velocity V̄ = v̄ mξ̄ /h̄ = 1,
leads to the almost full transmission of the solitons through the
collision, along with the appearance of interference fringes.
The relative phase becomes less relevant, since it only changes
the position of the maxima and minima of the interference
fringes. However, the particular arrangement of the fringes
is involved in the amount of nonsolitonic radiation that can
also be observed in this regime. The presence of radiation can
be understood as related to the generation of nonlinear waves
that exceed the limit speed |v̄| (in general |vg − v̄|) during the
scattering event.

3. Current-density interaction and harmonic trapping

As in regular solitons, we focus on initial states with two
solitons situated symmetrically around the trap center. The
initial soliton separation determines the soliton speeds at col-
lision time. Additionally, the harmonic force induces repeated
collisions at twice the harmonic frequency. For our numer-

FIG. 11. Chiral-soliton collisions in a harmonic trap. (a), for
regular solitons (κ = 0), is shown for comparison. In (b) and (c),
the current-density interaction is characterized by the velocity vg =
g1D/(h̄κ ) = 2.5 h̄/(mξ̄ ).

ical simulations, the oscillator length scale and the average
number of particles per soliton are chosen to give ξ̄ = 0.8 aho.
Since the initial state is made of static solitons (located at the
turning points of the subsequent evolution), both contact and
current-dependent interactions are switched on. The strength
of the latter is characterized by the velocity vg = g1D/(h̄κ ).

Figure 11 shows several examples for varying parame-
ters. For comparison, Fig. 11(a) depicts a case with κ = 0,
differential number of particles α = 0.2, and short soliton sep-
aration d = 4 aho (that produces a small overlapping of their
tails); as a consequence, the repeated collisions show different
outcomes. Once again, the relative phase does not produce a
qualitatively different dynamics. Figure 11(b) illustrates the
system time evolution for these same parameters plus current-
density interaction characterized by vg = 2.5 h̄/(mξ̄ ). A more
complex scenario arises due to the inelastic character of the
collisions, and the dynamics become more irregular at longer
times. By increasing the soliton separation, as in Fig. 11(c),
where d = 8 aho the maximum velocity at the trap center
ωhod/(2vg) = 1.28 brings the forward moving solitons into a
temporarily unstable state (for x ∈ [−0.875, 0.875] aho, their
effective interparticle interaction is repulsive). Nevertheless,
the oscillator force is capable of balancing the dispersive
effects, and the system shows repeated cycles with the char-
acteristic interference patterns of high-velocity collisions.
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IV. CONCLUSIONS

We have presented a general analysis of chiral-soliton
collisions in Bose-Einstein condensates subject to current-
dependent interaction. By varying the differential amplitude,
the relative phase, the average velocity, and the relative ve-
locity of the two solitons, their collision dynamics have been
discussed and characterized by different dynamical regimes
that give rise to oscillatory and interference phenomena.
Guided by the linear superposition of the solitons, we have
determined the relevant time and space scales observed in the
simulations. The amplitude reduction with respect to the case
of regular solitons has been revealed as a special feature in the
chiral dynamics. Furthermore, in order to compare our results
with feasible ultracold-gas experiments, we have investigated
the influence of harmonic confinement on the emergence and
the interaction of chiral solitons.
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APPENDIX A: UNITS

In the absence of external potential, the regular 1D GP
equation written in nondimensional form is{

i
∂

∂ t̃
+ β

1

2

∂2

∂ x̃2
− g̃1D|ψ̃ |2

}
ψ̃ (x, t ), (A1)

where x̃ = x/� and time t̃ = ωt are the dimensionless coordi-
nates, ψ̃ = √

�/γ ψ , with γ constant, is the nondimensional
wave function, and the nondimensional parameters β and g̃1D

depend on the selection of units of length � and time ω−1:

β = h̄2

m�2 h̄ω
, g̃1D = g1D

h̄ω�
γ . (A2)

By choosing β = |g̃1D| = 1, the nondimensional GP equa-
tion (A1) takes a universal form fixed by the units h̄ω =
m(|g1D|γ )2/h̄2 and � = h̄2/(m|g1D|γ ); the normalization be-
comes ∫

dx̃|ψ̃ (x̃, t̃ )|2 = N

γ
, (A3)

and the velocity is measured in units of ω� = |g1D|γ /h̄.
For the analysis of the two-soliton system we have chosen
γ = N/4 = N̄/2, where N̄ is the average number of par-
ticles per soliton. With this choice,

∫
dx̃|ψ̃ |2 = 4, and the

unit of length matches the width of the average soliton � =
ξ̄ = 2h̄2/(m|g1D|N̄ ), that is, a soliton containing the aver-
age number of particles; the corresponding energy unit is
h̄ω = h̄2/mξ̄ 2 = 2μ̄ ≡ h̄ω̄, where μ̄/h̄ is the characteristic
frequency of the average soliton.

Analogously, if there is only current-density interaction,
the equation of motion written in nondimensional form is{

i
∂

∂ t̃
+ β

1

2

∂2

∂ x̃2
− J̃

}
ψ̃ (x, t ), (A4)

where J̃ = κJ/ω is the nondimensional current density. Since
κ is dimensionless, only one parameter, β, determines the
units, which, with β = 1, fulfill h̄ω = h̄2/(m�2). With no
extra parameter introducing a fixed scale unit, Eq. (A4) is
scale invariant [32]. However, the two-soliton system intro-
duces two velocity scales, the average, v̄, and the relative,
2v, soliton velocities, with the constraint v/|v̄| < 1. In this
case, with the same normalization factor as before, γ = N̄/2,
we choose the units such that ω� = h̄/(m�) = κγ v̄, and then
h̄ω = m (κγ v̄)2.

In the presence of both current-density, κ �= 0, and con-
tact, g1D �= 0, interaction, we rewrite the nondimensional
equation (A1) with g̃ = |g1D + h̄κ v̄|γ /(h̄ω�), so that, by set-
ting g̃ = β = 1 and γ = N̄/2 for the two-soliton system,
the resulting units are h̄ω = m(|g1D + h̄κ v̄|γ /h̄)2 and � =
2h̄2/(m|g1D + h̄κ v̄|N̄ ), in analogy with the case with only
contact interactions. Thus the velocity unit is ω� = |g1D +
h̄κ v̄|N̄/(2h̄) = κγ |vg − v̄|, where vg = |g1D|/(h̄κ ). Notice
that vg > v̄ is a necessary condition for soliton existence.

APPENDIX B: GENERAL FEATURES OF
COLLISIONS OF TWO CHIRAL SOLITONS

1. Energy and momentum

The lack of conservation of the canonical momentum al-
lows for the exchange of momentum and number of particles
between solitons; from Eq. (3),

Pt − P0 = h̄κ

2

∫
dx (|ψt |4 − |ψ0|4), (B1)

where P0 and Pt are the total canonical momentum of the
initial ψ0 and final ψt states, respectively. For the initial
solitons one obtains a canonical momentum P0 = m(N1v1 +
N2v2) = N̄ h̄(2V̄ + αV )/ξ̄ and a momentum contribution
from the gauge field h̄κ̄

∫
dx|ψ0|4/N̄ = 2h̄κN̄ (1 − α2)(1 +

ακ̄V )/(3ξ̄ ), which for the simplest case of an equal number
of particles α = 0 gives P0 = 2h̄V̄ N̄/ξ̄ and 2h̄κN̄/(3ξ̄ ), re-
spectively.

The energy conservation equation (4) states that Et = E0,
where the initial two-soliton energy is E0 = ∑

j Nj[mv2
j /2 −

μ j/3 − |g1D|A2
j/3], for j = 1, 2 and μ j = −h̄2/(2mξ 2

j ). As a
function of the collision parameters, the conserved energy is

Et = N̄ h̄ω̄

{
V̄ 2 + V 2 + αV̄V + 2

3
(1 + αν)

− 2

3

∣∣∣∣g1D

gv̄

∣∣∣∣(1 + �2 + 2α�)

}
. (B2)

From Eq. (B1), one can see that the change in canonical
momentum is accompanied by a change in the density dis-
tribution (or alternatively, in the number of particles) of the
solitons. This variation is, however, limited by the conserva-
tion of energy [Eq. (B2)], which in the absence of contact
interaction is just the conservation of the total kinetic energy.

2. Amplitude- and current-density-mediated interference

In general, as the schematic phase diagram of chiral-soliton
collisions in Fig. 7 sketches, the picture of two dynamical
regimes driven by interference, and characterized by spatial-
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FIG. 12. (a) Nonlinear evolution of the maximum amplitude
(dashed line) in a two-regular-soliton system characterized by α =
0.1, V = 0.02, and mξ̄ g1D/h̄2 = 1. The evolution of noninteracting
solitons (solid line) is shown for comparison. (b) Nonlinear evolution
of the current density (solid line) and maximum amplitude (dashed
line) of chiral solitons with mξ̄ κ v̄/h̄ = 1, no contact interaction
(g1D = 0), and otherwise the same parameters as in (a). The evolution
of the current density of noninteracting solitons (dot-dashed line) is
shown for comparison with a reduced and phase-shifted amplitude,
J̃ . (c) Same as (b), but for higher relative velocity.

interference fringes and oscillatory dynamics, provides a
reference framework that is complemented by the influence
of the relative phase (mainly at intermediate values of the
current-density interaction) and the presence of nonsolitonic
radiation (increasing with the values of the current-density
interaction). Close to the limits, κ̄V → 0 and κ̄V → 1, the re-
ferred spatial-interference and oscillatory regimes show more
distinctive features. In order to make the picture presented
in the main text more complete, in what follows, we show
additional cases and details of chiral-soliton collisions.

In chiral-soliton collisions with low current-density inter-
action (e.g., the case depicted in Fig. 6 within the main text),
the evolving noninteracting, interfering solitons, as driven by
Eq. (16), captures the characteristic time and length scales of
the nonlinear time evolution. This characterization is shared
by regular solitons. For comparison, Fig. 12(a) depicts a
simple example of regular-soliton collisions with different

FIG. 13. (a) Chiral-soliton collisions with zero contact interac-
tion at intermediate (top, |ν/V | = 1.9) and high (bottom, |ν/V | =
1.4, and reduced color map) relative velocities, both in the dynamical
regime of observable soliton amplitude oscillations. (b) Same as
(a), but in the dynamical regime of spatial-interference fringes with
|ν/V | = 0. In all cases the average velocity fulfills mξ̄ κ v̄/h̄ = 1.

amplitudes and low relative velocity, α/V = 5, which shows
the evolution of the system maximum amplitude. Although
the amplitude oscillation predicted by the noninteracting soli-
tons (solid line) is manifestly higher, its time period is the
same, and the duration of the collision (roughly, the time
during which interference is significant) is also the same.

The current-density interaction h̄κJ introduces additional
interference terms in the two-chiral-soliton dynamics, as given
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by Eq. (20), which can be recast as

Iκ ≈ 2|ψ1||ψ2|
√

V̄ 2 + W 2 cos

(
φ − arctan

W

V̄

)
, (B3)

where it is explicitly stated that the potential introduced
by the current-density interaction is dephased by the time-
varying angle arctan(W/V̄ ) with respect to the particle density
[Eq. (16)] and scaled by the time-varying amount (V̄ 2 +
W 2)1/2. Figure 12(b) shows an example of chiral-soliton col-
lisions in the absence of contact interactions, and otherwise
equal parameters to those in Fig. 12(a). The average velocity
is set by mξ̄ κ v̄/h̄ = 1, so that the differential amplitude and
frequency are � = 0.09 and ν = −0.08, respectively. The
latter quantity produces a ratio |ν/V | = 4 that puts the sys-
tem in the oscillatory regime. The current of noninteracting
solitons, depicted with a reduced and phase-shifted amplitude
J̃ (dot-dashed line), provides a good approximation to the
time frequency of the real dynamics. However, as can be seen
in Fig. 12(c), at high relative velocity v/v̄ = 0.7 the linear
approximation fails to provide a characteristic frequency of
the collision due to a pulsating dynamics accompanied by
nonsolitonic radiation. The differential amplitude and fre-
quency are � = −0.28 and ν = 0.56, reversing the signs of
the corresponding values at low relative velocity.

Figure 13, showing cases situated in opposite limits of the
schematic phase diagram of Fig. 7, illustrates how the limit
of high current-density interaction κ̄V → 1 recovers a neater
picture of the two dynamical regimes found in regular soli-
tons. In Fig. 13(a), which corresponds to points F and I in the
phase diagram, and where the maximum density represented
in the color map of the bottom panel has been reduced by
a factor of 0.4 to better show the pulsating dynamics, the
ratios |ν/V | = 1.9 (top panel) and |ν/V | = 1.4 (bottom panel)
point to an evolution characterized by soliton-amplitude oscil-
lations. On the other hand, in Fig. 13(b), which corresponds

FIG. 14. Distance λ between interference fringes in counterprop-
agating chiral-soliton collisions as a function of the relative velocity
parametrized by V = mξ̄ v/h̄. Both contact and current-density in-
teractions are present, with the ratio h̄2κN̄/(mξ̄ g1D) = 0.1. The
differential number of particles is α = 0.1. The insets show the time
evolution of the density profiles for two velocity values V = 1, 8.

to points G and H in the phase diagram, the ratio |ν/V | = 0
points to the regime of spatial-interference fringes.

Interference fringes at low current-density interaction

As in regular solitons, the interference fringes that emerge
from chiral-soliton collisions at low current-density inter-
action κ̄V � 1 are determined by the de Broglie wave
number associated with the relative velocity kdB = 2mv/h̄.
Figure 14 shows our numerical results in this regime for
chiral-soliton collisions in the presence of both contact and
current-density interactions. The determination of the distance
between fringes has been obtained from a Fourier analysis
of the data, so that the solid circles correspond to the wave
number with (nonzero, local) maximum amplitude, and the
error bars indicate the width of the local maximum.
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